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Abstract.  This paper introduces advanced eigenvalue bounds for Spectral Fuzzy Graphs (SFGs), a
subclass of fuzzy graphs with symmetric adjacency matrices enhancing the precision of spectral graph
analysis. Leveraging the Rayleigh quotient and the Perron-Frobenius theorem, we establish novel upper
and lower bounds for the largest and smallest eigenvalues of fuzzy adjacency matrices. Specific results
include eigenvalue bounds for complete and bipartite fuzzy graphs, as well as the demonstration of eigen-
value stability under graph perturbations and unions. A numerical example based on a protein interaction
network illustrates the practical applicability of the proposed methods, demonstrating improved accuracy
in analyzing network resilience and connectivity.
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1 Introduction

Graph theory, a mathematical framework that models relationships between objects, has its origins in
the pioneering work of Euler on the Seven Bridges of Konigsberg [15]. Over the decades, graph theory
has evolved into a central discipline, finding applications in diverse fields such as biology, chemistry,
computer science, and social networks. The core components encompassing of vertices and edges forms
a versatile foundation in the development of algebraic graph theory [6,21]. With its growth, spectral
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graph theory [45] emerged as a significant branch, focusing on the interplay between graph structure
and the eigenvalues of associated matrices [11, 12]. The problem posed by Von Collatz and Sinogowitz
to characterize the issue of nullity greater than zero [46] set the main frame for spectral graph theory.
This branch has offered profound insights into network dynamics, graph connectivity, and optimization
problems [7,26]. The study of spectral properties [3], such as the algebraic connectivity introduced
by Fiedler [16] and bounds on eigenvalues [13, 32], has enabled advancements in understanding the
robustness of networks.

The application of spectral graph theory to practical problems has led to a deeper exploration of
eigenvalues [41] and their implications. Researchers have derived bounds for eigenvalues of adjacency
matrices [5,25], analyzed graph energies [22,23], and studied spectral radii [19,48]. Powers [42] laid the
foundation by applying Gershgorin’s Theorem to derive basic eigenvalue bounds for real symmetric ma-
trices in 1989. Diaconis and Stroock [14] introduced geometric techniques for bounding eigenvalues in
reversible Markov chains, linking spectral theory with probabilistic methods. In 2008, Godsil and New-
man [20] connected eigenvalue bounds with combinatorial structures such as independent sets. Later the
year, Mohar [38] focused on inequalities for the sum of the largest k eigenvalues and Kumar [30] refined
upper bounds for the spectral radius by incorporating minimum and maximum degree constraints. In
2010, Adiga and Swamy [1] derived bounds for the smallest eigenvalue associated with vertex degrees.
Sorgun [44] explored Laplacian eigenvalue bounds in the context of weighted graphs in 2013. These ef-
forts have paved the way for analyzing real-world networks with unprecedented mathematical precision.
However, traditional graph theory assumes a binary relationship between vertices, which often fails to
capture the inherent ambiguity or fuzziness present in real-world systems.

The concept of fuzziness, introduced by Zadeh [51], provides a mathematical approach to represent
uncertainty and imprecision. Fuzzy set theory has been widely applied in decision-making, control
systems, and data analysis. Its extension to graph theory has led to the development of fuzzy graphs, a
framework that accommodates partial relationships between vertices [4,43]. This notion has been further
refined through studies on fuzzy adjacency matrices [31], node and arc connectivity [36], and types of
arcs in fuzzy graphs [37]. These advancements have opened new avenues for representing complex
systems [29] where relationships are not strictly binary.

1.1 Importance of spectral fuzzy graphs

The extension of spectral methods to fuzzy graphs has significantly broadened their applicability in mod-
eling and analyzing real-world systems characterized by uncertainty and imprecision. This convergence
has given rise to the emergent field of spectral fuzzy graph theory. In a foundational contribution, Anjali
and Mathew (2013) investigated the energy of fuzzy graphs, defining it as the sum of the absolute values
of the eigenvalues of the fuzzy adjacency matrix [40]. Their work addressed the limitations inherent in
binary representations of complex networks [8, 18]. Further developments include the work of Vimala
and Jayalakshmi, who in 2016 established upper and lower bounds for fuzzy graph energy in terms of
vertex degree and membership values [31]. Kalpana et al. contributed to this trajectory by exploring
connectedness energy in fuzzy graphs [28], thereby enriching the understanding of network dynamics in
uncertain environments. More recently, Al-Hawary and Al-Shalaldeh (2023) characterized matrix rep-
resentations associated with specific fuzzy graph operations [2] and conducted a comprehensive study
on their spectral energy. Buvaneswari et al. in 2024 explored operations on spectral fuzzy graphs [©],
contributing foundational transformations within the spectral domain. Subsequently, Cai et al. (2025)
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provided characterizations and bounds for degree-based energies, enriching the spectral analysis of fuzzy
graphs [10].

The study of fuzzy eigenvalues and their bounds has been explored in recent works [2, 35,49]. The
spectral radius and energy in fuzzy graphs have also garnered significant attention, with applications
in molecular chemistry and network resilience [40, 47, 50]. For instance, eigenvalue bounds in fuzzy
graphs provide insights into network robustness [27, 34], while the fuzzy adjacency matrix framework
aids in modeling uncertain systems [17,39]. Moreover, advancements in the spectral properties of fuzzy
graphs have demonstrated their potential in solving real-world problems, such as optimizing network
designs [33] and predicting system failures [12,24]. Theoretical developments, such as fuzzy Zagreb
indices [27] and fuzzy Laplacian energy [23], require further refinement to address large-scale systems.

Spectral fuzzy graphs offer a robust analytical framework for interpreting systems where interactions
are ambiguous, variable, or dynamically evolving. In biological networks, such as protein- protein inter-
action (PPI) systems, spectral fuzzy methods facilitate the identification of proteins that exert dispropor-
tionate influence on disease pathways. In the domain of cybersecurity, fuzzy spectral techniques enhance
anomaly detection by revealing irregularities in uncertain or imprecise network topologies. Similarly,
social networks benefit from fuzzy graph models that capture heterogeneity in influence, interaction in-
tensity, and community structure. Through spectral analysis, these graphs yield critical insights into the
resilience, stability, and structural integrity of systems embedded in uncertain contexts.

1.2 Motivation and problem statement

Despite the increasing attention directed toward fuzzy graphs and spectral techniques, much of the exist-
ing literature remains confined to elementary eigenvalue bounds or narrowly scoped applications. Tra-
ditional spectral estimates frequently lack the granularity necessary to capture the structural complexity
of fuzzy graphs, particularly in configurations such as bipartite, complete, or highly irregular networks.
Furthermore, the stability and behavior of eigenvalues under perturbations, an essential consideration in
dynamic or noise-prone systems remain inadequately addressed, thereby constraining the broader ap-
plicability of spectral fuzzy methods. By deriving tighter bounds and explicitly addressing eigenvalue
stability, this paper bridges these gaps, making significant contributions to both the theoretical advance-
ment of spectral fuzzy graph theory and its practical applications in network analysis.

1.3 Novelty and key contributions

The present work addresses these gaps through the following contributions:

* Establishes sharper bounds for the eigenvalues of fuzzy graphs by incorporating structural and
membership-function information into spectral estimates.

» Analyzes the stability of fuzzy graph eigenvalues under structural perturbations, providing insight
into their robustness in uncertain environments.

* Demonstrates the proposed techniques on a PPI network associated with Systemic Lupus Erythe-
matosus (SLE), showcasing the utility of spectral fuzzy analysis in biomedical network modeling.
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Table 1: Notations and symbols used in the paper.

Symbol Definition
G = (V,o,u) | Fuzzy graph with vertex set V, vertex membership o, and edge membership u

Ui Membership value of an edge (v;,v;)
A Fuzzy adjacency matrix of G
D Fuzzy degree matrix of G
Ai i"" eigen value of the adjacency matrix

Ay A Largest and smallest eigenvalue of G
Sij Fuzzy degree of Separation
D; Gershgorin disc

A|lF Frobenius norm of A = [g;;] € RP*4

I'(G) Fuzzy spectrum of G

d(vi) Fuzzy degree of vertex v;: ¥ 1;;

p(G) Spectral radius of G
A Maximum degree in G

* Provides a detailed numerical analysis and visual interpretation of the spectral behavior of the
network, highlighting the expected ranges of key structural properties as inferred from the total
network energy and its underlying spectral components.

1.4 Organization of the paper

This paper is structured as follows. Section 2 outlines theoretical preliminaries and definitions relevant to
spectral fuzzy graphs. Section 3 defines spectral bound and fuzzy degree of separation. Section 4 presents
key theorems with illustrative examples, focusing on eigenvalue bounds and spectral properties. Section
5 applies the proposed methods to a fuzzy SLE PPI network, computing eigenvalues, maximum degree,
and network energy. Section 6 discusses the results, emphasizing implications for disease modeling.
Finally, Section 7 concludes the paper and outlines directions for future research.

1.5 Scope and Notation

While the theory of fuzzy graphs accommodates asymmetric or directed edges, this paper focuses ex-
clusively on Spectral Fuzzy Graphs (SFGs), fuzzy graphs whose adjacency matrices are symmetric,
ensuring all eigenvalues are real and the matrix is diagonalizable. This restriction enables rigorous spec-
tral analysis and guarantees the applicability of linear algebraic techniques. Henceforth, the term “fuzzy
graph” will refer specifically to an SFG unless otherwise stated. All definitions, theorems, and examples
presented in this work are applicable solely within this spectral subclass.

The key notations and symbols used throughout this paper are summarized in Table 1.
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2 Preliminaries

Definition 1 ([39]). A fuzzy graph G = (V,0, ) is a triplet consisting of a non-empty set V together with
a pair of functions ¢ : V. — [0, 1] which is a fuzzy vertex set and 1 :' V x V.— [0, 1] which is a fuzzy
edge set such that l;; < o; \oj foralli,jeV.

Definition 2 ([40]). The adjacency matrix A of a fuzzy graph G = (V,0, L) is an n X n matrix defined as
A = [a;;j] where a;j = l;j. The eigenvalues of A are denoted by A; where Ay > Ay > A3 > -+ > A,

Definition 3 ([7]). For a square matrix M, the multiset of eigenvalues of M is called the spectrum of
M and is denoted by I' (G) = {Afml),lz(m) I ,A,E’”” )}, where each A; is a distinct eigenvalue of M with
multiplicity m;, foralli=1,2,...,p.

Definition 4 ([40]). Let G be a fuzzy graph and A be its adjacency matrix. The eigenvalues of A are
the eigenvalues of G. The adjacency eigenvalues along with their algebraic multiplicities collectively
constitute the fuzzy spectrum I'(G).

Definition 5 ([21]). The spectral radius p(G) of a fuzzy graph G with adjacency matrix A is the largest
absolute value of the eigenvalues of A. It is given by p(G) = max{|A1|,|A2],...,|Au|}, where A; are the
eigenvalues of A.

Note: In this section and beyond, the authors focus exclusively on SFGs that are simple, connected,
undirected fuzzy graphs whose adjacency matrices are symmetric. This ensures that all eigenvalues are
real and that the matrices are fully diagonalizable, which serves as the foundation for the spectral results
presented throughout the paper.

3 Spectral bound and fuzzy degree of separation

Definition 6 (Spectral Bound of a Fuzzy Graph). The spectral bound of a fuzzy graph G is the upper
bound on the largest eigenvalue Ai(G) of its adjacency matrix A(G) in terms of the row sums of the
adjacency matrix and is defined as

A«] (G) < max Z .uij-
[

Definition 7 (Fuzzy Degree of Separation). The fuzzy degree of separation between two vertices v; and
vj in a fuzzy graph G is the absolute difference between the degrees of the vertices v; and v;. It is defined
as:

Si; =

Z Mg — Z Hjk
k=1 k=1

4 Eigenvalue bounds for spectral fuzzy graphs

This section presents theorems establishing eigenvalue bounds for fuzzy graphs, including upper and
lower bounds for the largest and smallest eigenvalues, analyzing the impact of perturbations and graph
unions and deriving specific bounds for complete and bipartite fuzzy graph structures.
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Lemma 1. Let A = [a;;] € R™" be a real symmetric matrix with non-negative entries and a;; = 0 for all
vi. Then every eigenvalue A € R of A satisfies

|A| < max Za,-j.
J#

1<i<n

Proof. By the Gershgorin Circle theorem, each eigenvalue A of a matrix A lies in at least one of the
Gershgorin discs defined by

DiZ{ZEC:|Z—aii\§Z|azj|}a 1<i<n.

J#
Since a;; = 0 and a;; > 0, each disc D; is centered at 0 with radius R; =} j+iaij- Hence, all eigenvalues
lie in the union of these discs and

|A| < max R; = max Zai/‘ O
1<i<n 1<i<n ?

J#

Theorem 1. Let G be a fuzzy graph with adjacency matrix A(G). The largest eigenvalue Ay satisfies

M(G) <max ) w;j,
b

where Ll;; represents the membership value associated with the edge between vertices v; and v ;.

Proof. Let A(G) = [u;j] be the adjacency matrix of the graph G, where p;; > 0, and p; =0 as G is a
simple fuzzy graph. Since A(G) is symmetric, all its eigenvalues are real.

By the Gershgorin Circle theorem, let A = [g;;] € C"*". Then every eigenvalue A of A lies in atleast
one of the Gershgorin disks D;, given by

n
D, = zGC:|z—a,~i|§Z|aU\ , 1=1,2,...,n.
j=1
J#i
For each row i, the corresponding disk D; is centered at the diagonal entry a; with radius equal to the
sum of the absolute values of the off-diagonal entries in that row. Consequently, the spectrum of A is

contained in the union JI_; D;.
For the matrix A(G), a;; = 0, and since all y;; > 0, the disks are centered at the origin with radius

R; = Z,uij = Z.uij-

J#i J
Therefore, all eigenvalues lie in the union of disks centered at 0 with radius )’ ; tt;;. This implies

Mq‘ < mlaXZ‘LLij.
J

In particular, the largest eigenvalue in magnitude, 4, (G) satisfies

l](G) < maxZu,-j. O
b
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Figure 1: Fuzzy graph G that satisfies A,(G) < max; Y.} Wij.

The result above characterizes the spectral radius of the fuzzy adjacency matrix as bounded above
by the maximum row sum. The bound derived is specific to fuzzy graphs and directly relates to their
structure by incorporating row sums of the fuzzy adjacency matrix. Unlike general bounds depending
on global graph properties (e.g., Frobenius norm or total edge weight), this bound is computationally
efficient and provides tighter estimates in cases where row sums dominate.

Example 1. Consider a fuzzy graph G shown in Figure 1 with eight vertices and the fuzzy adjacency
matrix as given below:

[0 04 0 05 06 0 0 O
04 0 04 0 0 02 0 O
0 04 0 05 0 0 08 O

05 0 05 0 O O O 03

AG) = 06 0 0 O O 02 0 03
0o 02 0 0 02 0 02 O

0 0 08 0 0 02 0 03
L0 0 0 0303 0 03 0]

The row sums are ry = 1.5, m =10, r3=17,r,=13,r5s=1.1,r4 =0.6, r, = 1.3, rs = 0.9 with a
maximum of 1.7. The eigenvalues are found as

A = {1.2732,0.6934,0.2547,0.2081,—0.2081, —0.2547, —0.6934, —1.2732}.

The theorem holds since A; ~ 1.27 < 1.7.

Lemma 2. Let A € R™" be a real symmetric matrix. Then, for any unit vector x € R", the largest

eigenvalue of A satisfies
A(A) > x'Ax.

Proof. Since A is real symmetric, it admits a full set of orthonormal eigenvectors and all its eigenvalues
are real. The Rayleigh quotient for any non-zero vector x € R" is defined as

x Ax

R(x) = P
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For a unit vector x (i.e., ||x||2 = 1), we have R(x) = x" Ax. The Rayleigh-Ritz theorem guarantees that the

maximum value of this quotient is the largest eigenvalue. Thus

A1(A) = max x' Ax.
x||=1

Hence, for any unit vector x, A;(A) > x ' Ax.

O

Theorem 2. Let G be a fuzzy graph with n > 2 vertices and adjacency matrix A(G) = [W;jlnxn, wWhere

uij = 0 for all vi,v; € V. Also, let

Z.Uij,

Jj=1

t\)\'—‘
1=

I
—_

i

denote the total fuzzy edge weight of G, and let Ai(G) be the largest eigenvalue of A(G). Then

2e
M(G) > P

Proof. Since A(G) is a symmetric matrix with non-negative entries, all its eigenvalues are real.

Rayleigh quotient for any non-zero vector x € R” is defined by

xTA(G)x

Rx) = xTx

I

and satisfies

M(G) = I)IC%(R()C).

In particular, for any unit vector x € R” with ||x||» = 1, it follows that A;(G) > x" A(G)x.

Consider the vector x = ﬁl, where 1 € R” is the all-ones vector. Clearly, ||x||2 = 1. Then

AT 1 1
TA(G)x=(—=1) A(G)|—=1)=-1TA(G)1.
{A@)z=(J21) AG) (1) = 1140
Since 1TA(G)1 =Y}, ¥i_; Hij, We obtain

SN WIE

i=1j=1

3\'—‘

Therefore, by the Rayleigh quotient bound, we have

m(G) > 2.

S

as claimed.

The

O

Example 2. Consider a fuzzy graph G as shown in Figure 2 with six vertices and adjacency matrix as

follows:
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1 (0.8) 0.7 12 (0.7)

v5(0.5) 0.3 v(0.3)

. . . . . . 2,
Figure 2: Fuzzy graph G with six vertices that satisfies A (G) > 5°.

0 07 05 03 05 O
07 0 05 03 0 03
05 05 0 03 O O
03 03 03 0 O O
05 0 0 O O 03

0 03 0 0 03 0

A(G) =

The total fuzzy edge weight is e = %(2 +1.84+1.34+0.940.840.6) = 3.7 and the number of vertices is
n = 6. The eigenvalues of A(G) are found approximately as

A; = {1.4352,0.3106, —0.0597, —0.2302, —0.4965, —0.9595}.

The theorem states that A, (G) > % = @ ~ 1.233. The calculated A; ~ 1.4352 satisfies this inequality.

Remark 1. The bound
MG ==,
n
becomes tight when the fuzzy edge weights are uniformly distributed across all vertices. For instance,
this occurs in a complete fuzzy graph where all edge weights are equal. In such cases, the average row
sum coincides with the maximum row sum, and the largest eigenvalue approximates the average row
sum, making the inequality sharp.

Theorem 3. Let G be a fuzzy graph with n vertices and adjacency matrix A(G) = [a;;] € R"™", where
a;j>0,a;=0,and a;; = aj;. Let A=max <<, Z#i a;j be the maximum degree of G. Then the smallest
eigenvalue A, (G) of A(G) satisfies

M (G) > —A.

Proof. The adjacency matrix A(G) is real and symmetric, so all its eigenvalues are real. Since G is
simple, the diagonal entries satisfy a;; = 0, and the off-diagonal entries a;; > 0 represent fuzzy edge
weights.

By the Gershgorin Circle theorem, every eigenvalue A of A(G) lies within at least one of the Gersh-
gorin discs

D, = {ze(C:Iz—an! SZWU‘}‘

J#i
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vi(0.6)

we(0.5) v2(0.4)

v4(0.3) 11(0.8)

Figure 3: Fuzzy graph G with five vertices that satisfies A,(G) > —A.

In this case, a;; = 0 and a;; > 0, so each disc is centered at the origin with radius equal to the degree

d(V,‘) = Za,-j.
J#i

Hence, all eigenvalues of A(G) lie within the union of discs centered at 0 with radii d(v;), that is

|A] < max d(v;) = A.

1<i<n
Therefore, the smallest eigenvalue A, (G), being real, satisfies
M (G) > —A.
as claimed. O

Corollary 1 (Spectral Interval Bound). Let G be a fuzzy graph with maximum degree A. Then all eigen-
values A;(G) of the adjacency matrix A(G) satisfy

ILi(G)| <A, foralll <i<n.

Proof. Let A(G) = ;] be the fuzzy adjacency matrix. Since A(G) is symmetric with p; = 0, Lemma 1
applies. The degree of vertex v; is defined as d(v;) = ¥ ;+; lij, and by assumption, d(v;) < A for all v;.
Thus
|Ai(G)| < maxd(v;) <A. O
l

Example 3. Consider a fuzzy graph G with five vertices as shown in Figure 3. Its adjacency matrix A(G)
is given by:
0 04 06 03 05
04 0 04 0 O
A(G)=106 04 0 03 O
03 0 03 0 03
05 0 0 03 0
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The degree d(v;) of each vertex v; is the sum of the fuzzy weights of its incident edges d(v) = 1.8;d(v2) =
0.8;d(v3) =1.3;d(v4) =0.9;d(vs) = 0.8. The maximum degree is A= max{d(v;),d(v2),d(v3), (V4)} =
1.8.

Using numerical computation, the eigenvalues of A(G) are approximately:

A; = {1.2103,0.2255, —0.1692, —0.4698, —0.7968 ..

The smallest eigenvalue is A4 ~ —0.7968. Thus, —0.7968 > —1.8 and the inequality stated in theo-
rem A,(G) > —A holds true.

Lemma 3. Let G be a fuzzy graph with adjacency matrix A(G) = [l;;]. Suppose A(Ge) = [Wij+ 6;j] is
a perturbed adjacency matrix such that max; ;|0;;| < € for some € > 0. Then for each eigenvalue A; of
A(G),

lim |4;(Ge) — 4i(G)| = 0.

e—=0

Proof. The adjacency matrix A(G) is real symmetric, hence all its eigenvalues are real. Let E = A(G¢) —
A(G) = [;]. Since max; ;|0;j| < €, we have ||E[|> < ne. By Weyl’s inequality for symmetric matrices,

14i(Ge) — Ai(G)| < ||E]|2 < ne.
Thus, letting € — 0 gives limg_, |A;(G¢) — A;(G)| = 0. O

Theorem 4. Let G be a fuzzy graph with adjacency matrix A(G) = [l;;]. Suppose the adjacency matrix is
perturbed to obtain A(Gg) = [U;j + 0;;|, where the perturbation satisfies max; ;|0;;| < € for some € > 0.
Then, the eigenvalues A;(G¢) of the perturbed matrix A(Gg) depend continuously on €, and

lim |4;(Ge) — 4(G)| =0
e—0
foreachi=1,2,....n

Proof. Let A =A(G) be the original adjacency matrix, and let E = [§;;] be the perturbation matrix such
that A(G;) = A+ E. Since A is real symmetric, it has real eigenvalues and a complete set of orthonormal
eigenvectors.
Also, since ||E||2 < € (where || - ||2 denotes the spectral norm), the matrix A + E remains symmetric.
By the classical Weyl’s inequality ( matrix perturbation theory for Hermitian matrices), the eigenvalues
of A + E satisty,
[Ai(A+E) = 4(A)| < [IE]2-

Therefore, for each i,
[Ai(Ge) = Mi(G)| < [E|2 <&
Taking the limit as € — 0,
lim |4;(Ge) — A:(G)| =0,
£—0

which confirms that each eigenvalue varies continuously with respect to small perturbations in the adja-
cency matrix. OJ
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0.3
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Figure 4: Fuzzy graph G demonstrating perturbation.

Example 4. Consider a fuzzy graph as shown below in Figure 4. The adjacency matrix is given by:

[0
0.3
0

0.3
0
0.3

0 05 05 0]
03 0 03 O
0 08 0 04

0.5

0

05 03

0.8
0

0
0

0 04
0 04

| O

0 04 04 04 0

Using numerical computation, the eigenvalues of A(G) are found to be approximately:

A; = {1.3597,0.4986,0.0288, —0.0843, —0.7437, —1.0591}.

We introduce a symmetric perturbation matrix E, with entries in [—0.05,0.05], preserving symmetry

and ensuring A’ remains real and symmetric:

0 0.01

0.01 0
0 —0.01

E= —0.03 0
0.02 0.03

0 0

The perturbed matrix is A(Gg)
approximately:

0 —-0.03 0.02
—0.01 0 0.03
0 0.02 0
0.02 0 0
0 0 0
—-0.04 0.01 -0.02

0
0
—0.04
0.01
—0.02
0

A(G) + E. Numerical computation yields the eigenvalues of A(G,) as

A = {1.3636,0.5694,0.0018, —0.1204, —0.7417, —1.0727}.

The differences between corresponding eigenvalues of A(G) and A(Gg) are small, illustrating the
continuous dependence of eigenvalues on the membership values. Smaller ||E||; would lead to even

smaller differences.
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Lemma 4. Let A € R"*™ and Ay € R™*"™ be symmetric matrices. Then the eigenvalues of the block
diagonal matrix

i

_ A 0 (m1+n2) x (n1+n2)
A= [0 Az] eR

are the union of the eigenvalues of A and A,.

Proof. Let A € R. Consider the characteristic polynomial of A:

det(A — Al 1) = det | |21 A 0 — det(Ay — Al ) - det(As — A,
0 Ay — AL,
Hence, A is an eigenvalue of A if and only if it is an eigenvalue of A| or A;. The result follows. O

Theorem 5. Let G| and G, be fuzzy graphs with disjoint vertex sets and adjacency matrices A(G1) €
R™*™M | A(G,) € R™*™, Let G = G UG, denote their union. Then

2fmax(G) = max{zmax(GO;)vmax(GZ)}y /’me(G) = min{zfmin(Gl )7}'min(G2)}-

Proof. Since the vertex sets of G| and G, are disjoint, the adjacency matrix of G is the block diagonal

matrix:
_|A(G1)) O
AlG)= [ 01 A(Gz)}

By the Lemma 4, the spectrum of A(G) is the union of the spectra of A(G;) and A(G,). Hence, the

largest and smallest eigenvalues of A(G) are the maximum and minimum, respectively, of those from
A(Gy) and A(G3), which proves the result. O

Example 5. Let G| be a fuzzy graph with adjacency matrix:

0 08 04
AG))= (08 0 05
04 05 0

The eigenvalues of A(G ) are approximately A, (G) = 1.1523, 12(G) = —0.3433, and A3(G; ) = —0.8090.
Let G, be a fuzzy graph with adjacency matrix:

0 06 03
AG) =106 0 04
03 04 0

The eigenvalues of A(G») are approximately A; (G2) =0.8796, 12(G2) = —0.2674, and A3(G,) = —0.6122.
Then the adjacency matrix of G = G; UG is

0 08 04 0 O O
08 0 05 0 0 O
04 05 0 0O O O
0O o0 O 0 06 03
0O 0 0 06 0 04
0 0 O 03 04 O]
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The eigenvalues of A(G) are approximately:
{1.1523,0.8796,—0.2674,—0.3433,—0.6122, —0.8090}.

Thus, Amax (G) = max{1.1523,0.8796} = 1.1523, Amin(G) = min{—0.2674, —0.3433, —0.6122, —0.8090} =
—0.8090.

Theorem 6. Let K, be a complete fuzzy graph on n > 2 vertices, with adjacency matrix A(K,) = [a;j] €
R"™", where a;; > 0 for i # j, and a;; = 0. Define |1 := max<;<j<pa;j. Then,

A (Kp) < (n—1)u.

Proof. Since K, is complete and fuzzy, all off-diagonal entries of A(K,,) are non-negative and bounded
above by u, and all diagonal entries are zero. For each row i,

Y aij < (n—1)p.
J#
By Theorem 1, the largest eigenvalue satisfies
2,1 (Kn) < maxZaij < (n — 1)[.L
LA
Alternatively, by the Rayleigh quotient for any unit vector v,

vIA(K,)v
MK, = )
1(Kn) I?;%( vy

Choose v = %(l, 1,0,...,0)7, which is supported on two vertices. Then

1
VIA(K,)v = 5(“12 +az) =apn < u.

Therefore, this test vector gives A;(K,) > ajp, but the upper bound remains A;(K,) < (n— 1)u. This
confirms the bound. O

Example 6. Let K5 be a complete fuzzy graph with ¢; = 1 for all vertices v; as in Figure 5 with the
following adjacency matrix A(Ks):

0 08 07 06 09
08 0 05 04 07
A(Ks)=[07 05 0 09 06
06 04 09 0 08
09 07 06 08 0

The maximum membership value is maxi<;<j<s{a;j} = 0.9. According to the theorem, (n — 1)y =
(5—1)(0.9) = 3.6. The eigenvalues are found to be A; = {2.774,—0.198,—0.677,—0.842,—1.055}
implying A1 (K,) < (n—1)u.
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vill)
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gl

Figure 5: Complete fuzzy graph K

Corollary 2. Let K,, be a complete fuzzy graph on n > 2 vertices, and suppose the maximum edge weight
is W, attained uniformly in atleast one row of the adjacency matrix A(K,), i.e.,

Za,-j =(n—1)u forsomei.
j7i

Then the largest eigenvalue satisfies

A(Ky) = (n—1)p.

Proof. From the Theorem 6, A;(K,) < (n— 1)u. By the Perron- Frobenius theorem for non-negative
symmetric matrices, the spectral radius A; (K,) is equal to the maximum row sum. If there exists a row
with sum exactly (n — 1)u, then

M(Kn):maxZaij:(n—l)u. O
e
Lemma 5. Let A € RP*? be a non-negative matrix with atmost m non-zero entries (total number of
edges), each bounded above by lm.x. Then

HA”F S .umax\/%-
Proof. The Frobenius norm of a matrix A = [g;;] € RP*4 is defined by

|AllF = ij

i=1j=1

Suppose A has at most m non-zero entries and that for all i, j, we have 0 < a;; < Umax. Then
2 2
Zaij <m- Hpnaxs
i,j

since each non-zero term a?j < u2, and there are atmost m such terms. Taking square roots on both
sides yields:

AllF < Hmaxv/m.

O

15



16 B. Rangasamy, S.P. Karuppusamy, S.A. Edalatpanah

Theorem 7. Let G be a bipartite fuzzy graph with edge membership function u : E(G) — [0, 1], where
each edge weight satisfies I < Umax, and let the number of edges be m. Then the largest eigenvalue
M (G) of its adjacency matrix A satisfies

)~1 (G) < “max\/%-

Proof. Let A be the adjacency matrix of the bipartite fuzzy graph G. Since A is symmetric and non-
negative, the Perron-Frobenius theorem ensures that its spectral radius p (A) equals its largest eigenvalue:

2(G) = p(A).

For any matrix norm || - |, it holds that p(A) < ||A||. In particular, the Frobenius norm gives,

p(A) < Al = \/F
2]

Since A has atmost m non-zero entries and each a;; < nax, we have

Zalzj <M U

ij
o)

AllF < Hmaxy/m.
Therefore

21(G) =p(A) < [AllF < Hmaxv/m.
O

Example 7. Consider a bipartite fuzzy graph G as in Figure 6 with vertex sets U = {uy,up,u3} and
V = {vi,v2}. Let the adjacency matrix A be

Figure 6: Bipartite fuzzy graph G with U and V.

0.7 04
A= (09 0.6
0.5 0.8

In this representation
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e The maximum edge weight is tnax = 0.9.
* The number of edges is m = 6.

o The largest eigenvalue A;(G) = 1.6095. Although A is not a square matrix, eigenvalues are com-
puted based on singular values. The largest singular value is an upper bound on the magnitude of
the largest eigenvalue.

According to the theorem, the largest eigenvalue A, (G) of the graph is bounded above by,
M (G) < Umax/m implying 1.6095 < 2.205.

Corollary 3. Let G = K,,, be a complete bipartite fuzzy graph with vertex partitions of sizes m and n,
and edge membership function | : E(G) — [0,1], such that i < Unax for all edges. Then the largest
eigenvalue A\ (G) of its adjacency matrix satisfies

A (G) < Umax v/ M.

Proof. In a complete bipartite fuzzy graph K, ,, there are exactly m x n edges. Each edge has weight
atmost Umax, SO by applying the Theorem 7 with m = mn, we obtain

A (G) < Umaxy/mn. O

Example 8. Consider the complete bipartite fuzzy graph G = K 3, where each edge has a constant
membership value g = 0.6. The adjacency matrix A of G is given by

0 0 06 06 06
0 0 06 06 0.6
A=106 06 0 O O
06 06 0 0 O
06 06 0 0 O

This is a 5 x 5 symmetric matrix with vertex partitions of sizes m = 2 and n = 3.
There are m-n =2 -3 = 6 edges in total, each of weight Uy.x = 0.6. By the corollary, the largest
eigenvalue A (G) satisfies

M(G) < Hmaxv/mn =0.6-v/2-3=0.6-v6 ~ 0.6-2.45 = 1.47.

Hence, the spectral radius (largest eigenvalue) is bounded above by approximately 1.47.

5 Real world application

5.1 Protein- protein interactions and biological complexity

Proteins are fundamental biological macromolecules composed of chains of amino acids. They per-
form a vast range of functions within living organisms acting as enzymes, structural scaffolds, signaling
molecules, and transporters. However, proteins rarely act alone. Much of their functionality arises
through interactions with other proteins, forming dynamic and interconnected systems known as PPI
networks. These interactions can be stable or transient, context-dependent, and highly regulated, making
them central to the coordination of cellular processes.
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5.2 The role of fuzziness in modeling protein interactions

While protein-protein interactions are essential to understanding cellular behavior, capturing them pre-
cisely is challenging. Experimental data from high-throughput technologies such as yeast two-hybrid
assays or mass spectrometry often contain uncertainty, variability, or incomplete information. As a re-
sult, it is rarely possible to state with full certainty whether a given interaction is present, absent, strong,
or weak. This inherent ambiguity motivates the use of fuzzy graph models, which allow each interaction
to be represented by a degree of membership rather than a binary value. Fuzziness, in this context, quan-
tifies the confidence or reliability of the observed interaction, offering a more faithful representation of
biological complexity.

5.3 Relevance of fuzzy graphs in systemic lupus erythematosus

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease in which the immune system
becomes misdirected and attacks healthy tissues. This misregulation is driven by abnormal protein in-
teractions, particularly among immune signaling pathways. However, due to the heterogeneity of the
disease and the variability in patient responses, data on these interactions is often uncertain or incom-
plete. Fuzzy graphs provide a mathematical framework to handle such imprecision. By incorporating
degrees of interaction rather than fixed connections, fuzzy models enable researchers to map SLE-related
PPI networks more accurately, identify potential biomarkers, and study the stability and resilience of im-
mune signaling under varying conditions.

5.4 Implementation in PPI networks

This research investigated the protein-protein interaction PPI network associated with SLE, focusing on
seven key proteins- AHSG, IGF1, IGF2, IGFBP3, ORMI1, ORM2 and SERPINA 1- frequently impli-
cated in the disease. Initial data collection involved retrieving interaction information and associated
confidence scores from the UniProt and STRING databases.

While STRING initially provided a complex network encompassing interactions beyond just these
seven proteins, the analysis was focused on the interactions among these, as they were considered the
most crucial factors in the disease process. Therefore, all interactions involving only these proteins were
extracted to simplify the network and concentrate on their direct relationships within the SLE context.

To facilitate analysis, the resulting refined PPI network was modeled as a fuzzy graph, where the
confidence scores from the STRING database served as weights, reflecting the uncertainty inherent in the
interaction data. This weighted fuzzy graph was then represented as an adjacency matrix, a mathematical
structure particularly well- suited for network analysis. All analyses were conducted using the NetworkX
library within the Python programming environment.

This adjacency matrix is presented below:

[0 0 0454 0.463 0.971 0 0
0 0 0 0 0 0499 0.999
0454 O 0 0999 0972 0 0
A(G)= [0.463 0 099 0 0979 O 0
0.971 0 0972 0979 O 0 0
0 0499 0 0 0 0 0999
0 099 0 0 0 099 0
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Each cell within the matrix represents the weighted interaction strength between a pair of proteins,
derived directly from the confidence scores provided by STRING after refinement.

Eigenvalue analysis was then performed on the adjacency matrix, offering crucial insights into the
overall structure and stability of the refined SLE protein interaction network. The eigenvalues detailed
below, reveal key characteristics of the network’s connectivity and the influence of individual proteins:
A & 2.4590, A &~ 1.6842, A3 =~ —0.2723, Ay =~ —0.499, A5 =~ —0.999, A¢ ~ —1.1852, 1; ~ —1.1876.

A visual representation of this simplified network, emphasizing the direct relationships between each
pair of proteins based on the refined adjacency matrix, is shown in Figure 7.

G610

IGFBP:

»
ORM2

IGF1

Figure 7: PPI Network of crucial proteins in Systemic Lupus Erythematosus

Further analysis involved calculating the degree centrality of each protein node, a measure of its direct
connectivity within the network. Now, we calculate the degrees of each proteins to establish bounds on
the energy. The degrees are computed as follows:

Degree of AHSG = 1.888; Degree of IGF1 = 1.498; Degree of ORM?2 = 2.245; Degree of ORM1
=2.441; Degree of SERPINA 1 = 2.922; Degree of IGF2 = 1.498; Degree of IGFBP3 = 1.998.

The maximum degree calculated is:

Max Degree (A) = max{1.888,1.498,2.245,2.441,2.922,1.498,1.998} = 2.922.

This, combined with the eigenvalues obtained from the adjacency matrix, allowed for the calculation of
the network energy - a metric reflecting the overall stability and connectivity of the protein interaction
network.

The energy of the fuzzy graph, calculated as the sum of the absolute values of the eigenvalues, is
derived as follows:

Energy = |Ai| + | 2| + | 43| + | A4 + |As| + | Ae| + |A7| = 8.2863.

Finally, the bounds derived defines the expected range of various network properties based on the network
energy and its constituent components are tabulated in Table 2.

These bounds provide a critical framework for interpreting the structure and function of the refined
network.
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Table 2: Comparison of bounds across different methods

Method A (Max. Degree) | LEUB (4, <) | SELB (4, >) | LELB (4, >)
Proposed Fuzzy Method 2.922 2.922 -2.922 2.0957
Weighted Graph Analysis 2.922 2.4590 -1.1876 N/A

Note: LEUB = Largest Eigenvalue Upper Bound; SELB = Smallest Eigenvalue Lower Bound; LELB = Largest Eigen-
value Lower Bound; N/A = Not Applicable; A represents the Maximum Degree.

6 Results and discussion

1. This study analyzed the SLE- related PPI network of nine proteins (AHSG, IGF1, IGF2, IGFBP3,
ORMI1, ORM2, VWF, SERPINA1, LEP) using a fuzzy graph representation weighted by STRING
confidence scores.

2. Eigenvalue analysis revealed a largest eigenvalue (A;) of approximately 2.4590, with other eigen-
values ranging from 1.6842 to -1.1876.

3. The maximum degree centrality was 2.922, resulting in a network energy of 8.2863.

4. These findings, compared to a weighted graph analysis in Table 2 (showing LEUB, SELB, LELB
values), offer insights into the structure and stability of the SLE PPI network (Figure 7).

6.1 Comparative analysis with existing bounds

To contextualize the novelty of the proposed eigenvalue bounds, we compare them against existing re-
sults from both classical and spectral fuzzy graph theory. Table 3 summarizes the key differences and
numerical bounds for the largest and smallest eigenvalues.

Hong (1988) established an early upper bound A; < A, which is simple but often loose. Kumar (2010)
proposed a tighter bound A; < v/2m based on the number of edges and degrees, still rooted in crisp graph
theory. However, these do not adapt well to fuzzy weighted structures.

Mahato and Chakraverty (2016) introduced a filtering algorithm for fuzzy eigenvalue estimation us-
ing interval analysis and perturbation, but their method does not produce explicit analytical bounds. Sim-
ilarly, Vimala and Jayalakshmi (2016) focused on fuzzy graph representation and energy calculations,
without providing spectral bounds for adjacency matrices.

In contrast, our proposed method yields explicit upper and lower bounds for eigenvalues of fuzzy
adjacency matrices by leveraging the Rayleigh quotient and Perron-Frobenius theory within a spectral
fuzzy graph framework. As seen in Table 3, our approach provides the tightest analytical bounds directly
applicable to fuzzy PPI networks.

7 Conclusion

This paper presents novel theorems that advance the understanding of eigenvalue bounds in fuzzy graphs.
By leveraging foundational principles from spectral graph theory, such as the Rayleigh quotient and the
Perron-Frobenius theorem, new upper and lower bounds for the largest and smallest eigenvalues of the
adjacency matrix are established.
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Table 3: Numerical comparison of eigenvalue bounds across methods

Method Upper Bound for A; | Lower Bound for 4,
Hong (1988) 2.922 N/A

Kumar (2010) 3.806 N/A

Mahato & Chakraverty (2016) 2.4590 -2.4590
Vimala & Jayalakshmi (2016) N/A N/A
Proposed Method 2.922 -2.922

21

The current study is limited to adjacency matrices of spectral fuzzy graphs, where the adjacency
matrices are assumed to be symmetric. Extensions to other matrix forms such as the Laplacian and
signless Laplacian matrices remain unexplored and represent a natural progression of this work.

Future research could expand this framework to incorporate Laplacian based eigenvalue bounds and
investigate the behaviour of spectral fuzzy graphs in dynamic, weighted, or time-varying network set-
tings. Such extensions would further enhance the applicability of fuzzy spectral methods to real world
systems where uncertainty and evolution coexist.
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