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Abstract. Implied volatility is a crucial indicator in financial markets, as it reflects market expecta-
tions of future volatility and serves as a cornerstone for option pricing, risk management, and asset
allocation. Accurate tracking and forecasting of implied volatility are essential for investors and port-
folio managers to optimize returns and manage risks effectively. This paper explores several modeling
approaches for forecasting the implied volatility of the S&P 500 index, focusing on exponential autore-
gressive conditional heteroskedasticity (EGARCH), long short-term memory (LSTM) neural networks,
and a non-linear autoregressive model with exogenous inputs (NARX). In addition, a rough fractional
stochastic volatility (RFSV) model is also examined. The empirical study demonstrates that the LSTM
model offers superior forecasting performance compared to EGARCH, NARX, and RFSV. These find-
ings have important implications for practitioners and researchers aiming to enhance risk management
and trading strategies.

Keywords: Implied volatility, LSTM neural network, NARX model, rough fractional model
AMS Subject Classification 2020: 91G20, 68T01, 68T07.

1 Introduction

Forecasting asset-return volatility is pivotal for effective option pricing, risk management, and trading
strategies. Volatility defined as the variability of an asset’s price over time is of particular importance in
financial markets, where unexpected fluctuations can significantly affects pricing and portfolio decisions.
Among various measures, implied volatility, derived from option prices, offers valuable forward-looking
information by reflecting market participant’s collective expectations of future price fluctuations [20].

Unlike historical volatility which focuses only on past price movements, implied volatility incorpo-
rates market’s collective expectations and insights regarding future conditions. It anticipates the future
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movement of the underlying asset’s price and predicts the extent of price fluctuation, aiding in determin-
ing the profitability potential options before expiry. This forward-looking nature allows implied volatility
to adjust more rapidly to new information [3]. Thereby, it helps the practitioners and investors understand
market movements and inform trading strategies [5].

However, forecasting implied volatility, which significantly affects option pricing, remains a major
challenge in finance. Accurate forecasting is essential for making informed investment decisions and
managing portfolio risk effectively. The reliance of implied volatility on various maturities and strike
prices influences its accuracy in estimating future realized volatility. Goyal and Saretto [11] found that
differences between historical and implied volatility are temporary, with one-month implied volatility
effectively serving as a reliable measure for longer-term historical volatility. This finding highlights the
importance of options implied volatility as a representation of realized volatility. Econometrics models
like the generalized autoregressive conditional heteroskedasticity (GARCH) model [2] and its extension,
the exponential GARCH (EGARCH) model [19], have been widely used to model time-varying volatil-
ity. However, these models often struggle to capture the non-linear and complex dynamics inherent in
financial time series, limiting their effectiveness in tracking implied volatility [5]. Stochastic volatility
models, such as Heston’s model [13], also seek to account for aspects like mean reversion and the cor-
relation between asset returns and volatility. Heston and Bates models have semi-closed form solutions
for European option pricing, making them relatively easier to calibrate with market data. A new model
for pricing American options has been developed, integrating stochastic volatility and jump-diffusion
model, and has been shown to outperform traditional models in accuracy using S&P500 data [9].

In recent years, artificial neural networks (ANNs) have gained popularity due to their capacity to
model complex non-linear relationships and detect detailed patterns within data [12,22]. Building on this
trend, a novel leading moving average indicator based on a hybrid ANFIS-Wavelet approach has been
introduced to enhance market trend prediction and trading decisions, showing effective performance on
NASDAQ data [16]. The non-linear autoregressive model with exogenous inputs (NARX) is a type of
an ANN used for time series forecasting. It is indeed notable for its effectiveness in modeling non-linear
dynamic systems, including many financial applications. For example, D’Ecclesia and Clementi [5]
demonstrated that NARX networks outperform traditional models like EGARCH and the Heston model
for forecasting implied volatility. The EGARCH model is used to analyze and predict the volatility of
time series data. It allows for asymmetric responses of volatility to shocks and captures the exponential
dynamics of volatility where volatility clustering is observed. Similarly, Stokes and Abou-Zaid [21]
showed the effectiveness of ANNs in forecasting exchange rates. The model’s capability to handle
complex relationships and time series data makes it particularly useful in this field, allowing analysts to
better predict and understand financial trends.

Building on NARX model successes, innovations in neural network architectures, most notably long
short-term memory (LSTM) networks [14] have emerged. The LSTMs address the vanishing gradient
problem, inherent in traditional recurrent neural networks, enabling the capture of long-term dependen-
cies in sequential data and making them suitable for financial time series forecasting. D’Ecclesia and
Clementi [5] found that ANN models generally outperform traditional frameworks like Heston in ef-
fectively tracking implied volatility dynamics, particularly in terms of accuracy related to root mean
squared error. Additionally, rough fractional stochastic volatility (RFSV) models have emerged to better
capture the ’rough’ character observed in financial volatility. Unlike traditional stochastic models and
fractional Brownian motion approaches that typically assume a Hurst exponent H ∈ (1/2,1), the RFSV
framework explicitly incorporates the observed roughness H ∈ (0,1/2] in volatility dynamics Gatheral
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et al. [10]. This method has proven promising for improving the modeling and forecasting volatility by
addressing the nuanced roughness inherent in financial time series. Moreover, empirical studies under-
score the universality of rough volatility. Bennedsen et al. [1] analyzed volatility time series for over five
thousand individual US stocks, estimating rough volatility in each instance. A recent systematic review
by Zhao et al. [24] provides a comprehensive overview of neural network-based financial volatility fore-
casting studies published after 2015, highlighting key trends and gaps. The review highlights historical
volatility as the most frequently forecasted proxy, followed by realized volatility, while implied volatil-
ity is the least utilized, primarily due to limitations in data accessibility. In terms of methodological
approaches, multilayer perceptrons (MLPs) are predominant, frequently integrated with autoregressive
models such as GARCH. Recurrent neural networks (RNNs), particularly LSTM architectures, repre-
sent the second most commonly employed technique, whereas convolutional neural networks (CNNs)
are comparatively rare. The review underscores a notable gap between state-of-the-art machine learn-
ing models and those currently employed in volatility forecasting, highlighting the limited adoption
of deep learning techniques. It recommends addressing this disparity by exploring advanced architec-
tures, including temporal convolutional networks and WaveNet, to enhance forecasting performance. It
also emphasizes the importance of establishing shared tasks to facilitate meaningful comparisons across
studies, thereby mitigating heterogeneity in volatility proxies, asset, and forecasting horizons. Recent
advancements have also explored graph neural networks (GNNs) for volatility forecasting, leveraging
relational dependencies in multivariate financial time series. For instance, Deng and Hooi [6] proposed
a GNN-based approach for anomaly detection in multivariate time series, which has implications for
capturing interconnected volatility patterns in financial data, extending beyond sequential models like
LSTM. While Zhao et al. [24] underscore the potential of such emerging methods, they highlight that
financial applications lag behind general machine learning advancements, motivating further integration
of relational and deep learning models.

Despite significant progress in volatility forecasting techniques, direct comparisons among promi-
nent models such as EGARCH, NARX, LSTM, and RFSV remain limited, particularly in the context
of implied volatility. This gap hinders a comprehensive understanding of their relative performance and
applicability in real world financial settings. To address this, the present study enhances prior research
by introducing a novel set of input features and modifying the architecture of standard LSTM networks
to better capture the complex dynamics of financial time series data. The primary aim of this study is
to identify the most accurate approach for forecasting implied volatility. Using S&P 500 index data and
its corresponding implied volatility from 2001 to 2024, the analysis offers valuable insights for both
researchers and practitioners. These findings can inform the development of more effective risk manage-
ment strategies and trading decisions in increasingly volatile markets.

To highlight the research gaps and motivations, Table 1 summarizes key prior works on volatility
forecasting, evaluated across model types, datasets, performance metrics, strengths, limitations, and how
they relate to our contribution. This comparative analysis highlights critical shortcomings: although
econometric models (such as EGARCH) and stochastic approaches (like RFSV) effectively capture spe-
cific market dynamics, they tend to underperform in scenarios involving non-linear patterns and long-
term dependencies. In contrast, advanced neural networks particularly LSTM architectures demonstrate
superior performance, especially when direct multi-model comparisons are conducted using extended
implied volatility datasets. Emerging methodologies such as GNNs offer valuable relational insights;
however, they often fall short in integrating sequential forecasting capabilities, as observed in [24]. To
address these limitations, our study presents a rigorous empirical comparison across modeling paradigms,
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Table 1: Comparative summary of previous related works on volatility forecasting

Study Model Types Datasets Performance Metrics Strengths Limitations Relation to Our Study

DEcclesia
and
Clementi
[5] (2021)

NARX,
EGARCH,
Heston

S&P 500
implied
volatility
(short-term)

RMSE,
MAE

NARX cap-
tures non-
linear dynam-
ics better than
parametric
models

Limited to
short-term
data; no
long-term
dependencies.
No RFSV

Compares with
LSTM and
RFSV on longer
datasets, con-
firms NARX
strengths but
shows LSTM
superiority

Gatheral
et al. [10]
(2018)

RFSV
Various fi-
nancial time
series

Roughness
estima-
tion
(Hurst
expo-
nent)

Captures
rough volatil-
ity universally

Assumes
specific rough-
ness; less
focus on
forecasting
accuracy

Empirically test
RFSV against
neural models on
S&P 500 data

Bennedsen
et al. [1]
(2022)

RFSV 5,000+ US
stocks

Hurst
expo-
nent
estima-
tion

Demonstrate
roughness in
large-scale
data

Descriptive
rather than
predictive
focus

Incorporates
RFSV with em-
pirical Hurst
estimation for
forecasting

Zhao et
al. [24]
(2024)

Systematic
review of
NN meth-
ods (e.g.,
MLP,
RNN, hy-
brids with
GARCH)

Various
(post-2015
studies)

N/A (re-
view)

Identifies
trends in
NN volatility
forecasting
and gaps in
deep learning
adoption

Does not per-
form new em-
pirical tests

Multi-model
comparison
on long-term
implied volatility

Deng et al.
[6] (2021)

Graph
Neural
Networks

Multivariate
time series
(general)

Anomaly
detec-
tion
accuracy

Handles
relational de-
pendencies in
data

Not specifi-
cally tailored
for volatility
forecasting

Highlights
emerging GNN
trends; our
study focuses
on sequential
models but notes
potential for
future hybrid
approaches

Kim et
al. [17]
(2018)

Hybrid
model in-
tegrating
LSTM
with
GARCH

Financial
time series
(e.g., stock
prices)

RMSE,
MAE

Excels in
long-term
dependencies

Single-model
focus; no com-
parison with
econometric or
rough models

Aligns with our
LSTM find-
ings; we provide
multi-model
validation

Poon and
Granger
[20]
(2003)

GARCH
variants

Various
financial
markets

Forecasting
error

Comprehensive
review of
econometric
models

Often under-
performs in
non-linear
scenarios

Shows ML mod-
els outperform
GARCH, ad-
dressing this
gap

underscoring the practical need for hybrid architectures or advanced neural techniques in effective volatil-
ity forecasting.

The rest of the paper is organized as follows. In Section 2, we present some volatility forecasting
models employed in our comparative study and also highlight the novel aspects that show how our
approach differs from prior research. Section 3 is devoted to data analysis including data description
and methodology. Section 4 is dedicated to performance evaluation, where we compare the models
using statistical error metrics and assess cross-validation robustness. Additionally, this section includes
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a comparison with existing literature, situating our findings within the broader research landscape and
highlighting consistencies and deviations relative to prior studies. Finally, Section 5 concludes the paper.

2 Volatility forecasting models

In this section, we explore the estimation of equity returns volatility by evaluating various modeling
techniques. The NARX is assessed against established financial models, specifically the Heston model
and the EGARCH model. Previous research, notably by D’Ecclesia and Clementi [5], indicates that
NARX outperforms both the Heston and EGARCH models in forecasting implied volatility. This finding
highlights the NARX model’s strength in capturing the complexities of financial markets. Volatility is
defined as the standard deviation of stock returns provided by the variable per unit of time when the
return is expressed using continuous compounding. So given St , the stock price at the end of day t, the
historical variance over a time horizon [0,T ] is given by:

σ
2
t =

1
T −1

T

∑
t=1

(rt − r̄)2 ∼=
1

T −1

T

∑
t=1

r2
t , (1)

where rt = ln St
St−1

. In general, market participant are used to deal with annualized volatility which is

given by σ̂t =
√

252σt .

2.1 Artificial neutral network approaches

Recent developments in the finance sector have sparked significant interest in a new class of non-linear
models inspired by the structure of the human brain, commonly referred to as ANNs. The ANN tech-
niques have been extensively utilized for forecasting stock prices and historical volatility [7, 18].

• NARX
Now, we propose an innovative approach for modeling stock return volatility by leveraging ma-
chine learning and signal processing methodologies, particularly through the application of the
NARX. The defining equation for the NARX model is

yt = f (yt−1,yt−2, . . . ,yt−n,ut−1,ut−2, . . . ,ut−n). (2)

The NARX model employs a learning process similar to that of other neural network architec-
tures. In the context of regression, model parameters are estimated using a training set comprised
of input-output samples that represent the function we aim to approximate. To ensure that the
model generalizes effectively, it is crucial to accurately estimate the function on data not included
in the training set. In our study, the variable yt corresponds to historical rolling volatility calculated
over various rolling windows, specifically 20, 120, and 252 days. By selecting different window
sizes, we can capture both short-term and long-term characteristics of stock return volatility.

In addition, incorporating relevant supplementary information can enhance the training set. For
example, trading volumes can provide valuable insights into market liquidity. Typically, increas-
ing trading volumes are observed during bullish market conditions, where heightened enthusiasm
among buyers drives prices higher. Conversely, if prices rise while trading volume declines, it may
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Figure 1: NARX neural network

indicate a lack of interest, suggesting a potential reversal in trend. Thus, price movements that
occur on low volume are less significant, while changes on high volume may signal a fundamental
shift in the stock, offering critical information for training the network. In our analysis, we trained
the neural network using 70% of the available data for each price return series, with the objective
of minimizing the sum of squared errors. The implementation was conducted using Python.

Historical rolling volatility is a method used to estimate stock return volatility, while NARX
models are used for forecasting potentially of volatility indices. The simplest approach to measure
time varying volatility is given by the historical rolling volatility estimated on log returns after
choosing the right size of the rolling window. The historical yearly rolling window volatility, σ̂n,t

is given by

σ̂n,t =

√
1
n

n

∑
s=t−n−1

(rs − r̄)2 ·252, (3)

where n is the window size, rs the log-difference and r̄ is the sample mean of the observations in
each rolling window.

A fundamental challenge in this approach is determining the optimal window size. Ideally, the
window size should be selected to minimize the volatility of σ̂n,t providing the best estimate of
true volatility. However, a primary criticism of this method is that it treats all observations with
equal weight, failing to account for the greater influence that more recent prices have compared
to older data. Consequently, an exponentially weighted moving average approach may yield more
accurate estimates by placing more weight on recent observations. In this study, we estimate stock
returns volatility using the historical rolling volatility approach, acknowledging both its simplicity
and the limitations associated with the choice of window size.

• LSTM
To process sequential data, we utilize LSTM networks, a sophisticated variant of RNNs. While
RNNs are inherently designed to manage sequential data, they often encounter challenges, partic-
ularly the vanishing gradient problem. This issue complicates the learning of long-term dependen-
cies within the data. The LSTMs present a robust solution to this limitation through the implemen-
tation of a more complex architecture that governs the flow of both historical memory and new
inputs, effectively addressing the challenges associated with standard RNNs [14]. The LSTMs
consist of several fundamental components known as gates, which employ activation functions to
regulate the flow of information throughout the network. The primary gates and states involved in
an LSTM layer include:
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1. Cell State (also referred to as the memory cell) The Cell State retains information from
previous LSTM cells, enabling it to capture and remember long-term relationships in the
data. This information is protected by the Forget Gate and updated by the Input Gate.

2. Hidden State (also known as the output of the LSTM cell): The Hidden State reflects the
output from prior LSTM cells and is utilized in conjunction with the Forget Gate, Input Gate,
and Output Gate to generate a new Hidden State, serving as the output of the LSTM cell.

3. Forget Gate: This gate regulates how much information is retained from the Cell State, pro-
viding the model with the ability to discard irrelevant data.

4. Input Gate: The Input Gate determines the extent to which new information should be incor-
porated into the Cell State.

5. Output Gate: This gate controls the degree of information from the Cell State that is used to
generate the output of the LSTM cell, also referred to as the Hidden State.

By integrating these components, LSTMs effectively learn and remember patterns within sequen-
tial data, making them powerful tools for a range of tasks, including time series forecasting, natural
language processing, and various applications in finance and economics. In our study, we apply
LSTM networks to model the implied volatility of return.

2.2 EGARCH model

In recent years, much attention has been focused on modelling financial-market returns by processes
other than simple Gaussian white noise. To capture the property of time varying volatility, Engle intro-
duced the AutoRegressive Conditional Heteroskedasticity (ARCH) model [23]. Bollerslev’s extension
of this model, the GARCH model is often used for modelling stochastic volatility in financial time se-
ries [23]. Although GARCH models give adequate fits for dynamics, these models often fail to perform
well in modelling the volatility of stock returns since GARCH models assume that there is a symmetric
response between volatility and returns. Therefore, they are not able to capture the leverage effect of
stock returns. In order to model asymmetric variance effects between positive and negative asset returns,
Nelson introduced the EGARCH model [23].

Let xt = µ +at be the time series value at time t, where µ is the mean of the GARCH model and at

is the model’s residual at time t. Additionally, at = σtεt in which σt is the conditional volatility at time t
that satisfies in

lnσ
2
t = α0 +

p

∑
i=1

αi(|εt−i|+ γiεt−i)+
q

∑
j=1

β j lnσ
2
t− j, (4)

where p is the order and α0, . . . ,αp are the coefficient parameters of ARCH component. Also q is the
order and β0, . . . ,βq are the coefficient parameters of GARCH component. Moreover, {εt} is an iid
sequence of residuals that approximates the measurement error sequence under the assumption that they
are normally distributed with zero mean and constant variance.

2.3 RFSV model

Recent developments in volatility modeling have introduced RFSV as a paradigm-shifting approach to
capturing the intrinsic roughness observed in financial time series. Unlike traditional stochastic volatil-
ity models that assume smooth sample paths, RFSV models employ fractional Brownian motion with
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Hurst exponent H < 0.5 to characterize the irregular, fractal-like behavior of volatility dynamics [10].
This framework fundamentally differs from Heston-type models by recognizing that volatility exhibits
roughness at all time scales, as demonstrated empirically across thousands of US equities [1]. The RFSV
model is a simple model under the form

logσt ≈ νW H
t +C. (5)

The forecasting method is based on the following formula

E[W H
t+∆|Ft ] =

cos(Hπ)

π
∆

H+1/2
∫ t

−∞

W H
s

(t − s+∆)(t − s)H+1/2 ds, (6)

where Ft is the filtration generated by W H
t . By construction over the reasonable timescale of interest,

the forecasting formula for log-variance of the RFSV model follows as

E[logσ
2

t+∆|Ft ] =
cos(Hπ)

π
∆

H+1/2
∫ t

−∞

logσ2
s

(t − s+∆)(t − s)H+1/2 ds. (7)

Building on the models described above, this study offers the following key contributions to implied
volatility forecasting, with an emphasis on novel aspects that distinguish our approach from prior re-
search:

• Direct multi-model empirical comparison: Unlike studies focusing on single models or limited
pairings, we provide a rigorous evaluation of EGARCH, NARX, LSTM, and RFSV using a long-
term S&P500 implied volatility dataset (2001–2024). This underexplored timeframe facilitates a
robust evaluation across varied market regimes, notably encompassing periods of extreme volatil-
ity such as the 2008 financial crisis and the 2020 pandemic-induced downturn.

• Model enhancements and novel integrations: We modify standard architectures to better suit finan-
cial data. For LSTM, a multilayer design incorporates implied volatility lags and historical rolling
volatility inputs, surpassing basic applications in capturing non-linear, long-term dependencies.
The NARX innovatively includes trading volume as an exogenous input for liquidity effects, while
RFSV features empirical Hurst parameter estimation, extending descriptive analyses to predictive
contexts.

• Addressing literature gaps from systematic reviews: Given the scarcity of implied volatility datasets
and the limited exploration of advanced neural architectures in volatility modeling, our study ad-
dresses these gaps by prioritizing implied volatility, an inherently rarer and more informative met-
ric than historical proxies. We combine LSTM with RFSV and EGARCH approaches to establish
a comprehensive benchmark for shared tasks. The results demonstrate LSTM’s advantage in cap-
turing non-linear patterns, outperforming traditional GARCH-MLP hybrids in complex market
environments.

• Practical insights for risk management: Identifying LSTM as the superior model yields action-
able guidance for option pricing and hedging, contrasting theoretical validations with empirical
applicability on a major index like the S&P500.

These contributions underscore the novelty of our comparative framework, validating trends while pio-
neering methodological advances for more precise volatility forecasting.
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Figure 2: Sample path of price
Figure 3: Implied volatility

3 Data analysis

In this section, we begin by providing a detailed description of the dataset, outlining its key characteris-
tics. To illustrate the distributional properties of implied volatility, we present both histogram and kernel
density plots, offering visual insights into its behavior across the sample period. Then, we provide a
comprehensive overview of the data sources employed in the analysis, along with a detailed explanation
of the methodologies used to monitor volatility dynamics. Furthermore, we assess the performance and
predictive capabilities of four distinct modeling approaches: EGARCH, NARX, LSTM, and RFSV, high-
lighting their respective strengths and limitations in capturing the complex behavior of implied volatility.

3.1 Data description

The dataset used in this analysis was obtained from the Federal Reserve Economic Data (FRED) database,
specifically the Chicago Board Options Exchange (CBOE) Volatility Index (VIX) series available at
https://fred.stlouisfed.org/series/VIXCLS. This index reflects the market’s expectation of near-term volatil-
ity as implied by S&P 500 stock index option prices. The daily frequency series capturing closing values,
spans from January 2, 2001 to July 24, 2024, and is not seasonally adjusted.

Figures 2 and 3 present the daily closing values of the stock index and the corresponding option-
implied volatilities, respectively. These visualizations offer a comparative view of market price move-
ments alongside investor expectations of future volatility. For each index, the volatility clustering effect is
confirmed as well as the well-documented leverage effect [4]. This asymmetry highlights the non-linear
relationship between volatility and market returns. When stock prices fall, volatility typically increases
and vice versa.

To offer a comprehensive overview of the dataset’s characteristics, Table 2 presents key descriptive
statistics. The implied volatility data exhibits a mean of 19.73% and a standard deviation of 8.58%, re-
flecting moderate variability over the sample period. These metrics suggest a dynamic but not excessively
volatile market environment, consistent with historical patterns observed in the VIX index. The dataset
comprises 6,036 daily observations, spanning approximately 23 years of trading activity after accounting
for market holidays. The distribution of implied volatility exhibits a positive skewness of 2.25, indicat-
ing a right-tailed structure with a tendency toward higher than average volatility spikes. Additionally, the
excess kurtosis of 8.08 reflects the presence of fat tails, suggesting a heightened probability of extreme
volatility events. These characteristics are consistent with well-documented behaviors in financial time
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Figure 4: Histogram and density plot of implied volatil-
ity Figure 5: Q-Q plot of implied volatility (Normality check)

series, particularly in markets which have sudden regime shifts and crisis-driven dynamics.

Table 2: Descriptive statistics of S&P500 VIX dataset

Number of observations Mean Standard deviation Skewness Excess kurtosis

6036 19.73 8.58 2.25 8.08

Figure 4 displays the histogram and kernel density plot of implied volatility values, revealing a right-
skewed distribution with a pronounced peak near the mean of 19.73%. Figure 5 presents the Q-Q plot
against a theoretical normal distribution, where noticeable deviations in the tails underscore the data’s
non-normality and fat-tailed characteristics. These distributional features are critical for volatility mod-
eling, as they reflect the presence of extreme events and challenge assumptions underlying traditional
Gaussian-based approaches.

3.2 Methodology

This study utilizes S&P500 implied volatility data spanning from 2001 to 2024 to develop and evaluate
time series forecasting models. The dataset was divided into training and testing sets, with 70% of the
data allocated for training purposes and the remaining 30% reserved for testing the model’s forecasting
capabilities. For the LSTM model, a multilayer architecture was employed. The model’s input features
included implied volatility lags and historical rolling volatility (HRV). In contrast, the NARX model was
constructed with 23 neurons. The inputs for this model consisted of implied volatility lag, and trading
volume as an exogenous variable. The inclusion of trading volume was intended to provide additional
market context, potentially enhancing the model’s understanding of the underlying dynamics and im-
proving its forecasting performance. Both the LSTM and NARX models were trained using appropriate
loss functions and optimization techniques [15] to ensure accurate forecasting of the implied volatility
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Figure 6: Tracking implied volatility using the EGARCH model

of S&P500 options ATM with 30 days expiry during the testing phase. Figure 7 illustrates the fitted
NARX model’s performance in forecasting implied volatility, showcasing both the training set and test
set results. The model successfully captures the underlying trends and fluctuations in implied volatil-
ity across the time series, demonstrating its effectiveness in non-linear prediction. Moreover, Figure 8
depicts the performance of the LSTM in forecasting implied volatility and shows the fitted values on
the training and test set, illustrating the model’s capability to capture complex patterns and temporal
dependencies in the volatility data. The training and evaluation of the models were conducted using es-
tablished machine learning libraries and frameworks. Additionally, for the RFSV model, it is necessary
to estimate the Hurst parameter from the time series data. There are numerous methods to estimate the
Hurst parameter. As suggested by Gatheral [10], we employ linear regression to estimate H = 0.29 for
our dataset. Figure 9 displays the accuracy of the RFSV model in forecasting volatility compared to
EGARCH model. It shows that although its parametric characteristics, its performance is comparable to
that of other non-parametric models.

4 Performance evaluation

To evaluate the performance of the EGARCH, NARX, LSTM and RFSV models, we employed sev-
eral statistical metrics that are commonly used for assessing forecasting accuracy. The selected metrics
include Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE)
and Mean Absolute Percentage error (MAPE). These metrics provide a comprehensive understanding of
model performance by quantifying the errors in the predictions relative to the actual observed values.

The MAE measures the average absolute differences between predicted and actual values, providing

MAE =
1
n

n

∑
t=1

|Yt − Ŷt |, (8)

where Yt is the observed implied volatility (actual value) and Ŷt is the estimated volatility (predicted
value) by the models. As another error measure, we present MSE that squares these differences before
averaging:

MSE =
1
n

n

∑
t=1

(Yt − Ŷt)
2. (9)
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Figure 7: Tracking implied volatility using the NARX model

Figure 8: Tracking implied volatility using the LSTM model

Figure 9: Tracking implied volatility using the RFSV model

That means, it penalizes larger errors more heavily, making it useful for assessing model performance
when outliers are present.

The RMSE is simply the square root of MSE as RMSE =
√

MSE, offering the error metric in the
same units as the original data, thus making it more interpretable.

Our empirical analysis provides clear evidence that the LSTM model outperforms the EGARCH,
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Table 3: Comparison of error measures for different models in forecasting implied volatility

Model MSE RMSE MAE MAPE
EGARCH 25.33 5.03 3.90 0.19

RFSV 5.72 2.39 1.51 0.07
LSTM 1.11 1.05 0.68 0.03
NARX 2.81 1.67 1.01 0.05

Table 4: Comparison of average error measures from 5-fold cross- validation

Model MSE RMSE MAE MAPE
EGARCH 36.23 5.81 4.78 0.399

RFSV 6.02 2.43 1.51 0.072
LSTM 5 1.92 0.92 0.03
NARX 6.06 2.29 1.28 0.039

NARX and RFSV models in tracking the implied volatility of the S&P500 index. As presented in Table
3, the LSTM model achieved lower error metrics across all measures. These results highlight the LSTM
model’s superior ability to capture the complex temporal dependencies and non-linear patterns inherent
in financial time series data, more effectively than the NARX model. The lower error rates indicate that
the LSTM network provides a more accurate and reliable tool for forecasting implied volatility, which is
crucial for making informed decisions in financial markets.

The implications of these findings are significant for practitioners and researchers in finance. By
adopting advanced deep learning techniques like LSTM networks, market participants can enhance their
volatility forecasting capabilities, leading to improved risk management and more strategic investment
decisions. This study highlights the potential of leveraging cutting-edge neural network architectures to
gain a competitive edge in the dynamic landscape of financial markets.

4.1 Cross-validated performance for robustness

To further validate our initial findings and ensure the results are robust, we conduct a more rigorous
evaluation using a 5-fold expanding window cross-validation, as detailed in Subsection 3.2. This method
provides a more reliable estimate of model performance by testing on multiple, distinct periods of the
time series. The aggregated performance metrics, averaged across the five test folds, are presented in
Table 4. These results confirm the conclusions drawn from the initial train-test split: the LSTM model
demonstrates superior forecasting accuracy.

As shown in Table 4, the LSTM model achieves the lowest average RMSE of 1.92, MAE of 0.92, and
MAPE of 3.93%. This consistent outperformance across multiple error metrics underscores its reliability.
While its average MSE is slightly higher than some models, its overall performance, particularly on met-
rics less sensitive to outliers like MAE and RMSE, is clearly the strongest. This robust cross-validation
process provides stronger evidence that LSTM networks offer a superior approach for forecasting implied
volatility compared to the EGARCH, RFSV, and NARX models.

A deeper analysis of the performance on each individual fold reveals interesting learning dynamics
between the models. Data intensive models like LSTM and NARX show a clear trend of improvement as
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the training dataset expands. For instance, their MSE is highest on the first fold and decreases substan-
tially in subsequent folds as more historical data becomes available for training. This suggests that these
complex models are highly effective at leveraging larger datasets to improve their predictive accuracy. In
contrast, the RFSV models do not exhibit a similar learning curve. Their performance across the folds
is more varied and does not show a consistent trend of improvement with more data. While the LSTM
model’s superior average performance makes it the best overall choice, this fold-wise analysis indicates
its advantage is most pronounced in data-rich environments. This highlights the scalability of deep learn-
ing approaches for financial forecasting tasks where large historical datasets are often available.

4.2 Comparison with existing literature

The results in Table 3 align with established trends in the literature, where machine learning models
like LSTM and NARX often outperform traditional econometric methods such as EGARCH in volatility
prediction tasks. For instance, DEcclesia and Clementi [5] demonstrated that ANN-based models, in-
cluding LSTM variants, yield lower RMSE in tracking implied volatility dynamics compared to Heston
or EGARCH frameworks, attributing this to their ability to model non-linear dependencies. Similarly,
Kim and Won [17] demonstrated the superior performance of LSTM in financial time series forecasting,
reporting RMSE improvements of 10–20% over traditional GARCH models. This advantage is attributed
to LSTM’s ability to capture long-term sequential dependencies, a factor that aligns with our findings,
where the multilayer LSTM architecture with lagged inputs shows strong predictive capability on the
extended S&P 500 dataset.

The inclusion and moderate performance of RFSV reflect current methodological trends, corrobo-
rating studies like Bennedsen et al. [1], who found RFSV effective in capturing roughness (H < 0.5) in
large scale stock volatility data, leading to better medium-term forecasts than smooth stochastic models.
Our empirical Hurst estimation enhances RFSV’s predictive utility, aligning with Gatheral et al. [10],
who showed rough volatility’s universality in improving model fit. However, our outcomes also deviate
in nuanced ways from some prior work. While Poon and Granger [20], in their comprehensive review,
noted that GARCH variants, including EGARCH, can occasionally match or outperform simpler ma-
chine learning models in short-horizon forecasts, particularly under stable market conditions, our results
reveal a more pronounced advantage for advanced machine learning approaches. Specifically, LSTM
achieves a 67% reduction in RMSE compared to EGARCH, underscoring its effectiveness in capturing
complex volatility dynamics.

This deviation likely stems from our longer dataset (2001–2024), which includes multiple crisis pe-
riods (e.g., 2008 financial crisis, 2020 COVID-19 volatility spikes), amplifying non-linearities and long
dependencies that econometric models struggle with, as noted in Zhao et al. [24]. In contrast, studies
on shorter horizons, like D’Ecclesia and Clementi [5], report closer competitions between NARX and
EGARCH, but our extended timeframe reveals greater LSTM gains, possibly due to regime shifts and
volatility clustering not fully captured by parametric assumptions. Challenging perspectives are offered
by Euch and Rosenbaum [8], who highlight the limitations of rough volatility models in highly non-
stationary environments. They suggest that, without methodological refinements or hybrid integrations,
such models may underperform relative to data-driven approaches. This insight partially accounts for
the observed underperformance of RFSV compared to LSTM in our evaluation metrics. Overall, our
findings reinforce the growing dominance of machine learning techniques in non-linear forecasting [24],
while also highlighting performance variations influenced by dataset length and model-specific enhance-
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ments. These results point to promising directions for future research, particularly the development of
hybrid approaches such as LSTM-RFSV combinations that may offer improved robustness across diverse
market conditions.

5 Conclusion

This study conducted a comparative analysis of EGARCH, NARX, RFSV, and LSTM models for fore-
casting the implied volatility of the S&P 500 index. Our empirical results, validated through a robust
5-fold expanding window cross-validation, demonstrate that the LSTM model provides the most accurate
and reliable forecasts. It consistently outperformed the other models across key error metrics, including
RMSE, MAE, and MAPE. These findings highlight the architectural advantages of LSTM networks in
effectively capturing the complex, non-linear temporal dependencies inherent in financial volatility data.
This research underscores the significance of model selection in financial time series analysis and show-
cases the potential for deep learning approaches to enhance forecasting capabilities, leading to improved
risk management and more strategic investment decisions. While this study provides valuable insights,
it is important to acknowledge its limitations, which also present clear avenues for future research. First,
our analysis is focused on four specific modeling paradigms. Future work could expand this compari-
son to include other advanced architectures. For instance, Transformers may be better suited to capture
longer-term dependencies in the data, while GNNs could model volatility spillovers between correlated
assets, a dimension not explored in this study. Second, the scope of our research is confined to the implied
volatility of the S&P 500 index. The findings may not be directly generalizable to other asset classes,
such as individual stocks, commodities, or cryptocurrencies, which exhibit different volatility dynamics.
These limitations highlight promising directions for subsequent research. Future studies may explore
integrating additional variables and testing these alternative deep learning architectures to further im-
prove predictive performance and expand the understanding of time series dynamics in the ever-evolving
landscape of financial markets.
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