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Abstract. In this paper, a new learning robust controller based on the sliding mode control method
and reinforcement learning approach is designed for a class of single-input single-output linear systems
with a relative degree of uncertainty r. For this purpose, a hybrid controller that including equivalent
controller and learning robust controller, is designed. The proposed controller guarantees asymptotic
stability, sliding condition, finite reaching time, elimination of chattering phenomenon and tracking of
desired output in an optimal approach. For online approximation of the value function and design of
an optimal policy, a new robust optimal learning controller is designed. For analytical facilitation and
stability analysis, three theorems are proved and a new algorithm is designed. Finally, a simulation
example is presented to demonstrate the advantages of the proposed method. The simulation results
show the optimality of the controls, the elimination of chattering phenomenon and the tracking of the
desired output.
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1 Introduction

Since the 1990s, the control of systems subject to external disturbances and uncertainties has attracted
growing interest due to its theoretical and practical significance [18]. Designing robust controllers for
such systems has always been a major challenge in control engineering. Among the various existing
control strategies, Sliding Mode Control (SMC) has been recognized as an effective and reliable method
for electronic control systems due to its robustness against uncertainties and disturbances, fast dynamic
response, ease of implementation, and insensitivity to parameter variations and system dynamics in the
presence of perturbations [6, 10].
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However, conventional SMC suffers from well-known drawbacks, particularly chattering and the
generation of high-gain control signals. Chattering is mainly caused by the discontinuous nature of the
control law, which produces undesirable oscillations around the sliding surface [14].

To alleviate chattering, several strategies have been proposed, such as replacing the switching func-
tion with continuous approximations [7], including saturation functions, hyperbolic tangent functions [1],
support vector machines [14], and fuzzy logic systems [16]. While these techniques can reduce or even
eliminate chattering in control signals and state variables, they may also introduce steady-state errors,
require complex tuning, or produce high-frequency oscillations if parameters are not carefully selected.
Moreover, methods based on support vector machines demand large datasets and high computational
resources, and fuzzy logic—based SMC entails complicated stability and convergence analyses.

The output tracking problem is one of the most important and active research topics in control the-
ory [12]. As discussed in [8], the design of tracking controllers aims not only to asymptotically align the
system output with a reference signal but also to preserve robust dynamic performance in the presence
of uncertainties. Achieving optimal tracking performance [27] requires minimizing quadratic perfor-
mance indices and guaranteeing stability under system uncertainties. In this regard, combining SMC
with optimal control has been investigated as a promising solution [17].

Due to their strong learning and optimization capabilities [9], Adaptive Dynamic Programming
(ADP) methods [5] have been extensively studied for solving optimal control problems and the Hamilton-
Jacobi-Bellman (HJB) equation. The ADP-based approaches have found applications in path tracking,
zero-sum games, systems with uncertainty, and actuator saturation. Reinforcement Learning (RL) [21],
often regarded as the data-driven counterpart of ADP, has also been applied in various control scenar-
ios [25]. For instance, [4, 23] developed optimal control schemes using neural networks and RL algo-
rithms for unconstrained feedback control problems, demonstrating the capability of ADP/RL in enhanc-
ing performance under complex, dynamic conditions.

Recently, sliding mode-based Integral RL (IRL) event-triggered control has emerged as a leading ap-
proach for solving robust control problems in uncertain nonlinear systems [ 1]. This method integrates
IRL with sliding mode concepts to solve HIB equations online [13] without requiring full knowledge of
the system dynamics, and applies event-triggering to reduce computational burden-ensuring asymptotic
stability via Lyapunov-based proofs. The proposed controllers have demonstrated effective chattering
suppression, high tracking accuracy, and adaptability to time-varying environments. Additionally, event-
triggered integral sliding mode optimal tracking control has been developed by integrating ADP with
SMC to handle uncertain nonlinear systems-significantly reducing update frequency and enhancing ro-
bustness while maintaining near-optimal performance [27, 28]. Moreover, event-triggered IRL-based
ADP schemes have been proposed for systems with input saturation, achieving guaranteed convergence,
chattering reduction, and low communication overhead [24]. Motivated by recent advances, this paper
proposes a hybrid control scheme that combines sliding mode control (SMC) with optimal control for
output tracking in uncertain linear systems. The hybrid approach aims to ensure robust performance
while minimizing chattering around the sliding surface. To achieve this, an IRL-based algorithm is de-
veloped to approximate the value function and determine the optimal control policy online. The paper is
organized as follows:

In section 2, the system and problem formulation will be described. The control rules are designed in
Section 3. The analysis of the stability of the system is provided in Section 4. In Section 5, the RL
algorithm is designed for approximating the value function. To demonstrate the efficiency and advan-
tage of the proposed control, two simulation experiments are presented in Section 6. Section 7 provides
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numerical performance comparisons with other state-of-the-art methods, and finally, the conclusion is
stated in Section 8.

2 Problem Statement

In order to design a robust control law that ensures stability and tracking performance, it is essential
to first establish a mathematical model of the dynamic system under consideration. In this work, we
consider a class of continuous-time linear systems commonly encountered in control applications, where
the state dynamics are influenced by both control inputs and external disturbances [19]. These systems
are often subject to parametric uncertainties, unmodeled dynamics, and external perturbations, which
must be taken into account during the controller design process. The general form of such a system is
given by [22]:
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—

~
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Il

Ax(t) +Bu(t)+d(t),
y(1) = Cx(1), (0

where x € R", u € R™ and y € R are the state, the control input and the controlled output, respectively.
Also, d € R" denotes unstructured uncertainties in the system, which can be described as mismatch
uncertainties, external disturbances, and/or unmodeled dynamics. Note that A € R™" B € R™" and
CT € R" are time-invariant matrices.

In this paper, a single-input single-output (SISO) is considered. The controlled output y(z) € R is
scalar, and the sliding surface s(r) is defined based on the scalar tracking error e(¢). Consequently, the
control input u(z) is a scalar. Also, the finite-horizon cost functional, the weighting factors Q and R are
taken as non-negative and positive scalars, respectively.

Assumption 1. The pair of A and B are controllable and rank(B) = m.
Assumption 2. Pair A and C are observable.

Assumption 3 ([22]). It is assumed that the following upper bound of the uncertainties and their deriva-
tives are known:

ld@) <, (@) 1< My 1Y@ 1<, MM200m, >0, 2

where || . || denotes the 2—norm of a vector and r, is the relative degree of the system. In other words, if
the relative degree of the system is r we have

CAB=0, i=0,1,...,r—1, CA’B#0. 3)

Notice 1. Controlling systems with external disturbances and unmodeled frequencies requires designing
a robust and stable control law. For this purpose, designing an optimal performance evaluation model,
eliminating the chattering phenomenon, reducing control effort, and ensuring system stability are key
challenges. Table 1 shows the main approaches and novel ideas of this paper in overcoming the issues
and challenges.
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Table 1: The novelties and contributions of this paper

Issues and Challenges Ideas and Novelties Related Sections
Controlling of the system with
external disturbances and un- | Design of robust control (SMC). | Section 2.

molded frequencies.

Elimination of chattering phe-
nomenon caused by discontinu-
ities in the SMC control law.

Design of a hybrid control
that includes equivalent control
and reinforcement learning con-
trol to eliminate chattering phe-
nomenon.

Section 3 and equations

(6)-(13).

System stability analysis.

Stability guaranteed by two the-
orems.

Section 4, Theorems 1, 2
and 3 and Definition 2.

Difficulty of analytical solution
of HIB equation.

The HJB solution is approxi-
mated online via the PI algo-
rithm.

Section 5.

Application and
tion.

implementa-

Presenting an algorithm and
simulation.

Section 5, Algorithm 1,
and Section 6.

Consider the sliding surface s(x,) as follows:

t

s(x,t) = Y Aie" ™) 4 A et do=1,4>0, (4)
i=0

where e(t) = y(t) — y4(t) and y4(¢) are the tracking error and the desired output, respectively. Also, e")(r)
represents the r—th time derivative of e(¢) and A;,i =0, ..., r+ 1 are the positive constant parameters. With
simple calculations, one can obtain

r+1

s(r,t) =Y L™ A =1 (5)
i=0

For the given relative degree of the system and considering the nominal system (1), the error derivatives
can be calculated as follows:
el = CAlx—y¥) cAB=0, 0<i<r

Therefore, e+ = CA"% _yfl’+1) — CA’x+CA"Bu _yElr+1)
the nominal system (1) as follows:

, CA"B # 0. Thus, s(x,t) can be rewritten for

rtl '
$(x,1) = CA™ ' x(t) + CA"Bu(r) —y§ ™V + Y Aiel 179
i=1

1

Considering the uncertainties and defining that 8(r) = C(d(1) +Ad(t) +--- + A”'d")(1)), then

r+1 .
$(x,1) = CA™ ' x(t) + CA"Bu(t) + 8(t) — 'y ) + Y Ay 170,
i=1

1
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To achieve optimal control in finite horizon, we define the finite horizon integral cost function as follows:

5600) = [ (7 0050+ (Rute) 7 |1 d0) ) ds

where Q and R are positive semidefinite and positive definite matrices, respectively. Our goal is to design
a control that can track the desired output of the system, in the presence of the uncertainties in system
(1). For this purpose, a hybrid control will be presented. This control consists of an equivalent controller
and a RL controller.

3 Design of control laws

Consider a hybrid control law u(t) as follows:

u(t) = (1) +ua 1), (6)

where u; (1) and u,(t) are the equivalent control in the SMC method and the RL control signal, respec-
tively. Now, the equivalent control  (¢) is obtained using the nominal system and s = 0:

1

B r+1 Z’l P (r—i+1) Ar+1 (7)

Lt](l)

Also, the reaching state control u;(¢) is designed, via an optimization problem solving. Suppose that the
value function of this problem is as follows:

viste) = [ (TS0 +ua(®) Rua()) — 7 | d(7) IP) e ®
so that

vi(s(0)) = rrbltinm‘?xj(s(O),uz,d).

In other words, v*(s(0)) is the optimal value function. The main problem is to find the optimal control
u; and disturbance policies d* such that

u, = argminJ(s(0),uz,d), d* =argmaxJ(s(0),u,d). )

Definition 1. The system (1) has Ly—gain less than or equal to Y if the following disturbance attenuation
condition is satisfied for all d € L»]0,00) with x(0) =0 :

I EGIT

Jold(@) |PdT = (10)

where || z2(7) ||*= sT Qs +ul Ruy, d(t) is the disturbance input, and y is the amount of attenuation level.
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It is assumed that ¥ in (8) satisfies ¥ > y*, where y* is the smallest ¥ which satisfies the disturbance
attenuation condition [2].
By differentiating the value function (8) with respect to ¢, we have the following Bellman equation:

" Qs+ Ruy — v || d ||* +Vv'$ =0, (11)
where VI (s5) = av(s) . The terminal condition for this partial differential equation is v(¢s) = 0. A solution
to (11) is the Value function v(s) for the feedback control u, = u,(v(s)) and the disturbance d = d(v(s)).
Based on (11), the Hamiltonian function is defined as:

H(s,Vv,uy,d) = sT(t)Qs(t) + ua (t)TRua (t) — ¥* || d(2) ||* +Vv7 (5)s(z). (12)

By applying the stationary conditions at the equilibrium point, the optimal control and disturbance are
obtained as follows:

1 1
(1) = —ﬁCA’BVv(s), d*(t) = 272CTVv( 5). (13)
On the other hand, %QI =2R >0 and ‘3 dIZ{ = —2)/2 < 0 so, up and d are the minimum and maximum
2

points of the Hamiltonian function, respectively.

4 System stability analysis

In this section, stability and sliding condition are analyzed based on the proposed controllers. For this
purpose, consider the following theorems.

Theorem 1. Suppose that v*(s) is a positive semi-definite function such that it solves the HJB equation
(12). Also, suppose that uy, up, and d are determined by equations (7) and (13), then the optimal system
with equations (1), (6), and (8) is asymptotically stable.

Proof. First, the optimal control and disturbance are substituted into the Bellman equation (11). There-
fore

1 1
sT Qs+ W(CA’BVV( )T R(CA"BVv(s)) — 4le(CTVv(s) (T vv(s))+ W s =0. (14)

Since the attenuation condition in Definition 1 is satisfied, the HJ/B equation (14) has a positive semi-
definite solution v*(s) [2]. Now, consider Lyapunov function V (¢) as follows:

V(t):/ttf(sT(‘c)Qs(r)+u2 ORux(v) — 1 | d(z) ) de (15)

By selecting y which satisfies the attenuation condition, we have V(¢) > 0 and V (¢) = 0 if and only if
s(t) = 0. Now, by differentiating V (¢) with respect to ¢, we obtain

%‘/ =—(s"(1)Os(t) +ul (1) Rua(t) —V* || d(2) ||*) <

where V (s) = 0 if and only if s = 0. Therefore, (1) will be asymptotically stable. OJ
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In the next step, the sliding condition is examined.

Definition 2. The sliding condition is defined as follows:
s(t)sgn(s(t)) < —n. (16)
where M is a positive constant [0].

Theorem 2. Consider the control system (1) and the sliding surface (4). If u5 and d* are optimal control
and disturbance signals given in equation (13), then the sliding condition will be guaranteed.

Proof. 1t is clear that if s and s have different sign, then the sliding condition ss will be satisfied. Now
according to the equation (15), we have

av if ds
el d =2
o /t Os(t)dT % o
and also can conclude
Iy
VV = 2/ Qs(t)dr, (17)
t
where VV = %. On the other hand
av 1

Since V is a Lyapunov function for the stable system (1), % < 0 for s # 0. Therefore, according to (18)
sgn(s) = —sgn(VV). (19)

Now, according to the equations (17)-(19), we have: if s > 0 then VV > 0 so0 sgn(s) < 0 and if s < O then
VV < 0so sgn(s) > 0. So in general, we can say that for s # 0, s and s have different signs. Therefore
by selecting 1 = max(| ss |), the sliding condition holds, and this completes the proof. O

Theorem 3. Let the sliding surface function s(t) satisfy the sliding condition (16), then the system state
reaches the sliding surface s(t) = 0 in finite time.

Proof. We consider two cases based on the sign of the sliding surface value.
Case 1: s(7) > 0, then according to Theorem 2 and for a given n = max(|ss|), one can conclude

$(t) < —-n. (20)
By integrating both sides of (20) from time O to #acn, We obtain

Treach Treach
/ s(t)dt < — / ndt
0 0

S(treach) - S(O) < —1MN * treach-
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Since $(treach) = 0, we conclude

s(0
treach < Q (21)
n
Case 2: Suppose s(¢) < 0, similarly, we have
s(0
j(t)znjtreachg_;)' (22)
In both cases, the system reaches the sliding surface in finite time, bounded by
s(0
freach < | ( )| ) (23)
n
this completes the proof. O

5 Design of learning optimal controller based on the integral RL

As is well known, the optimal policies into (13) are based on solving the v*(s) from the HJB equation.
On the other hand, in most cases there is no analytical solution for this equation. According to [3, 15],
the solution of HJB equation can be approximated online using the Policy Iteration (PI) algorithm. In
the following, the algorithm based on Integral RL for solving the HJB equation will be described.
The value function (8) can be rewritten as follows:

17

t+T :
v(t):/t r(s(t),ux(7),d(t))dt + Z+Tr(s(r),u2(r),d(r))dr

t+T
_ /t r(s(7),u2(1),d(7))dT +v(s(t + 7)),

where T is the length of time interval and r(s,uz,d) = s” Qs +ul Ru — y* || d ||>. Suppose that the value
function can be approximated by a linear combination of basis functions ¢ with a weight vector W, that
is

v(s) =WTo(s). (24)

Using the approximated value function by equation (24), the policy iteration algorithm, which consists
of two steps: the evaluation policy and the policy improvement, will be used to find the optimal policy.
The online PI algorithm is presented in Algorithm 1.

6 Simulation example

Example 1. To verify the effectiveness of the control strategy proposed in this paper, we apply it to
a Turntable Flight Simulation System. This is a servo system and its model is usually expressed as
follows [17]:

Flm}:{g _,Emc} [xl(t)}+[K0Km]u(t)+d(t), yt)=Cx(t), C=[1 0], (25
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Algorithm 1: Online PI Algorithm.

Stepl. Initialize the admissible policy uél) and dV) and also initialize W (%),
Step2. For each iteration k, find the value function v%¥)(¢) by

W00 = [ 621000, d@) T WD p(s(0 4 7))

13
Step3. Update the weight vector W) according to the estimated v(*) (s) using the least-squares method,
W® o (s) =15(s).

Step4. Update policies u(ZkH) and d**1) using the relation (13):

WD — 1<vV(k)CArB>7 gl —

R 27 (Vv(k)C>.

StepS. Repeat steps 2 — 4 until convergence.

where x;(t) = 6(t) is the angular position of the turntable, x(¢) = 6(t) is the angular velocity, K, is the
amplification factor of the PV M, R, is the armature resistance, K, is the motor torque coefficient, C, is
the electromotive force constant, and J is the moment of inertia. Also, u(z) and d(r) represent the control
input and the external disturbances, respectively. Suppose the reference signal is given by:

{?8]:[—05 —41] Egﬂ va(t) =Caz(t),  Ca=[1 5] (26)

The simulation parameters are selected as follows:

R, =777, K,=6, C,=12, J=06, K,=11, Q=2, R=7
AM=2=20, dt=0.01, 1€[0,6,x0=[3 0.5]",z0=[0.1 0]".

Since CB = 0 and CAB # 0, the degree of the system is r = 1. Therefore

$(2) = é(t) + Aelr) + 2o /0 (1), @7
$(t) = CA’x(t) + CABu(t) — 54 + M é(t) + Aye(r), (28)
u(f) = JIB (a — é(t) — Aaelr) — CA%x(r)) (29)

The RL interval length, T, is chosen to be 0.1. Also, the convex function ¢ (s) = s? is used to approximate
the value function. Next, according to Algorithm 1 the simulation results are given in the following
figures. As can be seen in Figures 1 and 2, the optimal controllers u; and u; are smooth and without any
chattering. Figures 3 and 4 show the output tracking signal of the desired output and the disturbance,
respectively. The optimal performance is clearly visible in the compromise between the disturbance and
the controller.
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Figure 1: Control function u; (¢)

Time
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Figures 5 and 6 also depict the rapid convergence of the sliding function to zero and the minimization of
the value function, respectively. Figures 7 and 8 show the tracking error and the process of learning the
weights of the basis functions to approximate the value function, respectively.

7 Numerical performance comparison

In the following, the proposed hybrid controller is compared with conventional sliding mode controllers.
First, we consider sliding mode control as follows:

u(t) = eq(t) — Ksign(s(r)). (30)

The simulation was performed for 1 = 5 and the results are shown in Figures 9 and 10. Furthermore, to
eliminate the chattering, we replace the switching function (sign(.)) in traditional SMC with the smooth
function tanh(.), i.e.

u(t) = ueq(t) — Ktanh(s(t)). (31)
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Figure 13: ISE performance index for SMC(sign), SMC(tanh) and proposed controls

Table 2: Comparison of control methods

Method Control interval ISE

SMC (sign) [—24.9490, 20.7437] | 169.612
SMC (tanh) [—18.3179, 1.2935] | 335.478
Proposed control | [—18.3344, 4.6595] | 80.8881

The results are shown in Figures 11 and 12. In order to compare the numerical performances, the per-
formances of the proposed method are compared with the performances of the three methods presented
in [20] and [26] according to ISE index, where ISE (t) = [} ¢*(7)dt. The results of these comparisons are
shown in Table 2. According to Figure 13 and Table 2, the proposed controller can eliminate chattering
with a reasonable control effort and track the desired output with ISE much smaller than the others.
With y; = 0 and C = [1,0] in Example 1, simulations are repeated and their results are compared
with the approach in reference [2]. Figures 14, 15, and 16 show the tracking errors, ISE index behavior,
and disturbance functions for the proposed optimal learning controller and the controller in reference [2],
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Table 3: Comparison of control methods
Method Control interval ISE
Method in [2] [—1.5,—0.002] 581.753
Proposed control | [—-0.94853,3.054] | 95.0197

respectively. To compare the performance of these two controllers, the sum of squared errors were cal-
culated and are given in Table 3. This demonstrates that the proposed control, employing a reasonable
control effort, achieves superior tracking performance compared to the method presented in [2]. Further-
more, it significantly reduces the ISE performance index.

Corollary 1. In classical SMC methods, due to the existence of discontinuous switching function, chat-
tering phenomenon occurs and this chattering is observed in the control signal. In the proposed method,
the control input consists of two control signals, u; (equivalent controller) and uy (RL robust controller).
As can be seen in equations ((7) and (13)) and figures(1 and 2), both are continuous. Therefore, the
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chattering phenomenon does not occur.

8 Conclusion

In this paper, a novel reinforcement learning controller based on sliding mode control method is designed
for linear single input -single output class systems with relative uncertainty degree r. The proposed re-
inforcement learning controller and the external disturbance signal are tuned using an online policy
iteration algorithm. For this purpose, an online approximation of a given value function and an optimal
policy are calculated in a robust learning approach. Output tracking and filtering of the effects of unmod-
eled frequencies are guaranteed without any chattering phenomenon. To facilitate analytical analysis and
asymptotic stability, three theorems are proved and a new algorithm is designed. In the proposed method,
the controller consists of two continuous control signals, the equivalent controller and the reinforcement
learning robust controller, which avoids any chattering in the control signals while maintaining optimal
output tracking and asymptotic stability. A simulation example demonstrates the advantages of the pro-
posed method well. Moreover, the comparative analysis with conventional sliding mode control methods
(sign and tanh) as well as the approach in [2] highlights the superiority of the proposed hybrid controller.
The results show that although the proposed controller operates within a slightly wider control range,
this increase is mainly due to the stronger disturbances applied in the simulation compared with those
considered in [2]. Even under these more challenging conditions, the proposed controller maintains a
reasonable control effort and achieves a significantly smaller ISE index (80.88 compared to 169.61 and
335.47 for classical sliding mode control, and 95.01 compared to 581.75 for [2]). In addition, the chatter-
ing phenomenon is completely eliminated and the control signals remain smooth. These findings confirm
that the proposed learning-based sliding mode controller not only ensures stability and accurate output
tracking but also outperforms state-of-the-art techniques in terms of robustness, efficiency, and tracking
precision with an acceptable control effort.

In future research, the proposed hybrid learning sliding mode controller can be extended to linear
multi-input multi-output systems. Moreover, integrating the approach with deep reinforcement learning
algorithms may further enhance adaptability and performance in complex environments
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