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Abstract. The present study examines the implementation of the tau-collocation method for solving a
class of Volterra integral equations and related cases which their kernels contain (special) weak singu-
larity of type (x2 − s2)−1/2. These types of equations can be written in the form of the so-called cordial
Volterra integral equations and so inherit their properties. We will recall some conditions on the kernel
and forcing function for which the existence and uniqueness of a solution has been proven. Then we
will discuss regularity conditions for the solution of same types equations which indicate that unlike the
standard Volterra integral equations with singularity of the form (x− s)−α , 0 < α < 1, these types of
equations have regular solutions if the kernel and forcing functions are sufficiently smooth. This prop-
erty allows us to use the classical Jacobi polynomials as a basis functions for collocation method. For
this method, we will first derive a matrix formulation that makes it easy to implement. We will prove
convergence of the method by providing an error bound.

Keywords: Tau-collocation method, cordial Volterra integral equations, weak singularity.
AMS Subject Classification 2010: 45D05.

1 Introduction

Throughout this work, we study the numerical solution of two types of weakly singular Volterra integral
equations (VIEs). First, we consider a linear Abel–Volterra integral equation of the form

y(x)+
∫ x

0
(x− s)α−1k(x,s)y(s)ds = h(x), x ∈ Ω = [0,1], (1)

where 0 < α ≤ 1, and h(x) and k(x,s) are given smooth functions on Ω.
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For 0 < α < 1, the solution of this equation typically presents a weak singularity at the origin,
even when the non-homogeneous term h is smooth. Consequently, spectral methods based on standard
polynomial basis such as Chebyshev, Legendre, or Jacobi polynomials yield numerical solutions with
low accuracy due to their inability to capture the singular behavior effectively.

In the second part, we consider a first–kind VIE with a weakly singular kernel of the form (xγ −sγ)−α ,
where γ ≥ 1 and 0 < α < 1. This form was explored in a seminal paper by K. E. Atkinson in 1974 [2].

Atkinson’s work motivated Vainikko to establish a new class of VIEs, now called Cordial VIEs
(CVIEs). In two fundamental papers published in 2009 and 2010 [14, 15], Vainikko discussed the com-
pactness properties of the cordial integral operator

V u(x) =
∫ x

0
x−1

ϕ(x/s)k(x,s)u(s)ds, ϕ ∈ L1(0,1),

and also explored numerical solutions to second-kind CVIEs of the form

u(x) = f (x)+V u(x).

The CVIEs are related to a range of other Volterra equations. For example, VIEs with a boundary
weakly singular integral operator, i.e.,

H u(x) =
∫ x

0
x−γsγ−1k(x,s)u(s)ds, 0 < γ < 1,

are related to CVIEs with the L1 core ϕ(x) = xγ−1. Similarly, the so–called third-kind VIEs,

xαu(x) = f (x)+
∫ x

0
(x− s)α−1k(x,s)u(s)ds, 0 < α < 1,

can be expressed in terms of cordial operators as

u(x) = x−α f (x)+V u(x),

with the core ϕ(x) = (1− x)α−1.
In a part of this study, we apply the tau–collocation method to VIEs that have weak singularities

of the type (x2 − s2)−1/2. Despite their weakly singular kernels, these equations can, under certain
conditions, possess smooth solutions. Therefore, the use of standard Jacobi polynomial bases for the
approximation space appears justified. Consequently, we use these polynomials and analyze the error
bounds and convergence properties of our method.

Therefore, we motivated to propose the following in this paper:

• develop the tau-method in terms of fractional Jacobi polynomials (Müntz–Jacobi polynomials) as
basis functions, which provide superior approximation properties for functions with singularities
at the origin.

• construct a new matrix formulation in terms of these fractional polynomials (Theorem 1).

• use special collocation points to remove reminder term.
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2 Preliminaries

2.1 Jacobi polynomials

We begin by recalling the definition of Jacobi polynomials, denoted by Pν ,ζ
n (x), which are orthogonal

with respect to the weight function ω(ν ,ζ )(x) = (1− x)ν(1+ x)ζ on the interval [−1,1]. That is, they
satisfy the orthogonality condition∫ 1

−1
Pν ,ζ

n (x)Pν ,ζ
l (x)ω(ν ,ζ )(x)dx = z̃(ν ,ζ )n δln, l,n = 0,1,2, . . . ,

where δln is the Kronecker delta function, and

z̃(ν ,ζ )n = ∥Pν ,ζ
n ∥2

L2
ων ,ζ

=
2ν+ζ+1Γ(n+ν +1)Γ(n+ζ +1)

Γ(n+ν +ζ +1)(2n+ν +ζ +1)n!
.

These polynomials have the explicit form

Pν ,ζ
n (x) = 2−n

n

∑
i=0

(
n+ν

i

)(
n+ζ

n− i

)
(x−1)n−i(x+1)i. (2)

For more details, we refer the interested reader to [13] .

2.2 Fractional Jacobi polynomials

Let Jν ,ζ
n (x) := Pν ,ζ

n (2x− 1), for ν ,ζ > −1, denote the shifted Jacobi polynomials of degree n on the
interval Ω. Then for 0 < β ≤ 1, the fractional Jacobi polynomials, as introduced in [3, 8], are defined as

Jν ,ζ ,β
i (x) = Jν ,ζ

i (xβ ). (3)

These fractional polynomials satisfy an orthogonality condition in the form∫ 1

0
Jν ,ζ ,β

l (x)Jν ,ζ ,β
n (x)χν ,ζ ,β (x)dx = λ

(ν ,ζ )
i δln, (4)

where χν ,ζ ,β (x) = β (1− xβ )νx(ζ+1)β−1 and

λ
(ν ,ζ )
i =

Γ(i+ν +1)Γ(i+ζ +1)
(2i+ν +ζ +1)i!Γ(i+ν +ζ +1)

. (5)

Regarding (2) and (3), an explicit formula for Jν ,ζ ,β
i (x) is derived as follows [4]:

Jν ,ζ ,β
i (x) =

i

∑
ℓ=0

(−1)i−ℓΓ(i+ ℓ+ν +ζ +1)Γ(i+ζ +1)
Γ(i+ν +ζ +1)Γ(ℓ+ζ +1)(i− ℓ)!ℓ!︸ ︷︷ ︸

=:hα,β ,i
ℓ

xℓβ . (6)

Let us define the fractional interpolation operator, Iβ
n , by

Iβ
n (u;ν ,ζ )(x) =

n

∑
l=0

L
(ν ,ζ ,β )

l (x)u(xl),
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where the fractional Lagrange basis polynomials L
(ν ,ζ ,β )

i are defined as follows:

L
(ν ,ζ ,β )

i (x) :=
n

∏
l=0,l ̸=i

xβ − xβ

l

xβ

i − xβ

l

, x ∈ Ω, i = 0,1, . . . ,n,

with the interpolation nodes {xl}, l = 0,1, . . . ,n, as the roots of fractional Jacobi polynomial Jν ,ζ ,β
n+1 (x).

For β = 1, we have the classical Lagrange interpolation operator
(

In := I1
n with L

(ν ,ζ )
i (x) := L

(ν ,ζ ,1)
i (x)

)
.

For ν = 0 and ζ = 1
β
−1, we have a special class of these fractional polynomials [8], called “Müntz-

Jacobi polynomials”, i.e.,

Jβ

i (x) := J
0, 1

β
−1,β

i (x) =
i

∑
ℓ=0

(−1)i−ℓΓ(i+ ℓ+ 1
β
)

Γ(ℓ+ 1
β
)(i− ℓ)!ℓ!

xℓβ , (7)

which satisfy the orthogonality condition∫ 1

0
Jβ

i (x)J
β

j (x)dx =
1

(2iβ +1)
δi j, 0 < β ≤ 1. (8)

The Müntz-Jacobi polynomials will be used as our basis functions in the next section.

3 The tau–collocation method

Here, we formulate the operational approach of the Tau-Collocation Method (TCM) to solve the integral
equation (1). We first prove the following theorem to write the integral part of Eq. (1) in a matrix–vector
multiplication form.

Theorem 1. Let the approximate solution of Eq. (1) in terms of the Müntz–Jacobi polynomials be
presented in the form of:

yN(x) =
N

∑
i=0

aiJ
β

i (x) = YNΦ(x) = YNΦXx, 0 < β ≤ 1, (9)

where

YN := [a0,a1,a2, · · · ,aN ,0, . . . ], Φ(x) := [Jβ

0 (x),J
β

1 (x), . . . ]
T , Xx := [1,xβ , . . . ]T (10)

and Φ is a non-singular lower triangular matrix. Then, we have∫ x

0
(x− s)α−1k(x,s)yN(s)ds = YNW (x),

where

W (x) :=
N

∑
j=0

ω jxαk(x,xu j)Φ(xu j)

and u j are the roots of Jacobi polynomial Jα−1,0
N+1 (x) with the associated Gauss quadrature weights

ω j =
2N +α +1

2(N +α)Jα−1,0
N (u j)∂xJα−1,0

N+1 (u j)
.
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Proof. We have ∫ x

0
(x− s)α−1k(x,s)yN(s)ds = YN

∫ x

0
(x− s)α−1k(x,s)Φ(s)ds

= YNxα

∫ 1

0
(1−u)α−1k(x,xu)Φ(xu)du. (11)

Applying the Gauss-Jacobi quadrature rule to the right-hand side integral in (11), yields the approxima-
tion ∫ 1

0
(1−u)α−1k(x,xu)Φ(xu)du ≃

N

∑
j=0

ω jk(x,xu j)Φ(xu j). (12)

Substituting (12) in Eq. (11), implies∫ x

0
(x− s)α−1k(x,s)yN(s)ds = YN

N

∑
j=0

xα
ω jk(x,xu j)Φ(xu j), (13)

which completes the proof.

Now, using the matrix formulations from Theorems 1 in Eq. (1), we get a perturbed equation (tau
equation) as follows (note that yN(x) is an approximation to y(x)) [3]:

YN

(
Φ(x)−W (x)

)
= h(x)+

(
∞

∑
i=0

τ̂it iβ

)
Jβ

N+1(x). (14)

Collocating Eq. (14) at xℓ, ℓ= 0, . . . ,N, being the roots of the Jθ
N+1(x), yields

YNϖ(xℓ) = h(xℓ)+

(
∞

∑
i=0

τ̂ix
iβ
ℓ

)
Jβ

N+1(xℓ)︸ ︷︷ ︸
=0

, (15)

where ϖ(x) := Φ(x)−W (x). From (15) a system of linear algebraic equations is constructed in the
following form:

YN [ϖ(x0)|ϖ(x1)|...|ϖ(xN)]︸ ︷︷ ︸
G

= [h(x0),h(x1), ...,h(xN)]︸ ︷︷ ︸
H

, (16)

in which G is an (N + 1)× (N + 1) matrix and H is an N + 1 vector. The unknown vector YN is then
determined by solving system (16).

The convergence analysis of this method using Müntz-Jacobi polynomials as basis functions has been
investigated in [3]. For other variants of Jacobi polynomials, convergence results can be found in [6, 9].
For an application of the tau method, see, for instance, [1], where the authors have used this method to
solve a special fractional delay differential equation.

Example 1. Consider a weakly singular VIE in the following form:

y(x) =
√

x+
π

2
x3 +

3π

4
x+

5π

16
−
∫ x

0

(x+ s)2y(s)ds√
x− s

, x ∈ Ω,

with the given exact solution y(x) =
√

x.
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Table 1: The values of Emax

N Emax

5 7.5233e-05
10 1.3615e-05
20 2.0378e-06
30 6.4179e-07

We applied our method to this equation and obtained maximum absolute errors for N = 5,10,20,30
as shown in Table 1, where Emax is defined by Emax = max

x∈Ω

|y(x)− yN(x)| for the exact and approximate

solutions y(x) and yN(x), respectively.

4 The CVIEs

In this section, we describe application of TCM to VIEs of the form

y(x) = f (x)+
∫ x

0
(x2 − s2)−1/2k(x,s)y(s)ds, x ∈ Ω, (17)

that have certain weak singularities in their kernel functions. These types of equations arise in some
mathematical modeling processes and can be written in the form

y(x) = f (x)+
∫ x

0
x−1

ψ(s/x)k(x,s)y(s)ds, (18)

where ψ(t) = (1− t2)−1/2. This form is called a CVIE, as described in the second part of introduc-
tion section. We first derive matrix formulation for the Jacobi spectral TCM and then we recall some
regularity properties of Eq. (17). Finally, we obtain error bound in L∞–norm for the proposed method.

To solve Eq. (17) by TCM, we apply the variable transformation s = s2

x2 , to reduce it to the following
equivalent form:

y(x) = f (x)+
1
2

∫ 1

0
(1− s)−1/2s−1/2k(x,xs1/2)y(xs1/2)ds.

The goal of the TCM is to obtain an approximate solution yN(x) =
N

∑
i=0

yN
i Jα,β

i (x) such that

yN(xl) = f (xl)+
1
2

∫ 1

0
(1− s)−1/2s−1/2kN(xl,xls1/2)yN(xls1/2)ds, (19)

where {xl}, l = 0,1, . . . ,N are the roots of the shifted Jacobi polynomial Jα,β
N+1(x) and kN(·, ·) denotes the

bivariate interpolation of the kernel k(·, ·) with respect to the nodes {xl}, i.e.,

kN(x,s) := IN,N(ki j;α,β )(x,s) =
N

∑
ν0,ν1=0

k(xν0 ,sν1)L
(α,β )

ν0 (x)L (α,β )
ν1 (s)

=
N

∑
ν0,ν1=0

k̄ν0,ν1Jα,β
ν0 (x)Jα,β

ν1 (s).
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Then, Eq. (19) can be reduced to the following system of algebraic equations:

yN(xl) = f (xl)+
1
2

N

∑
ν0,ν1,ν2=0

ν1

∑
σ0=0

ν2

∑
σ1=0

k̄ν0,ν1hα,β ,ν1
σ0 hα,β ,ν2

σ1 Jα,β
ν0 (xl)yN

ν2
xσ0+σ1

l

×B
(

1/2,
1
2
(σ0 +σ1)+1/2

)
,

which has the following matrix-vector multiplication form

ΠNȲ N = FN ,

where

ΠN =



ΦN(x0)− K̄(x0)

ΦN(x1)− K̄(x1)

...

ΦN(xN)− K̄(xN)


(N+1)×(N+1)

, FN = [ f (x0), f (x1), . . . , f (xN)]
T ,

for which, we have Ȳ N = [yN
0 ,y

N
1 , . . . ,y

N
N ]

T , ΦN(xl) =
[
1,Jα,β

1 (xl), . . . ,J
α,β
N (xl)

]
and

K̄(xl) =[ην2(xl)]
N
ν2=0 ,

ην2(xl) :=
1
2

N

∑
ν0,ν1=0

ν1

∑
σ0=0

ν2

∑
σ1=0

k̄ν0,ν1hα,β ,ν1
σ0 hα,β ,ν2

σ1 Jα,β
ν0 (xl)x

σ0+σ1
l

×B
(

1/2,
1
2
(σ0 +σ1)+1/2

)
.

We now present the fundamental existence, uniqueness, and regularity results for Eq. (17).

Theorem 2 ([5]). Let f ∈Cm(Ω) and k ∈Cm(D) with m≥ 0, D := {(x,s) : 0≤ s≤ x≤ 1} and k(0,0) = 0.
Then Eq. (17) has a unique solution y ∈Cm(Ω).

4.1 Error bounds and convergence

We state a bound for the Lebesgue constant by the following lemma (see [10]).

Lemma 1. For the Jacobi interpolation operator In(·;α,β ) we have

∥In∥∞ ≤

{
O(logn), −1 < α,β ≤−1/2,
O(nmax(α,β )+1/2), otherwise (o.w.).

The following lemma, provides an error bound for the Lagrange interpolation operator Iλ
n , which

shows that the convergence rate depends on the smoothness index m and the Jacobi parameters α and β .
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Lemma 2 ([7]). If v ∈ H(α,β ,λ )
m (Ω), where

H(α,β ,λ )
m (Ω) = {v(x) ∈ L2

χα,β ,λ (Ω) : ∂
k
x v(x1/λ ) ∈ L2

χα,β (Ω), k = 0,1, . . . ,m} 0 < λ < 1,

then

∥v− Iλ
n (v;α,β )∥∞ ≤C



n
3
4−m∥∂ m

x v(x1/λ )∥L2
χα,β

, α = β = 0,

n
1
2−m∥∂ m

x v(x1/λ )∥L2
χα,β

, α = β =−1
2 ,

(1+ logn)n
1
2−m∥∂ m

x v(x1/λ )∥L2
χα,β

, −1 < α,β <−1
2 ,

(1+nmax(α,β )+ 1
2 )n

1
2−m∥∂ m

x v(x1/λ )∥L2
χα,β

, o.w.

in which the constant C > 0 is independent of n, and χα,β := χα,β ,1. The classical case of this lemma is
recovered when λ = 1.

We denote by Cm,τ(Ω) the space of all functions whose m-th derivatives are Hölder continuous of
order τ , equipped with the standard norm ∥ · ∥m,τ (see [13]).

Lemma 3 ([12]). For each integer m ≥ 0 and 0 ≤ τ ≤ 1, there exist a constant C = C(m,τ) > 0 such
that for any functions v ∈Cm,τ(Ω), there is an operator Wn : Cm,τ(Ω)→ Pn for which we have

∥v−Wnv∥∞ ≤Cn−(m+τ)∥v∥m,τ ,

where Pn stands for the space of all polynomials with degree not exceeding n.

The next lemma, presents a Grönwall type inequality related to CVIEs.

Lemma 4 (Grönwall inequality for CVIEs, see [5]). Let f ,g ∈C(Ω) be non-negative functions with g(x)
additionally assumed to be non-decreasing. Suppose that for all x ∈ Ω we have

f (x)≤ g(x)+M
∫ x

0
x−1

ψ(s/x) f (s)ds,

where M > 0, ψ(x) ≥ 0 for x ∈ (0,1), ψ ∈ L1(0,1) and M
∫ 1

0
ψ(s)ds < 1. Then the following bound

holds:

f (x)≤ g(x)

1−M
∫ 1

0
ψ(s)ds

, x ∈ Ω.

We define the operator H : Cm(Ω)→Cm(Ω) (see [15]) as

H φ(x) =
∫ x

0
x−1

ψ(s/x)k(x,s)φ(s)ds,

where ψ(t) = (1− t2)−1/2. This operator is compact if k(0,0) = 0 and non-compact if k(0,0) ̸= 0. Since∫ 1

0
(1− s2)µ̄ ds =

√
π

2
Γ(1+ µ̄)

Γ(µ̄ + 3
2)
, −1 < µ̄, (20)

ψ ∈ Lp(Ω) for 1 < p < 2.
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Lemma 5. Assume that the following hypotheses are true for 0 < µ ≤ 1:
I: k ∈C(D) and k(0,0) = 0,
II: |k(x1,s)− k(x2,s)| ≤ L1|x1 − x2|µ , L1 > 0, and x1,x2 ∈ Ω,
III: |k(x,s)| ≤ 2L2xµ for (x,s) ∈ D and L2 > 0.
Then ∥H v∥0,τ ≤C∥v∥∞, for 0 < τ < ρ ≤ min{1/2,µ} and v ∈C(Ω).

Proof. It is sufficient to show that

|H v(x2)−H v(x1)|
|x2 − x1|τ

≤C∥v∥∞, x1,x2 ∈ Ω, x1 < x2.

From [15] we know that |H v(x2)−H v(x1)| ≤C|x2−x1|ρ∥v∥∞ for x1,x2 ∈ (0,1] and x1 < x2. Thus, the
desired result is obtained when 0 < x1 < x2 ≤ 1. For the case x1 = 0 < x2 ≤ 1, we have from hypothesis
(III) that

x−τ

2 |H v(x2)| ≤ πL2xµ−τ

2 ∥v∥∞ ≤C∥v∥∞.

Therefore, the proof is completed.

Theorem 3 (Convergence). Let EN(x) = y(x) − yN(x), f ∈ Cm(Ω), k ∈ Cm(D), m ≥ 1,
M := max(x,s)∈D |k(x,s)|< 2/π and the hypotheses of previous lemma be fulfilled. Then

∥EN∥∞ ≤

C


N1/2−m logN

(
∥y∥∞

(
(logN)2ρs +ρx logN

)
+∥∂ m

x y∥L2
χα,β

)
, −1 < α,β <−1/2,

N1/2−m
(
∥y∥∞

(
ρs(logN)2 +ρx logN

)
+∥∂ m

x y∥L2
χα,β

)
, α = β =−1/2,

ηN

(
∥y∥∞

(
N1+2max(α,β )ρs +Nmax(α,β )+1/2ρx

)
+∥∂ m

x y∥L2
χα,β

)
, −1/2 < max(α,β )<−1/3,

where ρs := sup
0≤x≤1

∥∂
m
s k(·,s)∥L2

χα,β
, ρx := sup

0≤s≤1
∥∂

m
x k(x, ·)∥L2

χα,β
, and ηN := N1+max(α,β )−m.

Proof. It is easy to show that

|EN(x)| ≤M
∫ x

0
(x2 − s2)−1/2|EN(s)|ds+

∣∣H EN(x)− IN(H EN ;α,β )(x)
∣∣

+
∣∣IN(H yN −H NyN ;α,β )(x)

∣∣+ |y(x)− IN(y;α,β )(x)| ,

which gives us

|EN(x)| ≤M
∫ x

0
(x2 − s2)−1/2|EN(s)|ds+

∥∥H EN − IN(H EN ;α,β )
∥∥

∞

+
∥∥IN(H yN −H NyN ;α,β )

∥∥
∞
+∥y− IN(y;α,β )∥

∞
,

where
H N

φ(x) =
∫ x

0
x−1

ψ(s/x)kN(x,s)φ(s)ds. (21)

Thus, with the aid of Lemma 4, we conclude that

∥EN∥∞ ≤C
(∥∥H EN − IN(H EN ;α,β )

∥∥
∞
+
∥∥IN(H yN −H NyN ;α,β )

∥∥
∞
+∥y− IN(y;α,β )∥

∞

)
.

Finally, the proposed result is obtained using Lemmas 1, 2, 3 and 5.
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Theorem 4 (Stability). Let the hypotheses of Theorem 3 hold. Assume further that the free function f is
approximated by a function with an error term f̂ ∈C(Ω)∩H(α,β ,1)

1 (Ω), which leads to an approximate
solution yN with a corresponding error εN . This error can be controlled as follows (i.e., the method is
stable for CVIEs):

∥εN∥∞ ≤C∥ f̂∥∞ +C


N−1/2 logN∥∂x f̂∥L2

χα,β
, −1 < α,β <−1/2,

N−1/2∥∂x f̂∥L2
χα,β

, α = β =−1/2,

Nmax(α,β )∥∂x f̂∥L2
χα,β

, −1/2 < max(α,β )<−1/3,

where C > 0 is a constant independent of N.

Proof. The approximate solution yN with its corresponding error satisfies the equation

yN(xl)+ εN(xl) = f (xl)+ f̂ (xl)+
∫ xl

0
(x2

l − s2)−1/2kN(xl,s)(yN(s)+ εN(s))ds. (22)

Moreover, for f̂ ≡ 0, we know that

yN(xl) = f (xl)+
∫ xl

0
(x2

l − s2)−1/2kN(xl,s)yN(s)ds, (23)

where {xl}, l = 0,1, . . . ,N are the roots of the shifted Jacobi polynomial Jα,β
N+1(x). Subtracting (23) from

(22), we obtain
εN(xl) = f̂ (xl)+H N

εN(xl).

Multiplying both sides of the above equation by Li and summing over i from 0 to N, and noting that
εN(x) is a polynomial of degree at most N, we deduce

εN(x) = IN( f̂ ;α,β )(x)+ IN(H
N

εN ;α,β )(x).

By adding and diminishing some terms, this can be rewritten as

εN(x) =H εN(x)+ f̂ (x)+ IN( f̂ ;α,β )(x)− f̂ (x)+H N
εN(x)

−H εN(x)+ IN(H
N

εN ;α,β )(x)−H N
εN(x). (24)

Since

∥IN(H
N

εN ;α,β )−H N
εN∥∞ ≤ (1+∥IN∥∞)∥H εN −H N

εN∥∞ +∥H εN − IN(H εN ;α,β )∥∞,

it follows from (24) that

|εN(x)| ≤M
∫ x

0
(x2 − s2)−1/2|εN(s)|ds+∥ f̂∥∞ +∥IN( f̂ ;α,β )− f̂∥∞

+(2+∥IN∥∞)∥H εN −H N
εN∥∞ +∥H εN − IN(H εN ;α,β )∥∞.

Therefore, applying Lemma 4, we obtain

∥εN∥∞ ≤C(∥ f̂∥∞ +∥IN( f̂ ;α,β )− f̂∥∞ +(2+∥IN∥∞)∥H εN

−H N
εN∥∞ +∥H εN − IN(H εN ;α,β )∥∞). (25)
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Now, the right hand side of (25) is bounded as follows. Letting µ̄ =−1/2 in (20), we have

∥H εN −H N
εN∥∞ ≤ π

2
∥k− kN∥∞∥εN∥∞,

hence by Lemmas 1 and 2, we get

(2+∥IN∥∞)∥H εN −H N
εN∥∞ ≤

C


N1/2−m(logN)2

(
∥εN∥∞

(
logNρs +ρx

))
, −1 < α,β <−1/2,

N1/2−m logN
(
∥εN∥∞

(
ρs logN +ρx

))
, α = β =−1/2,

ηN

(
∥εN∥∞

(
N1+2max(α,β )ρs +ρx

))
, −1/2 < max(α,β )<−1/3.

(26)

On the other hand, since H εN ∈ C0,ν(Ω) for all ν ∈ Ω, there exists an operator WN : C0,ν(Ω) → PN

such that

∥H εN − IN(H εN ;α,β )∥∞ = ∥(I − IN)H εN∥∞ = ∥(I − IN)(H εN −WNH εN)∥∞

≤ (1+∥IN∥∞)N−ν∥H εN∥0,ν ≤C(1+∥IN∥∞)N−ν∥εN∥∞

≤C

N−ν logN∥εN∥∞, −1 < α,β ≤−1/2,

Nmax(α,β )−ν+1/2∥εN∥∞, −1/2 < max(α,β )<−1/3,
(27)

where I stands for identity operator and in the last case we assume that max(α,β )+ 1/2 < ν . For the
second inequality we used Lemma 5. Hence, considering for instance the case −1 < α,β < −1/2, we
conclude from (25), (26) and (27) that

(1−N1/2−m(logN)2 (logNρ
s +ρ

x)−N−ν logN)∥εN∥∞ ≤C(∥ f̂∥∞ +∥IN( f̂ ;α,β )− f̂∥∞).

Consequently, for sufficiently large N we have

∥εN∥∞ ≤C(∥ f̂∥∞ +∥IN( f̂ ;α,β )− f̂∥∞).

This completes the proof (using Lemma 2) for this case. The argument for the other cases is analogous.

4.2 Error estimation

When the exact solution is not known, by the following process we can find an approximation to the
absolute error. Since yN(x) is an approximation to y(x), it satisfies the perturbed equation

yN(x) = f (x)+
∫ x

0
(x2 − s2)−1/2k(x,s)yN(s)ds+HN(x), x ∈ Ω, (28)

where HN(x) is the perturbation term that can be approximated as follows:

HN(x)≈ yN(x)−
(

f (x)+
∫ x

0
(x2 − s2)−1/2kN(x,s)yN(s)ds

)
.
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Subtracting (28) from (17) yields

EN(x) =−HN(x)+
∫ x

0
(x2 − s2)−1/2k(x,s)EN(s)ds, x ∈ Ω. (29)

This is Eq. (17) for which EN(x) and −HN(x) are in the roles of y(x) and f (x), respectively. Therefore,
it can be solved by the same way as we did for (17). We denote its approximate solution by EN,M(x), and
refer to it as the error estimation (see Example 3).

Example 2. Assume that in the VIE (17), we have

k(x,s) =
4

3π
xex+s−2,

f (x) = ex − 2
3

xex−2 ((MB(2x)+ST (2x))),

and the exact solution is y(x) = ex. Here, MB(x) denotes the modified Bessel function of the first kind
(see e.g. [11]) satisfying the differential equation

x2u′′(x)+ xu′(x)− (x2 + y2)u(x) = 0,

and ST(x) is the modified Struve function of the first kind (see [11]), which satisfies the equation

x2u′′(x)+ xu′(x)− (x2 + y2)u(x) =
4(x/2)y+1

√
πΓ(y+1/2)

.

Numerical results for this example are presented in Table 2. The L∞-norm of the error EN , reported in
this table for three different parameter pairs (α,β ), confirms that the error converges to zero as N grows.

Example 3. Consider the following equation

y(x) = ex +
3

2π

∫ x

0
(x2 − s2)−1/2xsy(s)ds, x ∈ Ω.

For this equation the exact solution is unknown, so we are unable to calculate the exact absolute error.
Therefore, we use TCM and report the maximum absolute value of the error as an estimate in Table 3.
In this table, we present the maximum absolute values of the error estimation EN,M for different choices
of (α,β ). The results clearly confirm the numerical convergence of the proposed method.

5 Application of the method

This section demonstrates the application of TCM to a linear system of weakly singular VIEs and a
system of single-term fractional differential equations, providing a foundation for extending this method
to more general systems.
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Table 2: Numerical results of Example 2 (∥EN∥∞)

N (α,β ) = (−2
3 , −3

4 ) (α,β ) = (−9
10 ,

−9
10 ) (α,β ) = (−7

9 , −1
2 )

4 3.52925e-05 4.10686e-05 3.32552e-05
6 5.06255e-08 5.87477e-08 4.89540e-08
8 4.32564e-11 4.99859e-11 4.24051e-11

10 2.42762e-14 2.80128e-14 2.40798e-14
12 9.65710e-18 1.11221e-17 9.64593e-18
14 2.85789e-21 3.28676e-21 2.87074e-21
16 6.54196e-25 7.51300e-25 6.59643e-25

Table 3: Error estimation results of Example 3 (∥EN,M∥∞)

(N,M) (α,β ) = (−2
3 , −3

4 ) (α,β ) = (−9
10 ,

−9
10 ) (α,β ) = (−7

9 , −1
2 )

(2,3) 9.94161e-02 1.22184e-01 9.02386e-02
(4,5) 2.52662e-03 3.00957e-03 2.42614e-03
(6,7) 5.37246e-05 6.32069e-05 5.20937e-05
(8,9) 9.94757e-07 1.14857e-06 9.57215e-07

(10,11) 1.61644e-08 1.85519e-08 1.55525e-08
(12,13) 2.37072e-10 2.71469e-10 2.28554e-10

Example 4. Consider a system of the weakly singular VIEs
y1(t)+

∫ t

0
(t − s)−1/2y1(s)ds− 1

2

∫ t

0
(t − s)−1/2ty2(s)ds = f1(t),

y2(t)+
1
3

∫ t

0
(t − s)−1/2t1/2y1(s)ds+

1
3

∫ t

0
(t − s)−1/2y2(s)ds = f2(t),

(30)

where the right-hand side and exact solution vectors specified as follows:

f(t) =

[
t
√

3 +B(1
2 ,
√

3+1)t
1
2+

√
3 − 1

2 B(1
2 ,
√

5+1)t
3
2+

√
5

t
√

5 + 1
3 B(1

2 ,
√

3+1)t
√

3+1 + 1
3 B(1

2 ,
√

5+1)t
1
2+

√
5

]
, y(t) =

[
t
√

3

t
√

5

]

For N = 5,10,15, the L2-norm of errors are reported in Table 4. In this case, y1,N and y2,N represent
approximations of y1 and y2, respectively, and the results show the accuracy of our method.

Example 5. Consider a system of fractional differential equations
Dα
∗0y1(t) = 2y1(t)− y2(t),

Dα
∗0y2(t) = 4y1(t)−3y2(t),

y1(0) = 1.2, y2(0) = 4.2,

(31)

with the exact solutions

y1(t) =
1
5

Eα(tα)+Eα(−2tα), y2(t) =
1
5

Eα(tα)+4Eα(−2tα),
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Table 4: Errors in L2-norm

N = 5 N = 10 N = 15
∥y1 − y1,N∥L2 1.328885e−03 5.614582e−06 3.238418e−07
∥y2 − y2,N∥L2 4.433615e−03 1.188122e−06 2.647999e−08

Table 5: Errors in L2-norm for Example 5 with proposed method for α = 1
2

N = 5 N = 10 N = 15 N = 20

∥y1 − y1,N∥L2 6.7972e-04 1.3622e-09 1.9572e-16 2.8693e-23
∥y2 − y2,N∥L2 2.7796e-03 5.4449e-09 7.8288e-16 4.2498e-23

where Eα(t) denotes the Mittag-Leffler function of one parameter.

A system of Abel-Volterra integral equations that is equivalent to the system (31), is given by
y1(t) = 1.2+ 2

Γ(α)

∫ t

0
(t − s)α−1y1(s)ds− 1

Γ(α)

∫ t

0
(t − s)α−1y1(s)ds,

y2(t) = 4.2+
4

Γ(α)

∫ t

0
(t − s)α−1y1(s)ds− 3

Γ(α)

∫ t

0
(t − s)α−1y1(s)ds.

We report numerical results of this system in Table 5. The results in this table show L2 convergence
of the proposed method.

6 Conclusion

This paper presents an application of the tau-collocation method for solving weakly singular and cordial
Volterra integral equations. A convergence and stability analysis has been discussed specifically for
the cordial case (Theorems 3 and 4). Numerical examples for both types of equations are provided to
validate the theoretical results and demonstrate the method’s numerical accuracy. Finally, we solved
systems of weakly singular integral equations and fractional differential equations to show the method’s
applicability to these more general cases.
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