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ABSTRACT 

This study investigates the spatiotemporal dynamics of land surface temperature (LST) and vegetation cover, 

represented by the Normalized Difference Vegetation Index (NDVI), in Central Guilan Province, Northern Iran, 

a core part of the relic Hyrcanian biome, from 1989 to 2023. LST was retrieved from Landsat 5 TM and Landsat 

8 OLI/TIRS, while NDVI was derived from red and near-infrared bands. Spatial autocorrelation of LST was 

assessed with Global Moran’s I, and Pearson correlation was applied to quantify LST–NDVI relationships. Results 

show a marked rise in mean LST from 18.48 °C in 1989 to 23.13 °C in 2023. Strong negative correlations between 

LST and NDVI were identified (r = –0.718 in 1989; r = –0.743 in 2023), confirming vegetation’s key role in 

regulating surface temperatures. Spatial clustering of thermal anomalies was intensified during the study period, 

with Moran’s I increasing from 0.39 to 0.68, indicating urban heat island (UHI) expansion. These findings 

demonstrate that how land transformation has altered regional microclimates and highlight the urgent need for 

sustainable planning to enhance climate resilience. Given Central Guilan’s location within the globally valuable 

Hyrcanian biome, effective conservation and adaptive land management are essential to protect its ecological 

integrity under ongoing climate and land-use pressures. 
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INTRODUCTION 

The interaction between land surface temperature (LST) and vegetation cover plays a pivotal role in regulating 

terrestrial ecosystem processes, particularly in areas undergoing rapid environmental transformation (Cracknell 

2007). Vegetation affects LST through biophysical mechanisms such as evapotranspiration and canopy shading, 

whereas LST serves as a key indicator of surface energy fluxes influenced by both natural and anthropogenic 

drivers (Elachi & Van Zyl 2021). The Normalized Difference Vegetation Index (NDVI), derived from satellite 

remote sensing, remains a widely utilized proxy for assessing vegetation health and density, enabling the temporal 

analysis of vegetation–climate dynamics (Eastman 2009). Rapid urbanization has intensified urban heat islands 

(UHIs), where cities are significantly warmer than nearby rural areas (Rizwan & Dennis 2008). Current 

projections suggest that by 2050, approximately 68% of the global population will reside in urban environments 

(UN 2018), exacerbating energy demand and public health vulnerabilities (Santamouris 2020). Addressing these 

challenges aligns with the Sustainable Development Goals (SDGs), particularly SDG 11 (Sustainable Cities) and 

SDG 13 (Climate Action), which advocate for integrated urban planning and the expansion of green infrastructure 

to mitigate UHI effects (UN 2015). In Iran, the urban population has grown at an average annual rate of 4.2% 

since 2000. Guilan Province, located along the Southwest Caspian Sea coast, has witnessed a 25% population 

increase since 1990 (Statistical Center of Iran 2016). This demographic growth has triggered substantial land use 

changes, including the conversion of forests and wetlands into impervious surfaces, thereby disrupting local 
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hydrological cycles and elevating LST (Aghsaei et al. 2020). These transformations pose serious threats to food 

security (SDG 2) and aquatic ecosystems (SDG 14; FAO 2021). Recent spatial analyses in the region have 

documented these trends, revealing significant LST increases concurrent with land degradation (Fallah Ghalhari 

& Dadashi Roudbari 2018). Central Guilan, characterized by Hyrcanian forests, wetlands, and agricultural plains, 

has experienced extensive land cover modifications over the past three decades (Shooshtari & Gholamalifard 

2015). These alterations have reshaped local energy balances and ecological processes (Ellis 2015). The 

magnitude of these transformations is particularly pronounced in the ecologically sensitive Hyrcanian lowlands 

(Shakiba et al. 2024). Landscape ecology frameworks provide valuable insights into these dynamics, emphasizing 

the role of spatial configurations of natural and anthropogenic elements in mediating ecosystem functioning and 

energy transfer (Forman & Godron 1986; Naveh & Lieberman 1994). Remote sensing (RS) and geographic 

information systems (GIS) have become indispensable tools for monitoring and analyzing spatiotemporal patterns 

in land surface conditions (Lillesand et al. 2015). Landsat satellite data, which have consistently provided NDVI 

and thermal information since the 1980s, are especially valuable for long-term environmental assessments (Roy 

et al. 2014). Furthermore, spatial statistical techniques such as Moran’s I enhance analytical precision by 

quantifying spatial autocorrelation and detecting clusters of elevated LST associated with landscape transitions 

(Weng 2009). The NDVI–LST relationship serves as a critical metric for understanding vegetation–climate 

interactions. For instance, Guha et al. (2018) reported that NDVI explained a substantial portion of LST variability 

across vegetation types, while Zhu et al. (2022) demonstrated the efficacy of urban greening in reducing LST 

across Chinese cities. In Northern Iran, the expansion of impervious surfaces has been linked to increased LST 

and a concurrent decline in NDVI, with the Caspian lowlands exemplifying this trend (Azadeh & Etemadi Kia 

2024). A similar pattern has been observed in Tehran, where vegetation loss has weakened the NDVI–LST 

coupling, intensifying urban thermal anomalies (Karimi Firozjaei et al. 2025). On a broader geographic scale, 

afforestation initiatives have effectively reduced surface temperatures in Mediterranean regions (Delgado-Capel 

et al. 2024), while NDVI–LST linkages have proven useful for assessing drought impacts in arid environments 

(Rahimi et al. 2025). Recent studies employing advanced spatial analysis methods, including Moran’s I, have 

successfully captured the spatial heterogeneity of NDVI–LST interactions in complex landscapes (Alademomi et 

al. 2022). In this context, the spatial variability of landscape patterns in Guilan’s physiotopes and ecotopes 

necessitates refined analytical approaches to better understanding vegetation–thermal dynamics. Accordingly, this 

study investigates the spatiotemporal NDVI–LST relationship in Central Guilan Province from 1989 to 2023 using 

Landsat imagery and spatial statistical methods. The findings aim to inform climate-resilient land-use planning 

and foster sustainable landscape management in this ecologically critical region. 

MATERIALS AND METHODS 

LST was estimated from Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager/Thermal 

Infrared Sensor (OLI/TIRS) data following a multi-step process involving radiometric calibration, atmospheric 

correction, and land surface emissivity (LSE) estimation. The processing was conducted using RS and GIS 

software tools such as ENVI, ArcGIS Pro, and open-source Python scripts. 
 

Study area 

The study focuses on the central region of Guilan Province, located in Northern Iran along the southern coast of 

the Caspian Sea. This region is characterized by a temperate and humid climate that supports dense vegetation, 

including remnants of the ancient Hyrcanian mixed forests (Yavari et al. 2012). Over recent decades, the area has 

experienced rapid population growth, urban expansion, and land use changes, making it a suitable case for 

examining vegetation–climate interactions. The region includes diverse landscapes such as Hyrcanian forests, 

wetlands, and agricultural plains. Over the past three decades, deforestation and urbanization have significantly 

altered the region’s hydrology and microclimates (Abdollahi 2019; Haghighi Khomami et al. 2023). 
 

Preprocessing and data acquisition 

In this study, satellite imageries from Landsat 5 (1989) and Landsat 8 (2023) obtained from the United States 

Geological Survey (USGS) EarthExplorer platform were utilized. Level-1 terrain-corrected (L1T) imagery was 

used to ensure geometric accuracy and radiometric consistency (USGS 2021). The images were selected in a 

manner that allows clear identification and comparison of vegetation cover and other surface features across the 

two time points. To ensure temporal consistency, cloud-free images (with less than 10% cloud cover) 



corresponding to the same season were selected for both sensors, specifically within a one-month time window in 

May of each year. This selection minimizes atmospheric and seasonal variation, thereby improving the accuracy 

of LST and NDVI calculations. For LST analysis, the thermal bands of Landsat 5 TM (Band 6), with a native 

spatial resolution of 120 meters, and Landsat 8 TIRS (Bands 10 and 11), with a native resolution of 100 meters, 

were used. Detailed specifications of the satellite imagery used are presented in Table 1. Atmospheric correction 

and image preprocessing were performed using standard protocols in Google Earth Engine. NDVI was computed 

from the red and near-infrared bands, while LST was retrieved using the thermal infrared bands with radiometric 

calibration and emissivity correction procedures. Spatial autocorrelation of LST values was assessed using 

Moran’s I index to detect clustering patterns indicative of UHIs. Pearson correlation analysis was applied to 

evaluate the relationship between NDVI and LST for both years. All geospatial analyses were conducted using 

ArcGIS and QGIS platforms. 

 
Fig. 1. Study area in Central Guilan Province, Iran, defined by the coordinates (1) 37.01°N, 49.92°E; (2) 37.42°N, 50.01°E; 

(3) 37.54°N, 49.23°E; and (4) 37.22°N, 49.14°E.  

 

Table 1. Specifications of the satellite imagery and sensors used in this study. 

Satellite Resolution Sensor Path/Row Acquisition Date Coordinate System  

Landsat 5 Resampled to 30 m TM 166/34 1989-05-04 WGS 1984/UTM Zone 39N 

Landsat 8 Resampled to 30 m OLI/TIRS 166/34 2023-05-05 WGS 1984 / UTM Zone 39N 

                      Source: United States Geological Survey (USGS Landsat data archive: https://landsat.usgs.gov). 
 

LST derivation 

LST was derived for the years 1989 and 2023 using satellite imagery from the Landsat 5 Thematic Mapper (TM) 

and Landsat 8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS), respectively. For the 1989 dataset, 

LST was calculated using the well-established single-channel algorithm, which is commonly employed for 

analyzing thermal infrared data in long-term surface temperature studies (Avdan & Jovanovska 2016). In contrast, 

the 2023 Landsat 8 data utilized the split-window algorithm, which incorporates both thermal bands to improve 

atmospheric correction and surface temperature accuracy, particularly over heterogeneous landscapes (Hoa et al. 

2025). The methodological framework was harmonized across both sensors to ensure consistency in 

spatiotemporal comparisons and enhance the reliability of trend analysis. 

 

LST Retrieval from Landsat 5 TM (1989) 

To derive LST from Landsat 5 Thematic Mapper (TM) imagery, the widely adopted single-channel algorithm was 

employed, using Band 6, which captures the thermal infrared (TIR) radiation in the wavelength range of 10.4–

12.5 µm. Although the native spatial resolution of Band 6 is 120 meters, it was resampled to 30 meters to ensure 

consistency with other spectral bands (Chander et al. 2009). 

 

https://landsat.usgs.gov/


Step 1. Spectral radiance calculation 

The top-of-atmosphere (TOA) spectral radiance (Lλ) was computed from the digital number (DN) values using 

the radiometric rescaling formula: 

Equation 1  𝐿𝜆 = (
𝐿𝑀𝑎𝑥−𝐿𝑀𝑖𝑛

𝑄𝐶𝑎𝑙𝑀𝑎𝑥−𝑄𝐶𝑎𝑙𝑀𝑖𝑛
) × (𝐷𝑁 − 𝑄𝐶𝑎𝑙𝑀𝑖𝑛) + 𝐿𝑀𝑖𝑛  

 

where, LMin and LMax are minimum and maximum radiance values (sensor-specific, obtained from metadata), and 

typical values are: LMax = 15.600, LMIN = 1.238, QCALMin = 1, QCALMax = 255 

 

Step 2. Brightness temperature (Kelvin) 

The at-sensor brightness temperature (TB) in Kelvin was calculated using the inverse Planck function: 

Equation 2  𝑇𝐵 =
𝐾2

ln(
𝐾1
𝐿𝜆

+1)
 

where, K1 = 607.76 W m−2 sr−1 μm−1, K2 = 1260.56 K, Lλ = Spectral radiance at the sensor's aperture Wm-2 sr-1 µm-

1, In = Natural logarithm 

 

Step 3. Surface emissivity (ε) estimation 

Surface emissivity (ε) was estimated using NDVI-based classification, as proposed by Sobrino et al. (2004) and 

developed by Li et al. (2021): 

 NDVI <  0 →  water or non_vegetated →  ε ≈ 0.99 

 NDVI <  0.2 →  Bare soil →  ε ≈ 0.97 

 NDVI >  0.5 →  Vegetation →  ε ≈ 0.99 

 0.2 ≤ 𝑁𝐷𝑉𝐼 ≤ 0.5 →  Mixed Surfaces → 𝜀𝑚𝑖𝑥 

 

For mixed pixels (0.2 ≤ NDVI ≤ 0.5), emissivity (εmix) was estimated using NDVI-based threshold method in the 

Equation 3. 

Equation 3  𝜀𝑚𝑖𝑥 = 0.004 × 𝑁𝐷𝑉𝐼 + 0.986 

 

Step 4. LST (°C) 

The final LST in degrees Celsius was derived using: 

Equation 4  𝐿𝑆𝑇 =
𝑇𝐵

1+(
𝜆.𝑇𝐵

𝜌
)ln (𝜀)

− 273.15 

where, λ = 11.5 μm (effective wavelength for TM Band 6) and 𝜌 =
ℎ𝑐

𝑘
= 1.438 × 10−2 𝑚 𝐾−1 with h as Planck's 

constant, c = the speed of light and k the Boltzmann constant. 

 

 

LST Retrieval from Landsat 8 OLI/TIRS (2023) 

LST from the 2023 Landsat 8 OLI/TIRS image was calculated using the Split-Window Algorithm (Sobrino et al. 

2016; Badapalli et al. 2025), which incorporates data from both thermal bands: 

 

Equation 5  LST = TB10 + 1.378(TB10 − TB11) + 0.183(TB10 − TB11)2 − 0.268 
 

where TB10 and TB11: brightness temperatures from Bands 10 and 11 (in Kelvin), respectively.  

Prior to applying this equation, radiance values were calculated using sensor-specific gain and bias coefficients 

from the metadata, and brightness temperatures were obtained using Planck’s law in a manner analogous to the 

method used for Landsat 5 TM described above. This ensured consistency in thermal data preprocessing across 

both time points. The split-window approach compensates for atmospheric and emissivity effects more effectively 

than single-band methods, offering enhanced accuracy in complex heterogeneous urban and vegetated 

environments. 
 

NDVI Calculation 

NDVI was computed to support surface emissivity estimation and analyze vegetation conditions using: 

Equation 6  𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
  



 

where the Near-Infrared (NIR) and Red (RED) bands are sensor-specific. For Landsat 5 TM, Band 4 corresponds 

to NIR and Band 3 to RED; for Landsat 8 OLI, Band 5 represents NIR and Band 4 represents RED. NDVI values 

typically range between −1 and +1, with higher values indicating dense, healthy vegetation and lower values 

representing bare soil, built-up areas, or water bodies. This index facilitates consistent vegetation monitoring and 

temporal comparisons across multi-decadal satellite datasets (Gascon et al. 2016). 
 

Global Moran’s  

To evaluate spatial autocorrelation in the distribution of LST, the Global Moran’s I statistic was employed. This 

index is widely used due to its ability to quantify the degree of spatial clustering or dispersion of geographic 

phenomena (Clark & Hosking 1986; Lee & Wong 2001). A positive Moran’s I value indicates spatial clustering, 

whereas a negative value suggests dispersion (Khosravi et al. 2017; Zhou et al. 2022). Statistical significance is 

assessed using the associated Z-score and p-value (Pandey & Kumari 2023). In this study, Moran’s I was 

calculated using ArcGIS 10.5 to analyze spatial patterns in LST. The formulation of Moran’s I is as follow: 

Equation 7   I =
n

s0
×

n ∑ ∑ wijzizj
n
j=1

n
i=1

∑ zi
2n

i=1

 

where, n is the total number of spatial units, Zi is the deviation of observation i from the mean, Wij is the spatial 

weight between observations i and j, S0 is the sum of all spatial weights, calculated as: 

Equation 8    s0 = ∑ ∑ wijn
j=1

n
i=1  

The standardized Z-score used to assess the significance of Moran’s I is given by: 

Equation 9   zi =
i−E(I)

√V(I)
 

This approach allows for robust assessment of spatial dependence in the LST data. A positive Moran's I value 

indicates clustering (hot/cold spots), while a negative value suggests dispersion. This spatial analysis aids in 

identifying thermal anomalies and land-use-driven surface dynamics (Mouton et al. 2022). 

RESULTS 

NDVI analysis 

According to Fig. 2, the NDVI results for 2023 range from -0.27 to +0.65. The red areas indicate the lowest NDVI 

values, corresponding to regions with sparse or no vegetation cover, such as urban areas and water bodies, which 

often show negative NDVI values. In contrast, dark green areas represent dense vegetation, typically found in 

forests or pastures. For the year 1989, NDVI values ranged from -0.42 to +0.07, indicating a relatively higher 

vegetation cover compared to 2023. The higher negative values in 1989 are primarily associated with the broader 

extent of water bodies during that period. 
 

Fig. 2. NDVI map for 1989 and 2023. 
 

NDVI trend 

In 1989, the minimum NDVI value was -0.42, which increased to -0.27 in 2023. The mean NDVI value 

increased from 0.15 in 1989 to 0.27 in 2023. However, the maximum NDVI slightly decreased from 0.68 in 

1989 to 0.65 in 2023. 
 

LST analysis 

Fig. 3 and Table 2 show the spatial distribution and descriptive statistics of LST for 1989 and 2023. The mean 

LST increased from 18.48 °C in 1989 to 23.13 °C in 2023. 



  

 

Fig. 3. LST map for 1989 2023. 

LST trend 

As shown in Fig. 5, changes in LST between 1989 and 2023 reveal a shift from lower temperature classes (< 20 

°C) toward higher classes (20–25 °C and 25–30 °C). The most significant change occurred in areas that shifted 

from < 20 °C in 1989 to 20–25 °C in 2023, covering approximately 22,085 hectares. Another major change 

involved areas moving from < 20 °C to 25–30 °C, with a total area of 14,797 hectares. These patterns clearly 

indicate an upward trend in surface temperatures during the study period. 

 

Table 2. Descriptive statistics of LST in 1989 and 2023. 

Year Mean (°C) Maximum (°C) Minimum (°C) Std. Deviation (°C) 

1989 18.48 31.24 7.00 1.70 

2023 23.13 39.52 15.36 2.10 

 
Fig. 4. Moran’s I for 1989 and Moran’s I for 2023. 

 

Table 3. Pearson correlation results between LST and NDVI for 1989 and 2023. 

 NDVI (2023) LST (1989) 

NDVI (1989) 
Pearson Correlation - **0.718- 

Sig. (2-tailed) - 0.002 

LST (2023) 
Pearson Correlation -0.743** - 

Sig. (2-tailed) 0.001 - 

Note: (**) indicate statistically significance at the 0.01 level (2-tailed). 



 
Fig. 5. Map of land surface temperature (LST) changes between 1989 and 2023. 

DISCUSSION 

The observed 4.65 °C increase in LST from 1989 to 2023 across Central Guilan Province provides clear evidence 

of a significant regional warming trend, consistent with global climate change projections (Chen et al. 2023; IPCC 

2023). This rise reflects both atmospheric warming and localized land use changes, particularly deforestation, 

urbanization, and agricultural intensification, trends also reported in other humid temperate provinces of Northern 

Iran (Komeh et al. 2025; Mohammadpour Zeidi & Gerami 2025). Although the mean NDVI increased from 0.15 

in 1989 to 0.27 in 2023, the maximum NDVI decreased slightly from 0.68 to 0.65. This apparent inconsistency 

reflects different vegetation dynamics within the study area. The rise in mean NDVI is largely associated with the 

expansion and intensification of agricultural and semi-vegetated lands, where moderate vegetation cover was 

improved due to cultivation and irrigation practices. In contrast, the decline in maximum NDVI indicates a loss 

of the densest and healthiest vegetation patches, particularly in natural forested areas. Thus, while more areas 

exhibit moderate vegetation cover, the overall quality and extent of high-density natural vegetation have declined, 

consistent with our conclusion of vegetation degradation in Central Guilan. A strong and statistically significant 

negative correlation between NDVI and LST was identified for both study years: 1989 (r = -0.718, p = 0.002) and 

2023 (r = -0.743, p = 0.001). This inverse relationship reinforces the fundamental ecological principle that 

vegetation plays a crucial role in thermal regulation through evapotranspiration, shading, and modification of 

surface albedo (Sun et al. 2020; Palafox-Juárez et al. 2021). Vegetated surfaces act as natural air conditioners by 

dissipating solar energy, a function that is significantly compromised when green areas are replaced with 

impervious surfaces. The consistency of this relationship over the 34-year period suggests that the degradation of 

vegetative cover is a key driver of increased surface temperatures in the region. These findings echo national and 

international calls for preserving and expanding green infrastructure as a primary adaptation strategy in the face 

of accelerating climate change (Carvalho 2025). The increase in Moran’s I reflects a growing spatial clustering of 

high LST values, signifying the intensification of UHIs and a loss of thermal heterogeneity in the landscape. This 

increase in spatial dependence indicates that warming is becoming more spatially consolidated, likely due to the 

proliferation of impervious surfaces, loss of urban vegetation, and concentration of anthropogenic heat sources 

(Zhou & Ren 2011). Such clustering is a critical indicator of urban ecological degradation and is commonly 

observed in rapidly developing urban landscapes globally (Wu et al. 2021). Land use and land cover changes over 

the past three decades have profoundly transformed the ecological structure of Central Guilan. Forests and 

wetlands have been systematically cleared or degraded to accommodate expanding agriculture, residential 



developments, and infrastructural projects. Additionally, the depletion of surface water resources—driven by 

increased irrigation demands, reduced precipitation, and urban consumption—has further contributed to thermal 

amplification and ecological stress (Weng et al. 2021). These transformations reduce the landscape’s capacity to 

buffer against heat extremes and increase vulnerability to environmental hazards such as drought, flooding, and 

habitat fragmentation. The integrated analysis of NDVI and LST serves as a powerful methodological approach 

for understanding the ecological impacts of land cover change and provides actionable insights for sustainable 

land management. It aligns with broader theoretical frameworks in landscape ecology that emphasize the critical 

role of vegetation in regulating microclimatic conditions and maintaining ecosystem resilience (Wu 2021). 

Furthermore, this research directly supports progress toward Sustainable Development Goals (SDGs), particularly 

SDG 11 (Sustainable Cities and Communities), SDG 13 (Climate Action), and SDG 15 (Life on Land), by 

demonstrating the vital connections between ecological integrity, climate adaptation, and sustainable urban 

development (United Nations 2020). Nevertheless, several limitations should be acknowledged. The thermal band 

resolution of Landsat, particularly the older TM sensor, imposes spatial constraints on LST accuracy. 

Additionally, this study relies on single-date imagery for May 1989 and May 2023, which does not capture 

seasonal variability or extreme temperature events. Another limitation is the lack of ground-based validation data, 

which restricts the ability to directly assess the accuracy of retrieved LST values. Future studies should utilize 

higher temporal and spatial resolution data, such as Sentinel-3 SLSTR, MODIS, or ECOSTRESS, and incorporate 

multi-seasonal datasets to provide a more dynamic and robust understanding of LST and vegetation trends (Smith 

et al. 2023). 
 

CONCLUSION 

In conclusion, the documented rise in LST and decline in NDVI across Central Guilan Province over the past 34 

years illustrate the profound ecological impacts of land use change and urban expansion under a warming climate. 

The intensifying spatial autocorrelation of LST and the robust negative NDVI–LST correlation highlight the vital 

regulatory function of vegetation in maintaining thermal and ecological balance. These insights underscore the 

urgency of adopting integrated land management strategies that prioritize green infrastructure, ecological 

conservation, and climate-adaptive urban planning. Through a combination of scientific monitoring, policy 

reform, and community engagement, Central Guilan can shift toward a more sustainable, resilient, and liveable 

future in the face of accelerating climate change. 
 

RECOMMENDATIONS 

Based on the findings of this study, the following measures are proposed to mitigate urban warming and strengthen 

environmental resilience in Central Guilan: 

Prioritizing urban green infrastructure (top priority): Expansion of urban forests, parks, green roofs, and vegetated 

corridors should be the cornerstone of climate adaptation. Such interventions are cost-effective, scalable, and 

directly mitigate the UHI effect while improving public health and liveability. 

Protecting and restoring natural ecosystems (secondary priority): Safeguarding remaining forests and wetlands, 

alongside active reforestation, afforestation, and wetland restoration, is essential to stabilize microclimates, 

support biodiversity, and enhance carbon sequestration. 

Integrating climate into land use planning: Zoning and development policies should limit encroachment into 

ecologically sensitive areas and embed climate-responsive urban design principles such as maximizing vegetation 

cover and reducing impervious surfaces. 

Strengthening monitoring and community engagement: Continued monitoring with advanced LST technologies 

and ground data, coupled with public education and community-based initiatives (e.g., tree planting, water 

conservation), will build long-term capacity for adaptation. 
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