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Abstract. Original data envelopment analysis models for expected cost-efficiency evaluation lack ro-
bustness in the presence of uncertainty and high-dimensional data. This gap becomes more critical
when dealing with big data in the petroleum industry, where selecting relevant variables from large,
noisy datasets significantly affects performance results. To address this gap, we propose an uncertainty-
integrated, two-stage network data envelopment analysis framework that incorporates artificial intelli-
gence techniques, genetic algorithm and random forest for optimal feature selection. Genetic algorithm
simulates natural selection to identify the most relevant variables, reducing dimensionality and enhanc-
ing model stability across probabilistic scenarios. In the second stage, Wilcoxon statistical testing and a
p-robust approach are applied to ensure consistent and reliable ranking of decision-making units under
uncertain conditions. Random forest complements this framework by capturing hidden data patterns,
improving accuracy and interpretability. The model is validated using real-world data from ten oilfields,
demonstrating substantial improvements over the traditional data envelopment analysis models in feature
selection, expected cost-efficiency measurement, and decision robustness. This study offers a practical
and intelligent decision-support tool for expected cost efficiency measurement under uncertainty in com-
plex petroleum environments.

Keywords: Two-stage network, data envelopment analysis, genetic algorithm, machine learning, expected cost-
efficiency, stochastic p-robust, Wilcoxon test.
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1 Introduction

Cost efficiency (CE) evaluates the ability of a decision-making unit (DMU) to produce current outputs
at the lowest possible cost. The concept dates back to Farrell [13], who introduced foundational ideas
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Table 1: Some studies for evaluating CE in DEA and NDEA approaches

Authors Features

Farrell [13] (1957), Jahanshahloo and et al. [20] (2007),
Toloo [47] (2014), Piran et al. [35] (2021)

Fukuyama and Matousek [14] (2011), Blagojevich et al. [4] (2020),
Kao and Hwang [2 1] (2008), Lozano [29] (2011), Sarkar [37] (2018),
2 | Wanke and Barros [48] (2016), Fakharzadeh Jahromi [10] (2023), Cost-NDEA
Cesaroni [0] (2018), Seyedboveir et al. [40] (2017),
Kordrostami and Jahani Sayyad Noveiri [22] (2022)

Cost-DEA

Table 2: Some studies for evaluating CE under uncertainty approaches

Authors Features

1 Al-Khasawneh et al. [1] (2020), Lee and Huang [24] (2017), Stochastic
Lotfi et al. [28] (2020), Jahani and Kordrostami [19] (2022)

) Ashrafi and Kaleibar [2] (2017), Pourmahmood and Aramy [36] (2024), Fuzzy
Bagherzadeh Valami [3] (2010)

3 Camanho and Dyson [5] (2005), Mousavizadeh et al. [32] (2020), Robust
Soleimani-Chamkhorami and Ghobadi [44] (2021), Conceigao et al. [8] (2013)

4 Kuosmanen and Post [23] (2001), Schaftnit et al. [38] (1997), Interval
Thompson et al. [45] (1990), Thompson et al. [46] (1996),Lei and Li [25] (2012)

that underpin data envelopment analysis (DEA). In this framework, measuring CE requires input and
output quantities as well as precise input prices at each DMU. However, as Cooper et al. [9] pointed
out, the practical utility of CE measurement is limited due to the difficulty in obtaining accurate price
data and the potential for short-term fluctuations in those prices. Compared to technical efficiency (TE),
CE often offers more practical insights because it directly relates to input costs, which are generally
more reliable in real-world settings. Importantly, a DMU may be technically efficient while still being
cost-inefficient. Traditional DEA models typically treat DMUs as “black boxes” and do not account
for the internal structure of processes. However, in real-world systems such as in energy or production
sectors—many DMUSs consist of multiple interrelated subsystems. To better model such complexities,
the two-stage network DEA (NDEA) models have been introduced. In this structure, outputs of the first
stage serve as inputs for the second stage, enabling a more nuanced analysis of efficiency [12]. Table 1
summarizes key studies evaluating CE using DEA and NDEA models.

Another limitation in prior research is the common assumption of data certainty. In practice, data
particularly price and cost data are often uncertain due to market volatility, resource constraints, or eco-
nomic instability. Various methodologies, such as stochastic programming, robust optimization, interval
analysis, and fuzzy logic, have been developed to handle this challenge. Initial efforts to manage un-
certainty in DEA models often relied on stochastic theories introduced by scholars like Sengupta [39].
Table 2 presents a summary of CE evaluations in DEA/NDEA frameworks under uncertainty.

It is worth noting that none of the research mentioned above has considered the genetic algorithm
(GA) with the NDEA models to evaluate the expected cost efficiency. While in NDEA models that aim to
assess cost efficiency within complex and multi-stage structures, the genetic algorithm can be employed
to identify the optimal combination of inputs, outputs, and associated costs. Despite advances in model-
ing CE and accounting for uncertainty, few studies have integrated intelligent algorithms—such as GAs
or machine learning (ML)—with NDEA models to optimize expected cost efficiency. Yet, GAs have
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proven effective in navigating large, nonlinear solution spaces and identifying optimal combinations of
inputs, outputs, and associated costs. Introduced by Holland [17], GAs simulate the process of natural
selection and are increasingly used in conjunction with DEA models [15, 16, 18, 30]. Their integra-
tion with ML can further enhance prediction accuracy and efficiency evaluation, especially in uncertain
environments [11,31,33,34]. This study aims to address the gap by developing a robust framework
that integrates GA and ML techniques within a two-stage NDEA model. Building upon the centralized
NDEA approach by Camanho et al. [5], the model enhances CE evaluation under uncertainty by incor-
porating a stochastic p-robust optimization method, as proposed by Snyder et al. [43] (interested readers
can see [41,42], and references therein for further studies in considering uncertainty on mathematical
programming problems). This technique ensures solution robustness across various probabilistic sce-
narios by minimizing deviations from the optimal value. An essential component of this framework is
intelligent feature selection. The GA is employed to identify the most relevant variables that influence
CE, mimicking evolutionary processes to optimize model performance. Then, ML techniques such as
RF are applied to reveal patterns in high-dimensional, noisy data—thereby improving the interpretability
and reducing model complexity. The proposed model is applied to assess the CE of 10 oilfields in Iran
under conditions of data uncertainty. Through this application, the framework demonstrates its ability to
produce reliable performance rankings, improve decision-making under uncertainty, and support long-
term planning through scalable and interpretable analytics.

The contributions of this study are as follows:

* Enhanced decision-making under uncertainty:
The proposed two-stage NDEA framework, combined with genetic algorithms and random forests,
equips managers with a more robust tool to assess cost efficiency. This enables them to make
informed decisions based on reliable, uncertainty-aware performance indicators.

* Improved variable selection and model interpretability:
By automatically identifying the most relevant input and output variables, the model reduces cog-
nitive and computational overload for managers. This leads to clearer insights into performance
drivers and actionable areas for improvement.

» Data-driven strategic planning:
The integration of Al methods allows managers to extract valuable knowledge from noisy and
complex big datasets. This supports more strategic resource allocation and optimized planning
across oilfields.

* Reliable ranking and benchmarking:
The use of Wilcoxon statistical testing and p-robust optimization ensures that performance com-
parisons among oilfields are not only data-driven but also statistically sound. This facilitates trans-
parent benchmarking and prioritization of operational interventions.

* Scalability and adaptability:
The modular design of the framework makes it adaptable for other sectors facing similar challenges
with uncertainty and big data. Managers can expand its use beyond oilfields to other segments of
the energy production and supply chains.
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Figure 1: A serial network system

* Risk reduction and operational stability:
By incorporating probabilistic robustness, the model helps to reduce the risk of over- or underesti-
mating efficiency due to data fluctuations, supporting more stable long-term planning.

The remainder of this paper is structured as follows: Section 2 introduces key preliminaries and defi-
nitions related to the centralized two-stage NDEA model. Section 3 discusses the stochastic p-robust
approach to centralized NDEA modeling. Section 4 presents the concepts of a hybrid algorithm for
feature selection and subsequently a real case study demonstrating the proposed model is presented in
Section 5. Results and discussion are provided in Section 6. Finally, conclusions are offered in the last
section.

2 Preliminary concepts

2.1 Structure of two-stage NDEA models

Different models have been introduced to gain the overall efficiency of a system with a network structure
and sub-units. One of the fundamental models in this scope was offered by Liang et al. [26,27], who
considered a centralized serial network system (Figure 1). Suppose we have n DMUs, and each DMUj
(j=1,...,n) uses m inputs X (i=1,...,m) in the first stage to generate D outputs o (d=1,...,D)
under scenario s = {1,...,5}. Then, these D outputs become the inputs to the second stage and will be
dispatched to the second stage as intermediate measures. The outputs from the second stage are y;;,
(r =1,...,¢) under the scenario s. Therefore, xf]
output, and the 7" output of DMU j by the s scenario. The following model is proposed to evaluate the
overall efficiency of the system and its sub-processes for DMUj:

zy;» and y;; display the i input, the d"" intermediate

1
e; ' = max Z Uryr, (la)
r=1
m
st Y vixl, =1, Vs € S, (1b)
i=1
t D
Y wyyy— ) waza; <0, VjVs €S, (1c)
r=1 d=1

D m
Y wizy = Y vixg; <0, Vj,VseS, (1d)
d=1 i=1



p-robust network cost efficiency with genetic algorithms and machine learning 5

vi,ur,w}, >0, Vi, r,d. (le)

Based on the radial Constant Returns to Scale (CRS) model of Charnes et al. [7], the input-oriented
DEA models for each efficiency score of stage are

D 1,5
Yi—1 WaZy;
ey’ =max —,— )
i=1ViXjj,
and
Y —1 Ury
e’ = max —p——— 2 3)

Definition 1. If e(])s and e(z)s are the efficiency scores of the first and second stages under the s'* scenario,
respectively, then the efficiency score of the overall system is as

thl Uryy
eo = e x e = ris”o 4

i1 ViX g
The overall efficiency score of a DMU is defined based on equalizing the role of the intermediate
weights of the model (1). In the sequel, first we briefly explain the CE proposed model of Schaffnit et

al. [38], and afterwards present the mathematical formulation of two-stage DEA model based on it.

2.2 The CE evaluation with certain prices

The CE measures the output value of the minimum input cost. Consequently, we expect that input
prices will be incorporated into the CE calculations. Farrell [13] provided the CE measure for each DMU
in an input-oriented form, assuming that the input prices are known as follows:

m St
YL PijoXi o

CEj = min " Pijoxfjo (52)
s.t. Z Ajxj; < x5, Vi,Vs € S, (5b)
le
AiYei 2 Vyjos VrVs €S, (5¢)
j=1
Aj >0, Vj (5d)
xf;o is free. (5e)

In this model, p;;, is the price of the i input for DMU; and xf;o is the minimum amount of the " input
for DMUj under evaluation. Alternatively, CE can be determined by incorporating weight constraints
using the radial CRS model developed by Charnes et al. [7]. Since only the relative prices of inputs are
important for measuring CE, the only restrictions on the weights used in the evaluation are that the value
of the input weights must correspond to the respective values of the input prices for each DMU, such that

Vi Pije g .
LR e b=, m. (6)
Vib pibjo
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In the equation (6),vi« and v are the input weights utilized for the CE evaluation with the DEA model,
and pj«j, and py;, are the input prices considered at DMUy, for any two inputs i and i’ applied by the
DMU. Therefore, the resulting CE model with certain and known prices at each DMU and also using the
standard DEA model with the addition of weight constraints is as follows:

t
CE® = max Z UrYyj (7a)
r=1
m
st Y v, =1, (7b)
i=1
t m
Y wyyy— Y vig; <0, Vi, Vs €S, (7¢)
r=1 i=1
via — piajo vlb = O, ia < lb vl, (7d)
?jo
u >0, v;>0, Vr,i. (7e)

It can be seen that the CE® value gained from (7) is equal to the cost efficiency measure gained from (5).
Now, considering DMU;  as a whole, and by adopting a centralized perspective, based on the method
introduced by Schaffnit et al. [42], the centralized model to evaluate CE of DMUs with certain prices is
proposed as follows:

t
ep ' = max Z UrYyjy (8a)
r=1
m
sty vixl, =1, (8b)
i=1
D m
w}izi,j—Zvixfj <0, Vj, Vs €S, (8c)
d=1 i=1
t D
Youyti— Y wazy; <0, Vj, Vs €S, (8d)
r=1 d=1
P
whe — =Ehoyl — 0, d°<d', Vvd, (8e)
pd’jo
v — Pitdo 0, @<t Vi )
Pt jq
u>0, wh>0, v;>0, Vr.d,i. (82)

In model (8), v;, w}l, and u, are non-negative decision variables of inputs, intermediate measures, and
outputs, respectively. In addition, x;;, z; i and y,; show uncertain parameters related to the i"" input,
the d'" intermediate measure, and the " output of DMU; in terms of the s'" scenario, respectively. In
this model, v« and v; are the input weights utilized for the CE evaluation in the first stage; also, w},p

1 ; : : ./ / / / : :
and w, are the weights of intermediate factors; py;, Piv iy Pacjy and p, . are the input prices for any

input weights vje, v, w},c and w,},, in the first and second stages, respectively; a, b, c, and ¢ are applied to
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prevent repetition of i, and d (for more details see Appendix A). It is noted that the e * in model (8) is
the optimal efficiency score for the centralized model.

3 Stochastic p-robust for two-stage NDEA model

In this section, first the p-robust concept is described, and then the formulation of two-stage NDEA is
proposed under uncertainty based on the stochastic p-robust approach. Finally, the process of feature
selection combining GA and ML approaches is presented.

3.1 p-robust concept

Let S be a set of scenarios, and P be a deterministic maximization problem for scenario index s, so that
there is a different problem, that is, P for each scenario s € S. Moreover, let ®; > 0 be the optimal
objective score for F;. In addition, let X be the feasible vector in terms of the weights of inputs and
outputs, respectively, and ®,(X) be the objective score of problem P in solution X. So, X is called
p-robust (p > 0 is constant) if for all s € S the below inequality holds: X is called p-robust (p > 0 is
constant) if in all s € S the below inequality holds:

cbt - q)s (X )

o <p €))
The left-hand side of inequality (9) displays the relative regret in the s scenario, and p > 0 is a parameter
that indicates the robustness level between different scores of each scenario. The relative regret in each
scenario is limited by p. Inequality (9) can be shown as below:

D(X) > (1—p)D;. (10)

Ultimately, to control the relative regret associated with the scenarios, the p-robust restrictions are
combined with the model.

3.2 Stochastic p-robust centralized NDEA model

To tackle uncertain conditions, the deterministic models cannot lead to correct results. In fact, uncertainty
can change the final results and DMUSs rankings. Hence, the classical NDEA model must be robust to
uncertainty. In this case, this paper suggests the stochastic p-robust technique for the CE of the two-stage
network in the centralized NDEA model to cope with this issue as follows:

S t
fo 7 =max Y &Y uy}, (11a)
s=1 r=1
t
st Y wys, > (1= p)ey™, VseS, (11b)
r=1
m
Y vixiy, =1, (11c)
i=1

D m
Y wizh;— Y vixl; <0, Vj,Vs €S, (11d)
d=1 i=1
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Zury,j dezd]<0 Vj,VseS. (11e)
1 pd"jo 1 c t
Wae = —— War :0, de < d, Vd, (llf)
d' jo
v — P00, i<, Vi, (11g)
i* jo
u>0, wh>0, v;>0, Vr.d,i. (11h)

In model (11), the objective function maximizes the expected CE score of DMUs based on the data from
each scenario. In this model, the uncertainty in the parameters is defined by discrete scenarios. In the
objective function, £* is the probability that scenario s happens (i.e., it is obscure which scenario will
occur in the future, in other words, there is no information about the probability of each scenario). The
second constraint is the p-robust constraint. This set of restrictions may not allow the scenario efficiency
to take a score less than 100p% of the ideal efficiency score achieved in each scenario. The parameter
p can flexibly control the relative regret among all scenarios. It is noted that if p = oo, then the p-robust
constraints in model (11) become redundant. Usually, p-values should not be less than 0.2. The upper
limit can be adjusted through trial and error and may be increased to one. The third to fifth sets of
constraints are the original NDEA constraints which must be held for all s € S, and the rest of constraints
are the same as model (8).

Theorem 1. Model (11) is feasible and convex.

Proof. Assume the DMU under evaluation is DMUy,. Let z; = max{z}, |1 <d <D} >0, x; =
max{x; 0 |1<i<m}>0,andy;, =max{yy|[1<r<t}>0. Then settlng (Wl WhVi, ey V) =

(0,...,0,...,1/x,,0,...), constraints Y 1"xuo =1, and YO_ lwdzd] YLy vixj; < 0, imply
Y2, wdsz < L. Since ¥, u,y;; < Y2 1wdzdj <1, we get fi ™ < ;. This conﬁrms the feasibil-
ity of the model (11).

To prove the convexity, it is sufficient to show the convexity of its feasible region. Let Q be the feasi-
ble region of the model (11), and we have: (v),.. 7vl,w{/, .. ,wg,u’l, cou) € Q, and
0wl wh L W) € Q. Then for each B € [0, 1], the following relationships are held:

Bvi+(1—B)vi =0, Vi,
ﬂw},/—i-(l —ﬁ)w},ﬁ >0, vd,
Buy+(1—B)u; >0, vr.

Therefore, we can get

m

(Bvi+ (1= B)vi)xij = ﬁ):,vﬁxfﬂrl— )Y vix;=B+(1-B)=1,

i=1

(Bw + (1= B)wy )2y, = Bzwdzd, ~B)

™=

I
=

1//
Wa Zdj

™=
™=

1

i
m

< iv;x;,-w B Y vt = Y (B (1— BV,

1 i=1 i=1



p-robust network cost efficiency with genetic algorithms and machine learning

i(ﬁu +(1_ yr] ﬁzuryrj _ﬁ)iu;‘,yi]

n m
’ " "
< szll'zlij Zwii Zdj Z de ( ﬁ)wzll )Zd/a
i=

—_

" Plc- 1
(Bwge + (1= B)wge) — =2 (Bway + (1—B)wgy )
pa’jo
!/
=5 (k- 2 ) ) (o - 2 ) <o
a jo a jo
Since
Bvi+(1-B)vi € Q, Vi;
Bwy +(1—B)wy €Q, vd,
Bu.+(1—B)ul € Q, vr.
We have
B(v/l7 7v;?w%/77wb/)+(1_ﬁ)(vlll7 7vl?w{//7 1//>€Q
ﬁ(w{v wl,,u’l,...,u',)—i—(l—ﬁ)(w{ 5. Wzliaula ) r)eQ"

Thus, it can be concluded that € is a convex set.

4 A hybrid algorithm for feature selection and weight

Oilfields are inherently complex systems with multiple inputs (e.g., crude oil intake), intermediates (e.g.,
distillation temperature, process yields), and outputs (e.g., refined petroleum). These variables are of-
ten nonlinear and interdependent, posing significant challenges to traditional optimization methods. In

contrast,

GA provides effective solutions by mimicking natural evolution to find optimal combinations

of key variables. Through techniques like the crossover and mutation, GA identifies relevant variables
while reducing the problem dimensions, thus enhancing computational efficiency and optimizing oilfield
performance within operational and economic constraints. To address this, a hybrid algorithm approach

of GA and random forest (RF) is introduced in two phases as below:
Phase 1: Feature selection

* The RF algorithm computes importance scores for all variables.
* Variables with scores below a predefined threshold () are eliminated.

* The selected set of impactful variables is denoted as F.
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Table 3: The new GA-RF algorithm for the proposed NDEA model

NDEA parameters Description

X ={x;;} Input variables
Z={zy;} Intermediate variables
Y ={y,;} Output variables

a Feature importance threshold
N, Number of generations
N: Population size

Phase 1: Feature selection

Step 1.1: F={f1,-- > fm}
Step 1.2: w; =RF(X,Y)

Step 1.3: Fe={filwi > a}
Phase 2: Genetic algorithm

Initialize: Ey={e1,...,en,}

For g=1 1t N,

Overall efficiency: flea)=1fi*

Subject to constraints:
constraints:

Genetic operations:
Selection:

Crossover:

Mutation:

Output:

Optimal weights:
Selected features:
Optimal efficiency:

The set of constraints on model (11)

E, = select(Ey)
E{ = crossover(Ey)
= mutate(Ey ) Eg 1

E* = argmax gy, f(€)
Fe .
fle)=1"

Phase 2: Weight optimization via GA

* GA starts with initial populations representing different weight combinations.

* The fitness of each solution is evaluated using the NDEA model.

* Genetic operations are applied:

[Selection] Higher efficiency solutions have a greater chance of reproduction.

R. Shakouri

[Crossover] Combines parent solutions to generate offspring with potentially better performance.
[Mutation] Introduces variability to avoid premature convergence and ensure global optimization.
In this phase, weights for inputs and intermediates are optimized sequentially, satisfying all model

constraints.

Final Outcome:

The best set of variable weights is selected to maximize overall expected cost efficiency. The process is

summarized in Table 3, which outlines the steps and operations of the GA-RF algorithm.
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5 A real case study

Oilfields are complex industrial systems that involve numerous input, intermediate, and output variables,
all of which significantly impact on their overall performance. These variables include factors such as
crude oil intake, distillation column temperature, oilfield process efficiencies, and production levels of
various petroleum products. Table 4 shows the set of input, intermediate, and output variables of the
oilfield. Given the large number of variables and the nonlinear relationships between them, traditional
optimization methods are often ineffective in selecting key variables and optimizing oilfield performance.
In this case, GA was utilized as a powerful computational tool that simulates natural evolution to iden-
tify the optimal combination of influential variables. By mimicking the natural selection process through
cross-over and mutation operations, GA effectively selects the most relevant variables while also reduc-
ing the complexity of the problem. This approach not only improves computational efficiency but also
optimizes oilfield performance by taking into account operational and economic constraints.

By integrating GA with ML, features that significantly impact the economic, technical, and environ-
mental efficiency of the oilfield can be identified. This process helps not only selecting the most critical
features but also eliminating those that are less significant, thereby reducing complexity and enhanc-
ing model accuracy. Therefore, the selection criteria for these features are based on the following four
parameters:

* Direct importance and impact on oilfield performance,

* Accurate measurability,

¢ Low correlation between variables,

* Coverage of different performance aspects (technical, economic, and qualitative).

The optimal set of features identified serves as a critical foundation for developing effective policies
and initial performance improvement strategies within the oilfield. Subsequently, feature importance is
evaluated using RF to determine which features had the greatest impact on overall efficiency. To execute
the proposed algorithm, the parameters of the GA need adjustment. The parameter settings are provided
in Table 5. Two genetic operators (mutation and single crossover with rates of 3% and 85%, respectively)
are utilized.

In this study, after applying the GA-RF method, six variables were selected from a total of 30 that
significantly influence the improvement of oilfield performance. These selected variables are: .7y =
{x1,x3,26,28,Y1,y10} that are presented in Table 6.

6 Results and discussion

This section discusses the advantages of the proposed model using a dataset of Persian Gulf oilfields.
Table 7 presents the results obtained from the normalized dataset under two scenarios for 10 selected
oilfields in the Persian Gulf. First, we calculate the ideal efficiency scores of the proposed model in
both scenarios using model (11), as offered by the oilfield system analyzers (i.e., s; = Pessimistic, s, =
Optimistic). According to Snyder and Daskin (2006), we consider all scenarios equiprobable, that is,
each scenario has a probability of ¢° = 0.5. The results of this calculation are illustrated in Figure 2. For
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Table 4: The initial input, intermediate, and output variables

x; | Input variables

1. Crude oil consumption (x;): The volume of crude oil entering the oilfield

2. | Labor costs (x;): Total cost of direct and indirect workforces

3. | Operational costs (x3): Expenses on energy (electricity and gas), equipment maintenance, and repairs
4. | Facility area (x4): The oilfield’s infrastructural capacity

5. | Chemicals and catalysts costs (x5): The consumption of materials required in the refining process
6. | API gravity of crude oil (xg): Density of oil

7. | Hydrogen flow rate (x7): Hydro treating and hydrocracking processes

8. Steam flow rate (xg): The influence of the distillation tower performance

9. | Gas to oil ratio (x9): Amount of gas accompanying crude oil

10. | Operating pressure in the distillation tower (x¢)

Z4 | Intermediate variables

1. Primary oilfield products: Produced gasoline (z;), diesel, kerosene, and liquefied petroleum gas (LPG)
2. | Product quality (z2): Sulfur content and API gravity of the products

3. | Process efficiency (z3): Conversion ratio of crude oil into useful products

4. Generated waste (z4): The amount of unusable or substandard output

5. Refining efficiency rate (zs): Overall refining efficiency rate

6. | Temperature at each stage of the distillation tower (z¢)

7. Pressure in the hydrocracking reactor (z7)

8. Catalytic cracking reaction rate (zg)

9. | Residence time in cracking reactors (z9)

10. | Pollutant separation rate (z19)

yr | Output variables

1. | Revenue from product sales (y1): Total revenue from selling gasoline, diesel, and other products
2. | Profitability ratio (y2)

3. | Energy efficiency (y3): The ratio of recovered useful energy to total energy consumption

4. The percentage of aromatic compounds in gasoline (y4)

5. | The percentage of conversion of crude oil to final products (ys)

6. | The amount of industrial waste and effluent (ye)

7. | The percentage of coke produced (y7)

8. Economic efficiency (ys)

9. | The amount of diesel production (yg9)

10. | The amount of gasoline production (y;¢)

Table 5: Parameter setting

GA parameters Value
Selection mechanism | Elitism
Mutation rate 3%
Crossover rate 85%
Maximum generations | 150

instance, the columns of this figure report the ideal efficiency scores according to data collected from
the first and second scenarios, respectively. According to the results, DMUs and DMUyg attained the
efficiency score of one.
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Table 6: Feature reduction and selection with GA-RF

Input variable Intermediate variable | Output variable
Crude oil (x;) Temperature tower (z¢) | Revenue (yp)
Operational costs (x3) | Catalytic cracking (zg) | Mount of gasoline (y19)

Table 7: The normalized data set of two scenarios for 10 oilfields

DMUs x| X3 i Y10 %6 78
S1 ) S1 \Y) S1 \Y) S1 \Y) S 52 S 52

0.513 | 0.684 | 0.381 | 0.508 | 2.820 | 3.760 | 0.170 | 0.226 | 0.591 | 0.788 | 0.116 | 0.155
1.000 | 1.333 | 0.495 | 0.659 | 4.557 | 6.076 | 0.299 | 0.399 | 1.029 | 1.372 | 0.164 | 0.219
0.414 | 0.552 | 0.251 | 0.335 | 3.028 | 4.037 | 0.144 | 0.192 | 0.276 | 0.367 | 0.070 | 0.093
0.344 | 0.459 | 0.343 | 0.457 | 2.167 | 2.889 | 0.133 | 0.178 | 0.448 | 0.598 | 0.146 | 0.195
0.518 | 0.691 | 0.178 | 0.237 | 1.906 | 2.542 | 0.170 | 0.226 | 0.392 | 0.523 | 0.005 | 0.006
0.684 | 0.912 | 0.172 | 0.229 | 2.490 | 3.320 | 0.295 | 0.394 | 0.416 | 0.554 | 0.240 | 0.320
0.689 | 0.918 | 0.361 | 0.482 | 3.674 | 4.899 | 0.214 | 0.286 | 0.953 | 1.270 | 0.059 | 0.079
0.368 | 0.491 | 0.261 | 0.348 | 1.952 | 2.603 | 0.123 | 0.164 | 0.370 | 0.493 | 0.088 | 0.117
0.577 | 0.769 | 0.172 | 0.229 | 2.751 | 3.668 | 0.198 | 0.264 | 0.886 | 1.181 | 0.147 | 0.196
0.320 | 0.426 | 0.110 | 0.146 | 1.480 | 1.973 | 0.106 | 0.142 | 0.225 | 0.301 | 0.052 | 0.070

~
GI OI
' O

DMU10 DMU9 DMU8 DMU7 DMU6 DMUS DMU4 DMU3 DMU2 DMUL
msl 097 0.89 1 096 098 1 0.87 1 095 094
ms2 1 0.93 1 089 098 1 1 0.72 1 0.97

O QA || | W N~

—_
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EFFICIENCY SCORES

Figure 2: Ideal efficiency scores of model (8) in the two scenarios

Following this, we solved model (11) based on the ideal score results for the efficiency evaluation of
DMUs. The results of solving this model with different p-values and equal probability of 0.5 for each
scenario are reported in Table 8.

Based on these results, model (11) produces infeasible results for most DMUs when small values
of p (e.g., p < 0.44) are applied, which are not reported here. Moreover, in this study for p > 0.46,
the efficiency scores remained constant. Therefore, we did not calculate it for the other p-values higher
than 0.46. As the p-values increase, we realize more feasible results. That is, increasing the p-value
from 0.44 to 0.46 improves the efficiency score of DMUS, which is also reflected in DMU3. Model (11)
maximizes the expected efficiency score across the two scenarios, while p-robust constraints control
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Table 8: The results of solving the proposed GA-RF of model (11) with different p-value

p-value
044 | 045 | 046 | 047 | 048 | 0.49 | 0.50 | 0.51 | 0.52 | 0.53
0.887 | 0.887 | 0.867 | 0.868 | 0.868 | 0.868 | 0.868 | 0.868 | 0.868 | 0.868
0.798 | 0.751 | 0.701 | 0.700 | 0.700 | 0.701 | 0.701 | 0.701 | 0.701 | 0.701
INF | 0.674 | 0.634 | 0.634 | 0.634 | 0.634 | 0.634 | 0.634 | 0.634 | 0.634
1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
INF | INF |0.771 | 0.771 | 0.772 | 0.771 | 0.772 | 0.772 | 0.772 | 0.772
0.895 [ 0.895 | 0.804 | 0.804 | 0.804 | 0.804 | 0.804 | 0.804 | 0.804 | 0.804
0.663 | 0.663 | 0.622 | 0.622 | 0.622 | 0.622 | 0.622 | 0.622 | 0.622 | 0.622
0.531 [ 0.531 | 0.528 | 0.528 | 0.528 | 0.528 | 0.528 | 0.528 | 0.528 | 0.528
1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
0 0.478 | 0.471 | 0.460 | 0.460 | 0.460 | 0.460 | 0.460 | 0.460 | 0.460 | 0.460

g
<
2

=[O 00| | AN | K| W —

Table 9: The results of model (11) and ERR values before and after GA-RF with p = 0.46

DMUs After GA-RF Before GA-RF

Expected Efficiency | Rank | ERR | Expected Efficiency | Rank | ERR
1 0.867 3 0.067 1.000 1 0.000
2 0.701 6 0.209 0.993 9 0.010
3 0.634 7 0.102 1.000 1 0.000
4 1.000 1 0.000 1.000 1 0.000
5 0.771 5 0.210 1.000 1 0.000
6 0.804 4 0.142 1.000 1 0.000
7 0.622 8 0.252 1.000 1 0.007
8 0.528 9 0.310 1.000 1 0.000
9 1.000 1 0.000 1.000 1 0.000
10 0.460 5 0.325 0.987 10 | 0.040

differences between the model’s efficiency scores and the ideal scores. This allows us to rank the DMUs
based on the p-values.

To compare model (11) before and after applying GA-RF, we calculate the expected relative regret
(ERR) alongside the efficiency scores for each DMU. The ERR is used as a metric to measure decision-
making quality and indicates the deviation from the optimal decision. After solving each model and

or Dy (X
obtaining its efficiency, ERR criterion is computed as } S§S(ST;()). Indeed, the ERR value shows

the relative difference between the efficiency of model (11) and the ideal efficiency from each scenario.
Hence, the small value of this measure shows that the model makes close results to the ideal efficiencies.
It should be noted that, here, p = 0.46 and &° = 0.5. The results are shown in Table 9 and displayed in
Figure 3.

Table 9 indicates that 80% of the total DMUs had an efficiency of zero before implementing the GA-
RF model. This suggests that the model was overfitting and lacked generalization, potentially failing
to capture the real complexities of the problem. Additionally, a review of Table 9 reveals that after
applying GA-RF, the ERR values are positive, although small. However, the variations in ERR across
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1.2

Eff. & Reg.

bMu10 bDMUS DMU8 DMU7 DMU6 DMUS5 DMuU4 DMU3 DMU2 DMU1L 0

I Ef. After GA = Eff. Before GA ———Reg. after GA == =Reg. before GA

Figure 3: Comparison of ERR and expected efficiency of model (11) before and after GA-RF

Table 10: Wilcoxon rank correlation analysis

Statistical Metric value Interpretation

Wilcoxon Statistics (W) 0.0 The W value indicates that all post-GA efficiency values
are less than or equal to pre-GA values.

y-value' 0.0117 Since ¥ < 0.05, difference in efficiency before and after
GA is statistically significant.

Mean efficiency before GA 0.9987 Before GA, most units had an efficiency of 1.

Mean efficiency after GA 0.8287 After GA, some units had efficiency values below 1, in-
dicating better differentiation in the model.

Test Conclusion Significant Difference | The GA has caused a meaningful change in efficiency,
improving the model’s precision.

different data sets are logical and justifiable. Moreover, the model successfully maintains a balance
between minimizing regret and ensuring generalization capability, as illustrated in Figure 3. The dashed
and smooth lines in Figure 3 also show different rankings for the two methods used. Notably, before
applying the GA-RF method, many DMUSs, approximately 80% of the total, ranked equally at one. This
suggests that the model is unable to accurately differentiate between these units. However, after using the
GA-RF method, the model’s ability to distinguish between the ranks of the units improved significantly.

Table 10 displays the results of the Wilcoxon rank correlation analysis. By comparing and assessing
the significance of the differences between two sets of ranks, we can determine whether the proposed
model yields accurate results and if a more efficient model can be selected.

According to Table 10, the Wilcoxon test results demonstrate that using the GA resulted in a decrease
in mean efficiency, suggesting improved model accuracy and differentiation in DMU analysis. This
confirms the validity of the proposed model.

I'Significance level
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6.1 Managerial implications

The managerial implications of this study are substantial when viewed from a broader perspective. The
results obtained from the implementation of model (11) under varying values of the robustness parameter
provide critical insights into the model’s behavior and performance under uncertainty. Specifically, when
small values of p (e.g., p < 0.44) are applied, the model produces infeasible results for the majority of
DMUs that are not reported here. This indicates a failure to ensure robustness at lower confidence levels.
In practice, this suggests that excessive risk aversion renders the model overly conservative, leading to
impractical efficiency estimates. However, beyond a certain threshold, the efficiency scores stabilize, re-
vealing a point where the model achieves both feasibility and reliability. This sensitivity point is crucial
for managerial decision-making, as it provides guidance on setting robustness parameters at moderate
levels to balance conservatism and usability particularly relevant in highly volatile industries such as oil
and gas. Moreover, the comparison of model (11) before and after integrating the GA-RF algorithm
highlights a significant improvement in both generalization and ranking ability. Initially, approximately
80% of DMUs received identical efficiency scores, reflecting poor differentiation and possible overfit-
ting. After incorporating GA-RF for feature selection and modeling, the refined model successfully
distinguished between DMUSs and minimized the ERR. Although the ERR values remained small, they
confirmed that the updated model generated results closer to the ideal solutions across scenarios. From
a managerial standpoint, this demonstrates the tangible value of embedding Al-based feature selection
methods such as GA-RF into performance evaluation frameworks. Doing so enhances interpretability,
sharpens the identification of inefficiencies, and supports more informed resource allocation and targeted
performance improvement strategies. Furthermore, the Wilcoxon test results in Table 8 revealed a statis-
tically significant reduction in average efficiency after applying GA-RF. While this outcome may appear
counterintuitive, it reflects improved accuracy and discriminative power. A lower mean efficiency does
not imply underperformance; rather, it signals the model’s heightened ability to uncover hidden ineffi-
ciencies and promote strategic differentiation among DMUSs. This shift ultimately provides managers
with a clearer, more reliable basis for decision-making, avoiding the misleading optimism caused by
overfitted models.

7 Conclusions

Modeling oilfield networks and evaluating associated costs under real-world uncertainty is a complex
task that requires advanced and robust methodologies. This study introduced a two-stage NDEA frame-
work that integrates GA and RF for optimal feature selection and uncertainty handling. By automatically
identifying the most relevant input and output variables, the model not only enhances interpretability and
reduces dimensionality but also improves the reliability of performance evaluation across probabilistic
scenarios. The application of the Wilcoxon test confirmed statistically significant differences in cost ef-
ficiency among oilfields and enabled more credible and data-driven benchmarking of their performance.
In addition, the incorporation of a stochastic p-robust method further strengthened the model’s ability to
support stable and consistent decision-making under fluctuating conditions. The framework also enables
managers to extract meaningful insights from high-dimensional and noisy datasets, providing strategic
guidance for resource allocation and operational planning. Its adaptability across various sectors and
ability to reduce the risk of misjudgment make it a valuable decision-support tool in uncertain, data-rich
environments. In particular, the managerial implications of this research are noteworthy. The results
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Table 11: Decision variables in p-robust centralized NDEA model

Symbol | Description

ijo

Minimum amount of i-th input for DMU under evaluation in scenario s

Aj

Linear combination coefficients in DEA model

Uy

Weight of r-th output

Weight of i-th input

Weight of d-th intermediate factor in first stage

Weight of i“~th input for CE evaluation

Weight of -th input for CE evaluation

Weight of d°-th intermediate factor in first stage

Weight of d’-th intermediate factor in first stage

Table 12: Price parameters in p-robust centralized NDEA model

Symbol | Description

Dijo Price of i-th input for DMUj

Piaj, Price of i*-th input at DMU under evaluation

Piv j, Price of i’-th input at DMU under evaluation

Phe i Price of d°-th intermediate factor at DMU under evaluation

Pl i Price of d’-th intermediate factor at DMU under evaluation

demonstrate that setting the robustness parameter at ensures feasible and stable efficiency outcomes,
which provides practical guidance for managers making decisions under data uncertainty. Furthermore,
the integration of GA-RF improves model discriminability and enhances the ranking of decision-making
units, reducing overfitting and helping identify inefficiencies more accurately. By minimizing expected
regret and supporting generalizability, the model offers a robust framework for cost-effective planning,
resource prioritization, and performance improvement across operationally volatile industries such as oil
and gas. These insights strengthen the practical value of the model and underscore its relevance as a tool
for informed and resilient managerial decision-making.

Appendix A

Variables, parameters and constants of CE models are defined in the following tables:
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Table 13: Indices and Sets in p-robust centralized NDEA model

Symbol | Description
i Index of inputs, i =1,...,m
Index of DMUs, j=1,...,n
Index of outputs, r =1,...,¢
Index of intermediate factors,d = 1,...,D
Index of scenarios, s € S
Set of scenarios
Index of DMU under evaluation
Total number of inputs
Total number of DMUs
Total number of outputs
Total number of intermediate factors

Ol~ 3|3 |0« | |~

Table 14: Sub-indices to Avoid Repetition in p-robust centralized NDEA model

Symbol | Description

i, Sub-indices for inputs to avoid repetition of index i

de.d' Sub-indices for intermediate factors to avoid repetition of index d
a,b,c,t | Auxiliary indices for distinguishing between different variables
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