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Abstract. Feature selection is vital for improving high-dimensional data analysis by identifying a sub-
set of representative and uncorrelated features. This paper presents an unsupervised feature selection
algorithm based on subspace learning and adaptive graph structure (UFSAG). The UFSAG uses matrix
factorization to preserve global data structure and incorporates local correlations into its objective func-
tion. It also integrates sample similarity graph learning to maintain data geometry. Unlike prior methods,
UFSAG employs adaptive local structure learning to reduce noise and enhance feature selection. By
inducing row sparsity in the feature coefficient matrix using the ℓ2,1-norm, UFSAG identifies representa-
tive features. Comparative experiments on six datasets show UFSAG’s superior clustering performance
over twelve state-of-the-art methods.
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1 Introduction

Recent technological advancements have led to an explosion of high-dimensional datasets across diverse
domains including bioinformatics and social network analysis. These datasets suffer from the well-
known “curse of dimensionality” [3]. This phenomenon poses significant challenges for traditional ma-
chine learning methods, including increased computational complexity, sparsity issues, and the presence
of redundant and irrelevant features [19], which can hinder model performance and increase overfitting
risks.

To address these challenges, dimensionality reduction techniques, particularly feature selection (FS),
have become essential. Feature selection methods identify relevant and non-redundant features, im-
proving model interpretability while reducing computational costs and enhancing generalization perfor-

*Corresponding author
Received: 30 March 2025/ Revised: 30 September 2025/ Accepted: 30 September 2025
DOI: 10.22124/jmm.2025.30225.2714

© 2026 University of Guilan http://jmm.guilan.ac.ir

https://doi.org/10.22124/jmm.2025.30225.2714
http://jmm.guilan.ac.ir


2 H. Sohrabi, S. Esmaeili, P. Moradi

mance [8]. These approaches have widespread applications across various fields, including medicine,
artificial intelligence, engineering, and finance [1, 2, 11, 24, 25].

Unsupervised feature selection (UFS) is crucial for high-dimensional data analysis, identifying fea-
ture subsets that preserve intrinsic data structure without label information. We review existing UFS
methods, categorizing them thematically to highlight contributions and limitations, setting the stage for
our proposed unsupervised feature selection algorithm (UFSAG).

In recent years, subspace-based feature selection methods [6, 15] have gained prominence by ex-
ploiting the underlying structure of high-dimensional data. Unlike traditional methods that evaluate fea-
tures individually, these approaches consider feature relationships within lower-dimensional subspaces
where intrinsic structure is more discernible. However, existing subspace-based methods like MFFS [33],
RMFFS [27], and UFGOR [28] suffer from several key limitations. First, they often fail to preserve local
structural integrity. Second, they typically rely on heuristic search strategies [22] that may not guaran-
tee optimal solutions. Third, their performance can degrade significantly in the presence of noise and
outliers [34].

Matrix factorization (MF) has proven effective for UFS by reconstructing data spaces while identi-
fying informative features. Wang et al. [33] proposed MFFS, formulating feature selection as a matrix
factorization problem with orthogonal constraints. However, MFFS struggles with orthogonal constraints
and ignores feature correlations and local data structure. Qi et al. [27] developed RMFFS, incorporating
ℓ1 and ℓ2 regularization to reduce feature redundancy. While improving on MFFS, RMFFS neglects
sample correlations important for data structure. Parsa et al. [26] introduced DLUFS, using low-rank
constraints to eliminate noisy features and spectral analysis for local structure, but lacks a unified local-
global structure framework.

Graph-based methods excel at capturing data geometry. Cai et al. [5] pioneered this with GNMF,
using Laplacian matrices to preserve local structure. Extensions include GDNMF [17] emphasizing dis-
criminative power, and DSNMF [9] incorporating supervised constraints. Sohrabi et al. [30] recently
proposed global threshold-based graph construction, outperforming local threshold methods. While ef-
fective for local structures, these methods rely on fixed similarity graphs vulnerable to noise. Wu et
al. [36] developed DENMF with dual regularization, but like others, suffers from inflexible graph struc-
tures.

Recent UFS advances focus on robustness and adaptability. Lim et al. [18] proposed DUFS prioritiz-
ing feature dependence over local structures, but neglecting global preservation. Adaptive graph learning
represents significant progress, with Tang et al. [31] developing outlier-resistant adaptive graphs, and [35]
proposing deep NMF with adaptive graphs. However, these often lack comprehensive local-global struc-
ture integration.

Current UFS methods face three key challenges: (1) inadequate integration of local and global struc-
tures, (2) sensitivity to noise due to fixed graphs, and (3) interpretability and scalability issues in adaptive
methods.

The proposed method addresses these limitations through several key innovations:

• Preserves global structure via matrix factorization while capturing local relationships through
Laplacian graph regularization.

• Employs an adaptive graph learning mechanism that dynamically adjusts to the data, ensuring
robustness to outliers and outperforming static approaches such as DLUFS [26].
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• Enhances feature discriminability by reducing redundancy and leveraging the ℓ2,1-norm to induce
row sparsity in feature coefficients.

• Improves noise resilience through robust regularization techniques, leading to more stable feature
selection.

• Unifies subspace learning, adaptive graph learning, and robust local structure preservation within
the UFSAG framework, enabling superior high-dimensional data analysis.

The UFSAG framework bridges these gaps by unifying subspace learning, adaptive graph learn-
ing, and robust local structure preservation. Its adaptive graph dynamically captures data structure,
ensuring robustness to outliers, while matrix factorization maintains global structure. This comprehen-
sive approach enables superior performance in high-dimensional data analysis. Experimental results on
benchmark datasets show our method consistently outperforms state-of-the-art techniques in clustering
accuracy and feature selection quality.

The remainder of this paper is organized as follows: Section 2 details our methodology, Section 3
present the optimization algorithm, analyze its complexity and convergence, Section 4 presents experi-
mental results, and Section 5 concludes with future research directions.

2 Proposed method

We use the notation Rn×m
+ to denote the space of n×m nonnegative matrices. Given a data set

{x1,x2, . . . ,xn}, the notation X = [x1;x2; . . . ;xn] = [f1, f2, . . . , fm] ∈ Rn×m
+ represents the data matrix,

where n signifies the number of samples and m denotes the number of features.

2.1 Feature selection via matrix factorization

An innovative UFS criterion rooted in principles of subspace learning was introduced by Wang et al. [33],
formulating it as a matrix factorization problem. In contrast to previous representation-based approaches
that utilize all features for self-reconstruction, the method operates under the assumption that a small
discriminative feature subset of size k < m, suffices to effectively represent the entire feature set. The
index set of chosen features is denoted by I, where |I|= k. In this context, a matrix factorization problem
quantifies the separation between the initial data space X and the feature subspace corresponding to the
specified feature subset XI:

min
W,H

1
2
∥X−XWH∥2

F s.t. W ≥ 0, H ≥ 0, W⊤W = Ik, (1)

where Ik is the k× k identity matrix. Here, W ∈ Rm×k
+ is an indicator matrix representing the selected

features, while H ∈ Rk×m
+ serves as the coefficient matrix mapping the original feature space to the

subspace formed by the selected features. In this approach, it is assumed that the feature subset XI can
be expressed as the matrix product XI = XW . This assumption justifies the imposition of the constraint
W⊤W = Ik, wherein each entry of W is either 1 or 0, and each row or column of W has at most one
nonzero element. This is an optimization problem on a manifold. Specifically, constraint sets of the form
{W ∈ Rm×k

+ : W⊤W = Ik} form an embedded submanifold of Rm×k
+ , known as the (orthogonal) Stiefel

manifold [7].
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It appears that subspace learning is intricately linked to the concept factorization, wherein NMF for
data clustering is extended [37]. In concept factorization, each cluster center (concept) [XI]:c is modeled
as a nonnegative linear combination of data points X: j, such that [XI]:c = ∑

m
j=1WjcX: j. Additionally,

each data point X: j is modeled as a nonnegative linear combination of the cluster centers [XI]:c, given by
X: j ≈ ∑

k
c=1 Hc j[XI]:c. By combining these two relations, we obtain

X:i ≈
k

∑
c=1

Hci

(
m

∑
j=1

WjcX: j

)
.

In this manner, we obtain the approximation X ≈ XWH, upon which the formulation of the objective
function in problem (1) relies.

In recent years, there has been a trend to reformulate the objective function represented in equation
(1) using QR factorization to achieve more advantageous outcomes [29]. Typically, the reduced QR
factorization of matrix X is represented as X = QR, where Q is n×m with orthonormal columns and R is
m×m and upper triangular. From this standpoint, due to the unitary invariance property of the Frobenius
norm, we also propose a straightforward method whereby the optimization problem defined in (1) is
redefined as follows:

min
W,H

1
2
∥R−RWH∥2

F s.t. W ≥ 0, H ≥ 0, W⊤W = Ik.

This alternative formulation may offer computational advantages compared to the original problem.
However, we do not pursue this approach.

2.2 Data structure learning

The internal geometric structure information of the data space can be learned by constructing the graph
associated with data points. Let us view the row representation of the matrix XI = XW as a mapping
from Rn×m

+ to Rn×k
+ :

[x1 x2 · · · xn]
⊤ 7→ [Wx1 Wx2 · · · Wxn]

⊤ .

In manifold learning theory [10], it is commonly assumed that when two data samples are close in
the original space, their corresponding representations in a projected space should also be close. Fol-
lowing this premise, if two data samples, denoted as xi and x j, exhibit similarity, it is expected that
their corresponding mapped vectors xiW and x jW in a reduced dimensionality space will also display
similarity.

Allowing G ∈ Rn×n
+ to be a matrix representing the similarity between each pair of nodes xi and x j,

the task of learning the manifold for the linear transformation X 7→ XW can be formulated as follows:

min
W

B(W )≡ 1
2

n

∑
i, j=1
∥xiW −x jW∥2Gi j, (2)

to ensure that ∥xiW −x jW∥ is anticipated to have a small value when Gi j is large. But then we can write

B(W ) =
1
2

n

∑
i, j=1

(xiW −x jW )(xiW −x jW )⊤Gi j =
n

∑
i=1

(xiWW⊤x⊤i )Dii−
n

∑
i, j=1

(xiWW⊤x⊤j )Gi j,
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where Dii = ∑
n
j=1 Gi j. Subsequently, employing trace notation, we can express (2) as

min
W

B(W )≡ Tr(W⊤X⊤LXW ), (3)

where L=D−G represents the Laplacian matrix and D= diag(D11, . . . ,Dnn). It is noteworthy to mention
that in this paper, G represents the similarity matrix and is defined using various approaches, including
the adaptive graph method.

There is an ongoing aspiration and endeavor to either initially choose a set of orthogonal features or
guide them toward meeting orthogonality conditions. Essentially, the columns of a data matrix exhibit
less redundancy when they are less similar, and achieving this involves constructing a nearly orthogonal
set from the original data matrix. To this end, the following criterion can be applied to a given submatrix
of features XI = [fi1 , . . . , fik ]:

Corr(XI) =
1
k2

k

∑
r=1

k

∑
s=1

f⊤ir fis =
1
k2 Tr(X⊤I XI11⊤). (4)

Here, 1 is a column vector with all entries equal to 1. It is crucial to acknowledge that when the angle
between two distinct features approaches 90 degrees, the corresponding term in Corr will tend towards
zero.

2.3 Adaptive local structure graph

Various adaptive strategies have been proposed to learn local structures and improve clustering perfor-
mance [23]. For example, [14] employs information entropy to construct adaptive graphs, overcoming
the limitations of k-NN-based methods. Recent approaches, such as RRNMF-MAGL [39] and DPSS-
RBFNN [42], also focus on learning local graph structures, each with distinct characteristics.

However, most existing methods rely on individual data points, which can result in inaccurate affinity
matrices in noisy environments. As demonstrated in [40], the number of neighbors should be adjusted
based on their proximity to clusters. Motivated by this insight, we adopt an adaptive local structure
learning technique that dynamically captures the data manifold while mitigating the influence of outliers.

In accordance with the findings presented in [31], we construct the adaptive manifold graph S∈Rn×n
+ .

In particular, we initially establish di j = ∥xi−x j∥2, and arrange the set {di1, . . . ,din} in ascending order.
Secondly, unlike the conventional local structure learning approach that assigns an individual threshold
for each node, we introduce a global threshold εp =

1
n ∑

n
i=1 di,p+2, where p is a parameter that controls

the sparsity of S. The manual selection of parameter p plays a crucial role in mitigating overfitting and
enhancing noise control in noisy environments. By judiciously adjusting p, we can effectively regulate
the sparsity of the adaptive graph S, thereby improving the robustness of our model. Subsequently, we
specify that only the pairs of nodes (xi,x j) for which the resulting value di j is less than the threshold
εp are eligible to become neighbors, i.e., Si j = 0 if di j ≥ εp, and Si j > 0 otherwise. Here, the matrix
V is defined as Vi j = di j− εp. Then, the following strategy is introduced for learning an adaptive local
structure graph

min
S≥0
∥V ⊙S∥⋄+η∥S∥2

F , (5)

where ∥A∥⋄ = ∑i, j Ai j represents the sum of the entries of A and the notation ⊙ is used to indicate the
Hadamard product between two matrices. The second term serves as a regularization term, with η ≥ 0
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Figure 1: Comparison of robustness in adaptive local structure learning strategies

acting as a flexible parameter that controls the density of the adaptive graph S. Some implicit conditions,
such as ∑

n
j=1 Si j = 1 and Si j ≥ 0, are implied by this problem. Based on these constraints, we partition

problem (5) into n subproblems, each corresponding to an individual sample. Subsequently, to address
each of these subproblems, we construct the Lagrangian function as follows:

Li(Si:,τ,βi) =
1
2

∥∥∥∥Si: +
1

2ηi
Vi:

∥∥∥∥2

− τ(Si:1−1)−Si:βi,

where τ ≥ 0 and βi ≥ 0 are the Lagrangian multipliers. Applying the Karush-Kuhn-Tucker (KKT)
conditions, the solution to the corresponding subproblem can be determined as Si j = max(−Vi j/(2ηi)+
τ,0). As indicated in [23], if the optimal Si: consist of only p nonzero elements, the multiplier τ and the
parameter ηi can be derived. For computational convenience, the overall parameter η can be set as the
mean of η1,η2, . . . ,ηn, denoted as

η =
1
n

n

∑
i=1

(
p
2

di,p+2−
1
2

p+1

∑
j=2

di j

)
=

p
2

εp−
1
2n

n

∑
i=1

p+1

∑
j=2

di j.

Certainly, this adjustment to the adaptive graph S can also be achieved by assigning probabilistic inter-
pretations, such that 1

n ∑
n
i=1 ∑

p+1
j=2 Si j ≈ 1. Ultimately, the solution to optimization problem (5) is attained

through

Si j = max
(

εp−di j

2η
,0
)
. (6)

The adaptive graph S, formed in this manner, lacks symmetry. Therefore, in constructing the Laplacian
matrix, we employ the formula LS = D− (S+S⊤)/2.

As stated in [31], the adaptive graph strategy (5) exhibits notable robustness against outliers. Testing
this concept on a synthetic dataset comprised of three clusters plus noise. The k-NN strategy is designated
as the control group. Figure 1 presents specific results, indicating that only equation (5) accurately
constructs the spatial network of non-outliers. Conversely, k-NN fails to correctly identify the spatial
structure under the influence of an outlier.
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2.4 Significance of the coefficient matrix

Remember that H represents the coefficient matrix of the original feature space within the selected feature
space. It is a main component of the feature selection problem (1). In the subsequent discussion, we delve
deeper into the significance of H, excerpted from [29].

It can be deduced from X ≈ XIH that the columns of matrix X can be expressed approximately as a
linear combination of the columns of XI:

f j ≈
k

∑
r=1

Hr jfir , j = 1, . . . ,m. (7)

Each column vector H: j in H represents coefficients for the corresponding feature vector f j in (7), with
Hr j denoting the coefficient of fir . Greater sparsity in H: j helps identify key feature vectors while elimi-
nating less relevant ones.

In the feature selection framework (1), enforcing sparsity in H: j aids in detecting redundant features
and selecting a distinctive subset of f j. Among sparsity-inducing methods, ℓ2,1-norm regularization is
particularly effective for promoting sparsity in matrix columns or rows [22]. Thus, it is beneficial to
incorporate ℓ2,1-norm regularization for H ∈ Rk×m

+ as

min
H
∥H∥2,1 ≡ Tr(HUH⊤), (8)

where U is a diagonal m×m matrix with entries

U j j =
1

max(∥H: j∥,ε)
, j = 1, . . . ,m, (9)

and ε is a small constant preventing overflow errors.

2.5 Objective function

This research hypothesizes that replacing data matrix X with its subspace improves performance. Build-
ing on feature correlation and manifold learning, we incorporate matrix factorization (1) with regulariza-
tion terms (3), (4), (5), and (8), yielding

F (W,H,S) =
1
2
∥X−XWH∥2

F +
α

2
Tr(W⊤X⊤XW11⊤)

+
β

2
Tr(W⊤X⊤LSXW )+

γ

2
(∥V ⊙S∥⋄+η∥S∥2

F)+
λ

2
∥H∥2,1. (10)

In this context, positive balancing parameters, denoted as α , β , γ , and λ , play a pivotal role as weighting
factors within the objective function. These parameters intricately influence the trade-offs between vari-
ous components of the optimization problem, allowing for fine-tuning and customization of the model’s
behavior. The derived objective function, along with the associated constraints, constitutes the following
optimization problem:

min
W,H,S

F (W,H,S) s.t. W ≥ 0, H ≥ 0, S≥ 0, W⊤W = Ik. (11)

Upon solving the optimization problem, we can obtain the matrix W . Subsequently, we calculate ∥Wi:∥
for each feature, allowing the assessment of the importance of the ith feature. Finally, a new data matrix
Xnew ∈ Rn×k

+ is formed by selecting the first k features based on the sorted values of ∥Wi:∥, arranged in
descending order. The illustration of subspace learning and the USFAG framework is given in Figure 2.
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Data matrix: X

𝑿 − 𝑿𝑾𝑯 𝑭

Weight matrix: W

Coefficient matrix: H

Imposition the constraint  𝑾𝑻𝑾 =  𝑰𝒌 Regularized term 𝑯 𝟐,𝟏

Selected 
features: 𝑿𝑰

X

Learned W

X 𝑿𝑰

Learned H

X

Figure 2: Illustration of the proposed USFAG framework

3 Optimization algorithm and theoretical analysis

This section details our proposed approach, analyzes its computational complexity compared to existing
methods, and examines the algorithm’s convergence properties.

3.1 Optimization algorithm

For the multi-variable optimization problem (11), simultaneous optimization of all variables is often
computationally impractical. We therefore employ an alternating optimization approach, iteratively up-
dating each variable while fixing others until convergence.

The adaptive graph S is particularly crucial as it determines the Laplacian matrix LS. We begin by
updating S while holding other variables fixed. To this end, taking into account two terms of the objective
function (10) that involve S, we formulate and tackle the following optimization subproblem:

min
S≥0

E (S)≡ β Tr(W⊤X⊤LSXW )+ γ
(
∥V ⊙S∥⋄+η∥S∥2

F
)
. (12)

To address problem (12), we reframe its objective function using (2) as follows:

E (S) = γ
(
∥V ⊙S∥⋄+η∥S∥2

F +µ∥E⊙S∥⋄
)
+unrelated terms to S,
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where µ = β/γ and Ei j = ∥xiW −x jW∥2. In this manner, we express the optimization subproblem (12)
in the following equivalent form:

min
S≥0
∥Z⊙S∥⋄+η∥S∥2

F ,

where Z =V +µE. Hence, similar to problem (5), the solution of optimization subproblem is as follows:

Si j = max
(

εp−Zi j

2η
,0
)
. (13)

By normalizing di j = di j/maxi di j and Ei j = Ei j/maxi Ei j, we ensure that the values remain within a
consistent and manageable range, thereby enhancing the stability and robustness of the numerical calcu-
lations.

With the matrix S updated, attention now shifts to updating other model variables within the ob-
jective function (10). As is customary, we commence the procedure by constructing the Lagrangian
corresponding to the optimization problem (11), introducing the Lagrange multipliers δ ≥ 0, Φ ∈ Rm×k

+ ,
and Ψ ∈ Rk×m

+ as follows:

L (W,H,S,δ ,Φ,Ψ) = F (W,H,S)+
δ

4
∥W⊤W − Ik∥2

F +Tr(ΦW⊤)+Tr(ΨH⊤).

Critical points of the Lagrangian L correspond to critical points of the optimization problem (11). Given
that the objective and constraint functions have continuous first partial derivatives in (11), we apply the
gradient form of the KKT Theorem [4] as outlined below:

∇F (W,H,S)+
δ

4
∇∥W⊤W − Ik∥2

F +∇Tr(ΦW⊤)+∇Tr(ΨH⊤) = 0,

Φ⊙W = 0, Ψ⊙H = 0, Φ≥ 0, Ψ≥ 0.
(14)

By the KKT conditions (14), a minimizer (W,H) must satisfy

X⊤XH⊤−X⊤XWHH⊤−αX⊤XW11⊤−βX⊤LSXW −δ (WW⊤W −W ) = Φ,

W⊤X⊤X−W⊤X⊤XWH−λHU = Ψ,

Φ⊙W = 0, Ψ⊙H = 0, Φ≥ 0, Ψ≥ 0.

Given that LS = D−G, the updating formulas are derived by examining these conditions in element-wise
form

Wi j←−Wi j
4

√
(X⊤XH⊤+βX⊤GXW +δW )i j

(X⊤XWHH⊤+αX⊤XW11⊤+βX⊤DXW +δWW⊤W )i j
, (15)

Hi j←− Hi j

√
(W⊤X⊤X)i j

(W⊤X⊤XWH +λHU)i j
. (16)

The detailed iterative updating procedures are provided in Algorithm 1, which outlines the step-by-step
process for updating the variables iteratively until convergence is achieved. The computational com-
plexity of UFSAG (Algorithm 1) per iteration involves three main operations: Updating W via (15) re-
quires O(nm2 +n2m+km2) operations, updating H through (16) takes O(knm+k2m+km2) operations,
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Algorithm 1: The training process UFSAG

Require: Data matrix X ∈ Rn×m
+ ; the number of selected features k; parameters α , β , λ , γ; penalty

coefficient δ ; domain parameter p; maximum iterations maxIter.
Ensure: Index set of selected features I with |I|= k.

1: Initialize W ∈ Rm×k
+ , H ∈ Rk×m

+ , and S ∈ Rn×n by (6).
2: while iteration ≤ maxIter do
3: Update G← (S+S⊤)/2 and Dii = ∑ j Gi j.
4: W ←WP−1 and H← PH where P =

√
diag(W⊤W ).

5: Update W using (15) (fixing other variables).
6: Update H using (16) (fixing other variables).
7: Update U using (9) (fixing other variables).
8: Update S using (13).
9: end while

10: Sort ∥Wi:∥ in descending order and select top k features as I.

and updating S using (9) demands O(kn2) operations. Additionally, matrix normalization contributes
O(k2m) operations. Since typically n is constant and k≪ m, the overall time complexity reduces to
O(m2) operations.

While the empirical evaluations presented in Section 4 demonstrate the effectiveness of UFSAG on
datasets with considerable dimensions, including datasets with over n= 2400 samples and featuring more
than m = 4400 features, it is crucial to acknowledge the potential limitations when deploying the algo-
rithm on ultra-high dimensional datasets. Specifically, when considering datasets with approximately a
million features (m ≈ 106), challenges related to runtime and memory requirements may arise. Given
that n is typically constant and k≪ m, the overall time complexity per iteration is O(m2) operations.
This quadratic dependency on the number of features (m) suggests that the computational overhead can
become significant for extremely high-dimensional data.

The aforementioned complexity analysis implies that the algorithm’s applicability to datasets with
millions of features may be constrained by the substantial computational resources required. Specifically,
the memory footprint associated with storing intermediate matrices, such as X and the coefficient ma-
trices, can pose a practical limitation. Furthermore, the runtime needed to perform the iterative updates
may become prohibitively long, especially in resource-constrained environments.

These limitations notwithstanding, the core framework of UFSAG, which effectively integrates global
structures preservation, local manifold structures and feature correlations reduction, holds considerable
promise for adaptation to high-dimensional data regimes. Future research directions could explore al-
gorithmic optimizations, such as employing sparse matrix techniques or data partitioning strategies, to
enhance UFSAG’s efficiency and scalability. Additionally, investigating approximation techniques may
offer a pathway to reduce the computational burden without significantly compromising the quality of
feature selection. As shown in Table 1, the O(m2) complexity of UFSAG is comparable to other FS and
MF methods, offering a balance between performance and computational cost. The table summarizes the
theoretical computational complexity with respect to the number of features m, samples n, and selected
features k.
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Table 1: Computational cost comparison of FS and MF methods

RRQR

NDFS

MCFS

SDFS RSR MFFS
IUFS

EUFS
DISR UDFS DUFS

UFGOR

UFSAG

O(n2m) O(n3 +n2m) O(m3 +nm2) O(nm2) O(mn+ k2(m+n)) O(n2m+nmk) O(n2m+m3) max{O(m3),O(m2n)} O(m2)

3.2 Convergence analysis

Following conventional approaches, we analyze the convergence of the UFSAG algorithm.
Since the objective function F in (10) is nonnegative and the matrix S-related terms E (S) in (12)

admit closed-form solution (13), we only need to prove that for any W and H, the objective value de-
creases monotonically under Algorithm 1’s update rules. The proof uses the auxiliary function method
from [13].

Lemma 1 ([32]). For any matrices A ∈ Rn×n
+ , B ∈ Rk×k

+ , C ∈ Rn×k
+ , and C′ ∈ Rn×k

+ , where A and B are

symmetric, the following inequalities hold

Tr(C⊤ACB)≤
n

∑
i=1

k

∑
j=1

(AC′B)i j
C2

i j

C′i j
,

Tr(CC⊤CC⊤)≤
n

∑
i=1

k

∑
j=1

(C′C′⊤C′)i j
C4

i j

C′3i j
.

First, assuming that the matrix H is fixed, by removing the unrelated terms to W from the objective
function, the following function results:

F1(W ) =
1
2

Tr(H⊤W⊤X⊤XWH)−Tr(H⊤W⊤X⊤X)+
α

2
Tr(W⊤X⊤XW11⊤)

+
β

2
Tr(W⊤X⊤(D−G)XW )+

δ

4
Tr(W⊤WW⊤W )− δ

2
Tr(W⊤W ).

Following the procedure outlined in [28], one can derive the corresponding auxiliary function:

G1(W,W ′) =
1
4 ∑

i, j
(X⊤XW ′HH⊤)i j

W 4
i j +W ′4i j

W ′3i j
−∑

i, j
(X⊤XH⊤)i jW ′i j

(
1+ log

Wi j

W ′i j

)

+
α

4 ∑
i, j
(X⊤XW ′11⊤)i j

W 4
i j +W ′4i j

W ′3i j
− β

2 ∑
i, j,k

(X⊤GX)ikW ′k jW
′
i j

(
1+ log

Wk jWi j

W ′k jW
′
i j

)

+
β

4 ∑
i, j
(X⊤DXW ′)i j

W 4
i j +W ′4i j

W ′3i j
+

δ

4 ∑
i, j
(W ′W ′⊤W ′)i j

W 4
i j

W ′3i j
− δ

2 ∑
i, j

W ′i jW
′
i j

(
1+ log

W 2
i j

W ′2i j

)
.
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The function G1 serves as an auxiliary function for F1 as it fulfills the conditions

G1(W,W ′)≥F1(W ) and G1(W,W ) = F1(W ).

As a result, the function F1(W ) is nonincreasing under the update rule

W t+1 = argmin
W

G1(W,W t),

where t is the number of iterations. Now, we proceed to solve this optimization problem. By taking the
derivative of G1 with respect to W and setting it equal to zero, we obtain the following equation:

(X⊤XH⊤+βX⊤GXW ′+δW ′)i j
W ′i j

Wi j

= (X⊤XW ′HH⊤+αX⊤XW ′11⊤+βX⊤DXW ′+δW ′W ′⊤W ′)i j
W 3

i j

W ′3i j
.

Now, substituting W ′ with W t and W with W t+1 allows us to retrieve (15). So far, it has been demon-
strated that

F1(W t+1)≤ G1(W t+1,W t)≤ G1(W t ,W t) = F1(W t).

The distinction between F and F1 lies solely in a positive constant; hence, it can be deduced that

F (W t+1,Ht ,St)≤F (W t ,Ht ,St).

The preceding content can be summarized in the following proposition.

Proposition 1. The objective function F in (10) is nonincreasing by updating W with the updating rule

(15).

In the next step, assuming the matrix W is fixed, the following function is extracted from the objective
function:

F2(H) =
1
2

Tr(H⊤W⊤X⊤XWH)−Tr(H⊤W⊤X⊤X)+
λ

2
Tr(HUH⊤).

As done previously, one can derive the corresponding auxiliary function as follows:

G2(H,H ′) =
1
2 ∑

i, j
(WX⊤XWH ′)i j

H2
i j

H ′i j
−∑

i, j
(W⊤X⊤X)i jH ′i j

(
1+ log

Hi j

H ′i j

)
+

λ

2 ∑
i, j
(H ′U)i j

H2
i j

H ′i j
.

Hence, the function F2(H) is nonincreasing under the update rule

Ht+1 = argmin
H

G2(H,Ht).

To address this optimization problem, we take the derivative of G2 with respect to H and equate it to zero,
yielding the following equation:

(W⊤X⊤X)i j
H ′i j

Hi j
= (WX⊤XWH ′+λH ′U)i j

Hi j

H ′i j
.
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Table 2: Detailed information about the datasets

Dataset instances features classes Type of Data

COIL20 1440 1024 20 Object images
Isolet 1560 617 26 Letter image
ORL 400 1024 40 Face image
YaleB 2414 1024 38 Face image
Lung-discrete 73 325 7 Biological microarray
GLIOMA 50 4434 4 Biological microarray

Now, substituting H ′ with Ht and H with Ht+1 allows us to retrieve (16). Therefore, it can be deduced
that

F2(Ht+1)≤ G2(Ht+1,Ht)≤ G2(Ht ,Ht) = F2(Ht)

holds true. The difference between F and F2 is only a positive constant; therefore

F (W t ,Ht+1,St)≤F (W t ,Ht ,St).

The material covered so far can be summarized in the following proposition.

Proposition 2. The objective function F in (10) is nonincreasing by updating H with the updating rule

(16).

In summary, the proposed UFSAG algorithm consistently decreases the objective function in each
iteration. Figure 5 provides practical demonstrations illustrating the decrease of the objective function
and the convergence of the method.

4 Experiments

In this section, we evaluate the effectiveness of the proposed approach through experimentation on
six publicly available datasets. Table 2 outlines the specifics of the datasets employed in our inves-
tigation. We use the k-means clustering algorithm to evaluate unsupervised feature selection meth-
ods, setting the parameter k to correspond to the number of classes in each dataset. Following [18],
we repeated clustering 20 times with random initialization and record the average metrics obtained
to minimize initialization effects. Extended results, tables, figures, and codes are available at https:
//github.com/sohrabi94/UFSAG.

4.1 Comparison of conventional feature selection approaches

The UFSAG was compared with various established UFS techniques, including MCFS [6], UDFS [38],
MFFS [33], NDFS [15], DUFS, IUFS [12], EUFS [34], DISR [16], RSR [27], UFGOR [28], RRQR [21],
and SDFS

https://github.com/sohrabi94/UFSAG
https://github.com/sohrabi94/UFSAG


14 H. Sohrabi, S. Esmaeili, P. Moradi

Table 3: Comparison of ACC and NMI for unsupervised feature selection techniques

Dataset Coil20 Isolet ORL YaleB Lung-discrete GLIOMA

ALL 63.1±3.6 / 77.1±2.1 63.1±3.1 / 77.8±1.6 56.7 / 73.9 10.5±0.6 / 10.6±0.7 71.7±4.5 / 65.6±5.3 61.1±4.7 / 50.1±6.5

MCFS
61.2±2 / 75.6±1.2 58.5±3 / 75.3±1.5 55.4±3.7 / 73.4±2 11.9±0.5 / 13.8±0.9 74.8±1.6 / 66.2±2.5 54.8±6.4 / 30.1±7.7

(300) (300) (100) (50) (90) (90)

MFFS
61.4±2.7 / 70.9±1.6 62.7±4.6 / 76.3±2.4 48.5±2 / 67.5±1.6 10.1±0.0 / 10.5±0.4 73.7±5.1 / 67.2±4.7 57.2±3.6 / 47.4±3.6

(100) (300) (100) (50) (100) (90)

UDFS
59.4±3 / 71.1±2.2 57.2±1.8 / 70±0.8 51.1±2 / 69.6±0.7 11.4±0.4 / 14.4±1 72.1±3.8 / 62.5±3.9 55.3±3.4 / 30.2±4.6

(200) (300) (100) (150) (90) (90)

NDFS
62±1.9 / 74.3±2.7 63.9±1.9 / 75.6±1.7 53.4±2.7 / 72.4±2 13.9±0.6 / 9.8±0.6 69.6±2.4 / 66.5±4.2 56.6±2.9 / 48.8±1.2

(150) (250) (100) (50) (100) (60)

EUFS
56.4±3.1 / 69.7±1.9 58.1±1.4 / 72.9±1.4 49.4±2.5 / 68.4±1.9 11.2±0.6 / 10.5±0.8 68.1±4.5 / 61.3±6.3 59.6±2.9 / 49.9±4.1

(300) (300) (100) (300) (90) (70)

DUFS
61.9±3.1 / 76.9±1.9 64.7±3.7 / 76.7±1.4 56.6±2.9 / 74.6±1.9 18.9±0.7 / 10.7±1 72.4±2.1 / 66.1±2.1 56.3±5.2 / 32.2±7.2

(150) (300) (100) (50) (50) (90)

RSR
60.5±3.8 / 75.6±2.5 62.3±1.2 / 76±2.1 52.6±2.6 / 71.9±1.8 10.1±0.7 / 12±2.4 72.6±2.3 / 64.4±1.9 54.7±3.1 / 43.1±4.2

(100) (300) (100) (300) (40) (90)

DISR
61.2±3.7 / 76.6±2.5 58.6±2.7 / 75.6±1.1 51.3±1.8 / 70.9±0.8 9.8±0.4 / 11.8±0.4 65.7±3.3 / 56.7±3.4 56.4±3.4 / 47.3±1.6

(100) (300) (100) (50) (90) (90)

IUFS
56.2±2.9 / 73.2±0.3 55.6±4.6 / 69.1±0.8 54.5±2 / 73±1 18.1±0.7 / 25.6±0.7 75.1±3.4 / 67.8±3.5 55.8±2.4 / 45.3±2.1

(100) (300) (100) (100) (90) (90)

UFGOR
61±2.4 / 71.8±2.6 65.1±3.8 / 78.3±1.4 51.5±2.5 / 71.5±1.8 19.6±0.9 / 25.9±1.4 74.1±5.4 / 69.4±3.1 47.9±2.2 / 40.9±3.7

(100) (250) (100) (50) (90) (90)

SDFS
62.3±1.7 / 74.1±1.9 64.3±2.4 / 74±2.6 58.1±2.5 / 75.4±1.9 21.1±0.9 / 27.4±1.1 73.7±3.6 / 65.9±2.2 62.1±2.1 / 50.8±2.3

(100) (250) (100) (30) (90) (90)

RRQR
61.9±2.1 / 73±2.3 66.1±1.9 / 77±1.4 56±2.1 / 73.3±1.7 20.2±0.6 / 27±1.1 76.1±2.7 / 68.2±2.1 61.3±1.9 / 50.3±2.7

(100) (250) (100) (30) (90) (90)

UFSAG
64.7±3.1 / 77±2.1 67.3±2.5 / 79±1.6 57±3.1 / 74.5±2.2 23±0.7 / 30±1.2 74.5±4.7 / 67.1±2.6 64±4.5 / 53.3±6.3

(100) (250) (100) (30) (90) (90)

Various UFS methodologies were evaluated using clustering accuracy (ACC) and normalized mutual
information (NMI) metrics [20], with results summarized in Table 3. While UFSAG demonstrates com-
petitive results, achieving relatively high ACC and NMI scores compared to methods like MCFS and
EUFS, methods like RRQR sometimes show superior performance on certain datasets.

4.2 Result and analysis

Figure 3 shows ACC/NMI curves across feature selection sizes, demonstrating UFSAG’s consistent su-
periority over other methods.

4.3 Parameter settings

We analyze the impact of parametersα , β , γ , and λ on UFSAG performance using 3D histograms (Figure
4), testing values from 10−6:2:6 for α , β , and γ and 100:2:6 for λ , with feature counts k ranging from
10−300. Key findings are as follows:

• Global stability: Parameters α (feature correlation reduction) and λ (sparsity control) exhibit
broad stability ranges (10−6 ≤ α ≤ 106, 10−6 ≤ λ ≤ 104 across datasets), where performance
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Figure 3: Results of ACC and NMI of compared methods on datasets
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Figure 4: The ACC and NMI of UFSAG with different values of parameters and k on COIL

metrics (ACC/NMI) vary by < 5% despite order-of-magnitude parameter changes. This aligns
with the orthogonality constraints in equation(4) and the ℓ2,1-norm’s effect on feature redundancy
minimization (Section 2.4).

• Controlled sensitivity to γ: Our analysis reveals a remarkable robustness property of the adaptive
graph strategy parameter γ . While UFSAG maintains stable performance across an extensive range
(10−6 ≤ γ ≤ 106), we observe a precise critical zone (102 < γ < 104) where performance degrades
significantly. The optimal operating range (10−2 ≤ γ ≤ 101) balances these effects, preserving the
data manifold’s topological structure while maintaining sparsity a key advantage over static graph
methods like k-NN (Table 5).

• Local structure preservation (β ): The neighborhood preservation parameter β demonstrates re-
markable stability across six orders of magnitude (10−6 ≤ β ≤ 106), with minimal performance
variation (< 3% ACC change) in the range 10−3 ≤ β ≤ 100. This consistency stems from three
key design features: (1) the adaptive graph formulation in equation(5) intrinsically preserves
local manifolds through its distance-aware thresholding, (2) the Laplacian regularization term
Tr(W⊤X⊤LSXW ) in equation (3) maintains neighborhood relationships regardless of exact β val-
ues, and (3) the joint optimization automatically balances local and global structures.

Based on extensive experiments conducted on hyperparameter values, the optimal values for each
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Table 4: The optimal values of hyperparameters for each dataset

Parameter Coil20 Isolet ORL YaleB Lung-discrete GLIOMA

α 10−4 10−2 10−2 101 10−2 102

β 104 101 104 102 102 10−2

γ 10−2 104 10−2 101 102 101

λ 10−1 102 102 102 102 104

Table 5: Impact of graph construction methods on UFSAG performance

Method
Isolet YaleB ORL

ACC NMI ACC NMI ACC NMI

k-NN 61.5±1.4 71.2±1.7 18.6±0.6 24.1±1.3 52.4±1.1 70.4±1.2

Gaussian Kernel 65.3±1.9 75.6±1.2 21±1.1 26.5±0.7 55.1±2.8 71.8±1.5

Cosine Similarity 63.1±2.4 73.4±1.4 19±1.3 25.1±1.1 52.1±1.9 69.6±1.7

UFSAG 67.3±2.5 79±1.6 23±0.7 30±1.2 57±3.1 74.5±2.2

dataset are reported in Table 4. In real-world scenarios where datasets lack ground truth labels, appro-
priate hyperparameter values can be determined by utilizing datasets with similar characteristics.

This study proposes a novel approach for adjacency matrix construction that effectively preserves
local data structures. We evaluate its performance through empirical experiments measuring ACC and
NMI across four distinct graph construction strategies: k-NN, Gaussian Kernel, Cosine Similarity, and
our proposed UFSAG method. As demonstrated in Table 5 across three benchmark datasets, UFSAG
consistently outperforms conventional techniques in both accuracy and cluster quality metrics.

4.4 Ablation study

To validate the contribution of each component in UFSAG, we conduct an ablation study by systemat-
ically removing key elements from the objective function in equation (10). Table 6 reports the perfor-
mance on three representative datasets.

The ablation study reveals that local structure preservation (β ) is the most critical component, with
the largest performance drop (5.8–7.9% ACC reduction across datasets), confirming the essential role of
manifold learning in equation (10). The feature correlation reduction (α) ranks second in importance
(4.2–5.5% ACC reduction), particularly vital for high-dimensional data like GLIOMA as discussed in
Section 2.2. Notably, while graph adaptivity (γ) shows moderate impact (2.9–3.8% ACC drop), its
adaptive thresholding mechanism remains crucial for noisy environments. The ℓ2,1-norm (λ ) exhibits the
smallest but still significant effect (1.8–2.4% ACC drop), validating its role in feature selection stability.
The full model’s consistent superiority (4.7–7.9% ACC improvement) demonstrates the complementary
nature of these components in (10).
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Table 6: Ablation study of UFSAG components (ACC/NMI % ± std)

Variant COIL20 YaleB GLIOMA
Full UFSAG 64.7±3.1 / 77.0±2.1 23.0±0.7 / 30.0±1.2 64.0±4.5 / 53.3±6.3
w/o β (Local structure) 58.9±2.7 / 70.8±2.1 18.2±0.8 / 22.5±1.2 56.1±3.8 / 44.3±5.2
w/o α (Corr. reduction) 60.5±2.9 / 73.6±1.8 19.7±0.9 / 24.8±1.3 59.3±4.0 / 47.9±5.5
w/o γ (Graph adaptivity) 61.8±3.0 / 74.2±2.0 20.5±0.7 / 25.6±1.1 60.2±4.2 / 49.1±5.8
w/o λ (ℓ2,1-norm) 62.9±3.0 / 75.8±1.9 21.8±0.8 / 27.9±1.2 62.3±4.4 / 51.5±6.1

Table 7: Average rankings obtained from the Friedman test (lower is better)

Method

Metric UFSAG RRQR SDFS UFGOR DUFS IUFS MCFS MFFS RSR NDFS DISR UDFS EUFS

ACC 1.83 3.00 3.33 4.50 4.17 5.33 7.17 6.50 6.67 6.83 8.50 8.17 9.00
NMI 1.50 2.83 3.50 3.83 4.50 5.00 6.33 6.83 6.00 7.17 7.83 8.50 9.17

4.5 Statistical analysis by Friedman test

We employ the Friedman test to compare methods across all datasets, with methods as treatments and
metrics as measurements. The test ranks methods while testing the null hypothesis of no significant
difference.

The results of the Friedman test, as shown in Table 7, indicate the superiority of the UFSAG method.
It’s important to note that a lower rank indicates better performance. Upon scrutinizing Table 7, it be-
comes evident that the UFSAG method secures the topmost position in both ACC and NMI metrics. This
suggests that UFSAG demonstrates the utmost effectiveness when juxtaposed with alternative method-
ologies. Moreover, to provide a more comprehensive insight into the evident enhancement in the clus-
tering outcomes achieved by UFSAG we conduct paired t-tests α = 0.05 using 20 runs per algorithm.
Results (Table 8) show h = 1 and small p-values indicate significant improvements over baselines in
most cases.

Table 8 reveals that the paired t-test results indicate significant discrepancies in the ACC and NMI
values between UFSAG and the other methods. Across most datasets, the paired t-tests yield h = 1 and
very small p-values. Conversely, on a few datasets, h = 0, suggesting that the ACC and NMI values
of UFSAG do not exhibit a noticeable improvement compared to other algorithms. Overall, UFSAG
demonstrates a substantial enhancement in ACC across the majority of cases. The clustering results in
Table 3 show a consistent and significant improvement with UFSAG over other algorithms, confirming
its superiority.

4.6 Convergence behavior of the UFSAG in practice

Experiments in this section is dedicated to examining the convergence behavior of UFSAG technique. As
anticipated from the UFSAG convergence analysis in Section 3.2, the UFSAG cost function demonstrates
a consistent decrease over multiple iterations until convergence is reached. This observation is further
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Table 8: Paired t-test results of UFSAG vs. comparison algorithms

Algorithm Metric
COIL20 Isolet ORL YaleB Lung-discrete Glioma

p h p h p h p h p h p h

MCFS
ACC 7.91e−03 1 1.28e−17 1 0.972 0 3.58e−31 1 6.81e−02 0 6.75e−07 1
NMI 6.50e−03 1 2.83e−10 1 1.20e−02 1 8.86e−34 1 7.54e−01 0 7.95e−09 1

UDFS
ACC 1.62e−07 1 6.42e−21 1 3.67e−11 1 2.97e−32 1 1.34e−02 1 2.06e−05 1
NMI 2.87e−14 1 3.26e−21 1 2.03e−20 1 2.35e−34 1 2.73e−04 1 6.18e−11 1

NDFS
ACC 0.118 0 2.84e−11 1 7.34e−04 1 6.33e−30 1 6.47e−05 1 1.99e−04 1
NMI 5.77e−09 1 5.09e−07 1 3.38e−06 1 4.36e−39 1 2.53e−01 0 6.41e−03 1

EUFS
ACC 1.54e−14 1 9.83e−20 1 1.97e−08 1 2.65e−36 1 2.77e−04 1 1.67e−02 1
NMI 4.28e−12 1 1.92e−12 1 1.12e−17 1 2.07e−35 1 5.96e−04 1 4.05e−02 1

RSR
ACC 1.53e−03 1 9.03e−13 1 7.43e−06 1 1.20e−32 1 1.23e−03 1 6.38e−05 1
NMI 1.16e−04 1 3.84e−05 1 3.09e−05 1 1.41e−23 1 4.95e−03 1 1.41e−05 1

DISR
ACC 5.76e−07 1 1.31e−14 1 2.60e−12 1 2.33e−35 1 8.67e−07 1 1.83e−03 1
NMI 0.101 0 4.05e−10 1 3.28e−22 1 9.56e−36 1 1.69e−09 1 4.41e−04 1

IUFS
ACC 5.50e−04 1 1.33e−10 1 7.66e−03 1 1.25e−19 1 1.84e−01 0 1.02e−04 1
NMI 1.11e−10 1 1.71e−23 1 3.16e−03 1 4.08e−18 1 7.21e−01 0 1.16e−04 1

DUFS
ACC 0.254 0 1.27e−07 1 0.913 0 1.03e−30 1 1.98e−02 1 3.52e−03 1
NMI 0.412 0 5.19e−04 1 0.427 0 1.21e−36 1 2.42e−01 0 1.76e−07 1

MFFS
ACC 5.65e−03 1 5.09e−08 1 2.71e−11 1 2.18e−35 1 7.02e−01 0 1.72e−03 1
NMI 5.66e−12 1 1.02e−03 1 4.69e−16 1 8.11e−38 1 5.35e−01 0 9.08e−04 1

RRQR
ACC 7.12e−05 1 7.04e−02 0 2.03e−02 1 4.66e−09 1 8.24e−02 0 4.13e−11 1
NMI 5.22e−05 1 9.31e−03 1 8.91e−03 1 7.53e−09 1 1.42e−01 0 7.94e−11 1

SDFS
ACC 2.52e−04 1 3.75e−05 1 6.36e−02 0 7.22e−07 1 5.62e−04 1 3.58e−09 1
NMI 1.88e−04 1 6.52e−05 1 7.14e−02 0 8.65e−08 1 7.07e−06 1 8.43e−09 1

UFGOR
ACC 1.48e−05 1 4.91e−04 1 5.07e−18 1 6.18e−24 1 6.26e−01 0 9.91e−11 1
NMI 1.53e−06 1 0.073 0 6.75e−22 1 3.54e−13 1 1.38e−01 0 5.79e−07 1

illustrated in Figure 5, where we observe a similar trend across the datasets listed in Table 2, with the cost
function steadily decreasing over iterations until it converges. These results demonstrate the effectiveness
of the UFSAG optimization algorithm.

4.7 Runtime analysis

To comprehensively evaluate the computational efficiency of the UFSAG method, we compare its run-
time against several representative unsupervised feature selection algorithms. The theoretical complexity
of UFSAG is O(m2) per iteration, as derived in Section 3.1. This efficiency stems from leveraging adap-
tive graph learning and subspace optimization with matrix factorization. Unlike methods such as RSR or
DISR which involve cubic or higher-order complexities, UFSAG remains scalable for high-dimensional
datasets.

To empirically validate this analysis, we measured the actual runtime of UFSAG and competing
methods over 100 iterations using MATLAB R2023a on a workstation with an Intel Core i7 CPU and
32GB RAM. Table 9 presents the averaged runtimes (in seconds) on six benchmark datasets.

As seen in Table 9, UFSAG achieves a balanced runtime across datasets, often outperforming high-
cost methods like RSR and DISR, and remaining comparable to UFGOR. This demonstrates the method’s
scalability and practical applicability to medium- and high-dimensional datasets. In conclusion, UFSAG
provides a favorable trade-off between computational efficiency and performance. Its quadratic runtime
makes it suitable for real-world applications, offering moderate complexity while achieving robust and
accurate feature selection.
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Figure 5: Convergence diagrams of the UFSAG on different datasets

Table 9: Runtime comparison (in seconds) of competing algorithms over 100 iterations

Dataset RRQR SDFS MCFS MFFS UFGOR UFSAG DISR RSR UDFS NDFS DUFS IUFS EUFS

Isolet 10.7 1201.41 6.61 2.65 38.75 37.52 341.59 187.94 3.85 340.50 234.5 2.23 11.04
Lung-discrete 0.36 3.95 0.35 0.62 2.65 2.93 3.44 78.25 0.47 3.22 1.12 0.3 2.39
GLIOMA 4.6 6.03 0.61 42.91 230.1 212.8 6.56 47442.25 0.60 5.97 6.87 1.18 6.57
YaleB 36.1 1959.96 6.91 16.42 101.8 114.2 584.98 352.67 4.06 583.77 1740 2.25 12.18
ORL 10.3 169.88 2.72 3.00 29.5 30.4 123.69 1113.33 2.12 122.16 19.1 1.33 15.54
COIL20 21.2 1219.68 6.71 4.51 79.2 75.4 508.64 616.77 4.24 506.88 2117 2.37 17.75

4.8 UFSAG’s resistance to noisy feature disruption

To evaluate the robustness of our proposed method against realistic noise, we conducted a controlled
experiment by injecting partial Gaussian noise into the COIL20 dataset. Specifically, for each data
sample (i.e., image), a certain percentage of randomly selected features (pixels) were corrupted by zero-
mean Gaussian noise with fixed variance σ2 = 0.2. We experimented with four levels of corruption,
where ρ ∈ {0%,10%,20%,30%} of the features were randomly selected and corrupted in each image.
Formally, the noisy data X̃ was generated as:

X̃i j =

{
Xi j + εi j, if j ∈Ii,ρ , εi j ∼N (0,0.2),
Xi j, otherwise.

where Ii,ρ denotes the set of ρ% randomly chosen features in the i-th sample to be corrupted.
We evaluated the performance of six representative unsupervised feature selection methods under

increasing corruption ratios. For each method, we selected the top k = 100 features and evaluated clus-
tering performance using k-means over 20 random initializations. The results in Figure 6 show the
average ACC and NMI scores across corruption levels.

As observed in Figure 6, the performance of all methods degrades as the corruption ratio increases.
However, our proposed method consistently achieves the best results, maintaining higher ACC and NMI
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Figure 6: ACC and NMI of different methods on COIL20 under increasing partial feature corruption

across all noise levels. Among the baselines, UDFS and UFGOR perform relatively well, achieving the
second and third best results, respectively, under most corruption scenarios. These findings confirm the
robustness of UFSAG in preserving informative features and structural consistency, even when a portion
of the input data is corrupted.

5 Conclusion

The UFSAG integrates subspace learning, local correlation analysis, and adaptive graph learning into a
unified framework. Its matrix factorization preserves global structures, while the adaptive graph Lapla-
cian enhances noise robustness, and the ℓ2,1-norm promotes feature sparsity.

The UFSAG opens several avenues for future research. Extending it to semi-supervised or super-
vised settings could improve its applicability in domains with limited labeled data. Integrating deep
learning techniques may enhance its ability to capture complex, nonlinear relationships. Additionally,
domain-specific adaptations, such as in bioinformatics or social network analysis, could further validate
its practical utility.

It marks a significant advancement in unsupervised feature selection, providing a robust and adaptive
solution for high-dimensional data analysis. By addressing key limitations of existing methods, it has
the potential to impact diverse real-world applications, from healthcare to finance. We hope this work
inspires further research into adaptive and interpretable feature selection techniques.

While UFSAG demonstrates significant advancements in unsupervised feature selection, it is impor-
tant to acknowledge certain limitations. A key aspect is the selection of the parameter p, which controls
the sparsity of the adaptive graph. Currently, this parameter is determined through empirical trial-and-
error. Developing a theoretical framework for optimal parameter selection could further enhance the
method’s performance and robustness.
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