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boundary problem
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Abstract. This paper presents a theoretical investigation of an air pollution model formulated as a free
boundary problem. The study examines the dynamics of pollutant dispersion in the atmosphere, where
the boundaries of the polluted region are not fixed but evolve over time. Using advanced mathematical
techniques and partial differential equations, we construct a model that accounts for various factors influ-
encing air pollution, including emission sources, meteorological conditions, and chemical reactions. The
incorporation of a free boundary framework provides a more realistic representation of pollutant spread
and environmental interactions. To analyze the model, we employ the Friedman-Rubinstein integral rep-
resentation method and apply the Banach contraction theorem to solve an equivalent nonlinear Volterra
integral equation.
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1 Introduction

The impact of air pollution on human life is particularly evident in densely populated and industrialized
regions. Due to the rapid development of many countries, air pollution has become a global concern.
Various international and regional organizations have conducted a range of experiments to prevent the
expansion of pollution, leading to significant outcomes and the establishment of effective urban air qual-
ity standards. Urban air pollution is intensified by anthropogenic factors such as population growth,
rural-to-urban migration, industrial expansion, vehicular traffic, and geographical factors including to-
pography, location, and temperature inversions. Air pollution poses a serious threat to both human health
and the environment, as industrial emissions release harmful substances into the atmosphere [2, 18].
The control and study of air pollution have become increasingly crucial. In general, atmospheric
diffusion refers to the behavior of gases and particles in turbulent flow environments [2, 13]. Two fun-
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damental modeling approaches are widely used to describe atmospheric diffusion: the Eulerian and
Lagrangian frameworks. The Eulerian approach describes species behavior relative to a fixed pollution
sources and is commonly applied to model heat and mass transfer phenomena [2, 3, 8]. In contrast,
the Lagrangian approach describes concentration changes along moving pollution sources and provides
alternative mathematical formulations [4]. Both frameworks offer valid descriptions of turbulent diffu-
sion [4, 17].

Various models have been proposed to describe air pollution dispersion, including regression mod-
els [8], box models [8, 15], Eulerian models [12, 17], Lagrangian models [5, 10, 12, 17], Gaussian mod-
els [6], and hybrid approaches [9]. Each model has specific advantages. For example, in Eulerian
diffusion models, the pollution source is fixed in space, whereas in Lagrangian models, it moves with a
certain velocity. In Gaussian models, the average concentration of a pollutant emitted from a point source
follows a Gaussian distribution. Although this assumption is strictly valid only under homogeneous tur-
bulence and stationary conditions, it forms the basis for deriving equations in more general atmospheric
cases.

In this paper, we present a theoretical study of air pollution modeling formulated as a free boundary
problem. This approach does not conflict with existing models but rather offers a more robust theoretical
foundation. We reformulate the model as an equivalent nonlinear Volterra integral equation and prove
the existence and uniqueness of its solution using the Banach fixed-point theorem.

The advantage of the free boundary formulation lies in its ability to estimate pollutant concentrations
and the dynamic location of the pollution front over time. This is achieved by considering pollutant
production sources and local wind velocities, thereby enabling predictive insights to mitigate potential
atmospheric pollution crises.

The outline of this paper is organized as follows: In Section 2, we consider the mathematical model
of air pollution as a fixed boundary problem. In Section 3, we derive the free boundary for the proposed
model. In Section 4, we reduce the problem to an equivalent problem of solving a nonlinear Volterra-type
integral equation. In Section 5, we prove the local (in time) existence and uniqueness of the solution for
the one-dimensional free boundary model.

2 Mathematical model

Oyjinda et al. [ 14] conducted numerical simulations to analyze air pollution measurements near industrial
zones. Their study simulated air pollution control strategies to achieve desired pollutant concentration
levels. Monitoring stations were installed to record concentration data of air pollutants. The numerical
experiments considered different scenarios, including both normal and controlled emission conditions.
The concentration of air pollutants was approximated using an explicit finite difference method.

The governing equations of the system were formulated as follows:

dc dc dc d%c d%c
E+an+Vza*Z—Dxﬁ+Dzaizz+S(vaaf)a (D)

where ¢ = ¢(x,z,t) denotes the concentration of the air pollutant at the spatial-temporal point (x,z,7)
measured in kg/m3. The values v, and v, represent the wind velocity components in the x- and z-
directions, respectively, measured in meters per second (m/s). The parameters D, and D, denote the
diffusion coefficients in the x- and z-directions, respectively, with units of (m?/s). The term S refers to
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the pollutant source term representing the growth rate of pollutant due to emission sources, with units of
~1
(sec™).

Accordingly, the following initial and boundary conditions are assumed:

c(x,2,0) = f(x,2), x>0, z>0, 2)
dc dc

i = (L = <z<H

ax(oﬁz?t) 8x( 7Z7t) 0? O—Z— ) t>07 (3)
dc

ai(X,O,l‘):VdC, 0<x<L, t>0, 4)
z

dc

S H.1) =0, 0<x<L, t>0, )
z

for all t > 0, where L is the length of the domain in the x- direction, H is the height of the atmospheric
inversion layer, and v, denotes the dry deposition velocity of the primary pollutant (in (m/s)).

The researchers in [14] analyzed air pollution near industrial zones through numerical simulations
using an explicit finite difference technique. Their analysis was based on the assumption that the domain
has a fixed boundary at x = L. However, a more realistic representation of the system should consider it
as a free boundary problem.

3 Motivation of the free boundary model

In this section, we outline the derivation of a free boundary formulation for the model (1)-(5), inspired by
the approach in [1]. Due to the dynamical behavior of pollutant dispersion in the atmosphere, the bound-
aries of the affected region are not fixed but evolve over time. By employing advanced mathematical
techniques and partial differential equations, our model incorporates key factors influencing air pollution,
including emission sources, meteorological conditions, and chemical interactions. The free boundary
framework provides a more accurate representation of how pollution spreads and evolves over time. Sup-
pose the polluted atmospheric region is defined as Q = ((x,z,¢) |0<z<H, 0<x < §(z,1)0 <t <T),
where x = @(z,¢) denotes the moving surface between the polluted and unpolluted parts of the atmo-
sphere. Therefore, to obtain a more realistic model, we are motivated to reformulate the problem (1)-(5)
as follows:

dc dc dc d%c 2?2

C

—_— —_— — =D—+D—+S8 t e 6
ot TVox T P TPz TSwan,  wan e, ©
c(x,2,0) = f(x,2), 0<z<H, 0<x<R(z2), @)
d

a—c(O,z,t):O, 0<z<H, 0<t<T, (8)
X

c(x,z,1) =0, 0<tr<T,

x:¢(zvt)
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gc(x,o,t)—vdc, 0<x<¢(0,1), 0<r<T, 9)

Z

dc

a—z(x,H,t) =0, 0<t<T, (10)

<V®d, Ve > :ka—cp, 0<t<T, (11
x=0(z,1) dt

¢(z,0) = R(z), (12)

where ®(x,z,7) = x— ¢(z,7) = 0 represents the moving boundary.
In the next section, we prove the existence of the solution of the reformulated problem by applying
the Banach fixed-point theorem.

4 Reduction to an integral equation

To simplify the analysis, we consider the following one-dimensional formulation. We aim to prove the
existence and uniqueness of the solution to the following problem:

ngrvgi:gj;JrS(x,m 0<t<T, 0<x<¢(1), (13)
c(x,0) = h(x), (14)
c(9(1),1) =0, 0<r<T, (15)
c(0,1) =g(1) 0<t<T, (16)
¢(0) =b >0, 17
cx(9(1),1) = —9¢'(1), 0<t<T. (18)

Here, the free boundary x = ¢(¢) is unknown and must be determined simultaneously with the concen-
tration c(x,1).

Definition 1. We say that the pair c(x,7), ¢ (¢) constitutes a solution to the problem (13)-(18) forallt < y
(0 < ¥ < ), if the following conditions are satisfied:

2 .
1. %, % and % are continuous for 0 <x < ¢(¢), 0 <r < 7.

2. ¢(x,t) and % are continuous for 0 <x < ¢(r),0<r < 7.

3. ¢(x,1) is continuous att = 0 for 0 < x < b and 0 < liminfe(x,#) < limsupc(x,t) < oo as t — 0 and
x—0.

4. ¢(t) is continuously differentiable for 0 < ¢ < 7.
5. All equations (13)-(18) are satisfied.

Theorem 1. Assume that h(x) for0 <x <b, g(t) for 0 <t < oo, and S(x,t) for0 <x < ¢(z), 0 <t < oo, are
continuously differentiable functions. Then there exists a unique solution c(x,t),§(t) to the system (13)-
(18) for all t < oo,
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The proof is given in this section and in the next one. In this section we reduce the problem (13)-
(18) to an equivalent problem of solving a nonlinear Volterra-type integral equation for ¢,(¢(7),z). In
reducing the problem (13)-(18) to an equivalent problem of solving a nonlinear Volterra-type integral
equation to a problem of solving an integral equation, we shall make use of the following lemma.

Lemma 1. Let p(t), (0 <t < 0), be a continuous function, and let §(t), (0 <t < ©), satisfy a Lipschitz
condition. Then, for every (0 <t < ©), the following holds:

IK (x,1,¢(7),T)
lim — [ p(7)K(x,t,¢(7),7 d’c— + { } dr, (19)
/ / Jx =9(r)

x—¢(1)

where

K(x,1,€,7)

(=)
_2\/7r(t—r)ep( 4t —7) > -

Proof. Following the approach in [7], we begin by proving that for any fixed positive d < ¢, the integral

t

= 5x_¢(2T(2_zgt_r)K(x”W(T%T)dT
§ ’ (21)
Lo(t)—¢(t)—v(t—1)
- Jiss 20—1 K(o(t),t,0(7),7)dT
satisfies the relation
hmsupll+—|<A\f o)
x=¢(1)~

Throughout this proof, we denote by A a generic constant that is independent of x, 7, and & (though it
may depend on 7).
Let us write I = I1 + I, where

" x—9()
5 2(t = T)

/ pe) 9l ;;(m) [K<x,z,¢(r>,r>—K<¢<r>,t,¢<7“>}‘“

Since, by assumption, |¢(r) — ¢(7)| < A|t — 7|, we obtain

C10() — (1) —v(t— 1) (x— (1) — v(i — 7))’
ks, 4f(t—r)F—r [e’“”<‘ 1) >

+exp ( ﬁ(g)__é(’ - mz) Jax
<(A+v /

<AVS. (23)
To evaluate I;, we define

L= K()C,l,¢( ) )

I e O en
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then, we can write

1_11:/’ X0 e r.0(0).7)

—52(t—1)
x— —v(t—1))?—(x —v(t—
«[1- ol SO =g 05
F

The F is bounded, as shown in

(
SAOX O(r) =Vt =1)+6(1) - on+u—¢@—wa—w0
<A(10(0) = 0(8) |+ | —6(1) = v(t = D)]).

Since it is sufficient to prove (22) for sufficiently small 8, and since x — ¢ (¢), we may assume the right-
hand side of the last inequality is less than 1. Substituting this into (25), using the elementary inequality
ye > < const., for y > 0, and noting that x — ¢ () < 0, we can find

| — 11|§A/t;3 ;le+A/[iS\/t—rdr§A6\/5, (26)
and
J—/ttéz(_fg;K(x,t,¢(t),r)dr
[ x—9(1) (x—¢(t) —v(r—1))*
_/164(t—1:) n(t—r)eXp{_ 4(t —1) yd
[ x—9(1) (= 0(1)* = 2v(x =9 (1) (t — ) +V*(t — 1)
_/t§4(t—T) n(t—r)eXp{ 4(t—1) Y
[ x—9(1) C(x—9()? exp 0@ V(1)
=) 5300 n(t_)exp{ 2—q) ST hexpd R
<J,
where

_ [ x—9(t) exp{_(x—(l)(f))z
-8 4(t — 7)\/7m(t — 7) 4(t—1)

t
x—¢

B S 1)) 10 S WL Ny
= /z—s 4t —1)\/m(t—1) exp 4(t—1) ydt= Am /0 ur expi 4u bdu, (28)

tdr. 27

Now, for J;, we apply the substitution u = (
obtain

(T,))z in equation (27). Noting again that x — ¢ (¢) < 0, we
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where 8’ = W asx — ¢ (t), 8’ — oo, and con sequently J; — L.
Also, for every positive integer N we can write

(1) (x—9(r)* vix—9())

2—/6 7r(t—7:) exp{— 2—71) pexp{————"}
,i o

(1) (x—9(1)* (x—9())

</154(t— )«/Jt(t—r)eXp{_ 4@t —1) yerpt =

< (1) 2. )
xi_Z‘a( i!) (vz (r—1)%dr

=J <Ji, (29)

and deduce

For J,, we can obtain

v(x— —1)f pvE\i gt X— xX— 2 ;
Jzzexp( ¢(t))2< 1) (4)/,54(;_ 00 e F=O0O yige

= B OVai-1 T 4=
—exp /, | sa—n/mi—n T (x4?t (P—(;)))de
_ fexpv@c—;’ 1) /thx (¢< >T) exp‘(ﬁft(p_(?))z it
P (2 ey e) [ S N "1%)2 o
P2 g i 00) . W()t S— o g(zf)))z t—ar
PPN ILEE10) M %mzr(;H Y=gl e JRVE
PR gP

As x — ¢(t), 8’ — oo, and consequently J, — %1 Hence, by the squeeze theorem, we conclude that

-1
J = —. 30
5 (30)
Combining this result with equations (23) and (26), and recalling that I = I} + I, equation (22) follows.
From (26) and (28), we obtain

n| <A. (31)
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Using the Lipschitz continuity of ¢ (¢) (i.e |¢(r) — ¢(7)| < |t — 7|), we then obtain

/[’8 |6(1) - q;((:)_—r)v(z “ N9 (r),1,0(c), )z < A 32
Finally, we have
/;6 X¢(2'2_\;§l‘T)|K(x7t,¢(f),f)dT§A, (33)

The proof follows by writing

x—¢(r) —v(t—1)]
2(t—1) - 2(t—1) 2(t—1) ’

equation (31) and the Lipschitz continuity of @ (z).
To complete the proof of the lemma using (22), (32), and (33), we define

b= e I k(1) e

. - ot (34)
- [ =S = ko0, 0(2)
and claim that
limsup|L; + Pg) <AVS+A Lub, s<c</|p(t) —p (7). (35)
x—(t)

This follows by writing in equation (34), p(7) = p(¢) + [p(t) — p(¢)], and applying (22), (32), and (33).
Note that the function

e x—o(n) —v(t—1)
L= POy

K(x,t,¢(1),7)dT

[ a0 D ) o),

2(r—1)
satisfies lim,_, () L2 = 0. Combining this observation with (22) we obtain

. t
limsup |L; + L, + &\ <AVS+A Lub,_s<i<|p(t) —p(7)|.

x—0(t) 2

Since the left-hand side is independent of &, and the right-hand side can be made arbitrarily small for
sufficiently small &, we obtain the desired jump relation (equation (19))

t
limsup\Ll—i—Lz#—&\:O. O

=0 (1) 2
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We have the following equivalence for the existence of solutions to the problem (13)-(18). To this
end, we employ the Friedman-Rubinstein’s method [7, 11, 16] and show that the problem (13)-(18) is
equivalent to the Volterra-type integral equation.

Theorem 2. The solution of the problem (13)-(18) is

c(x,1) /Gx,t,§0 d§+/Gx,t,¢ o), 1)w(t)dt

(36)
+/ Ge(x,1,0,7)g d’H—/ / G(x,t,&,7)s(E, 1)dEd,
t
0(t)=b— / w(t)dr. (37)
0
where the function w € C°[0,T] defined by
w(t) = cx(9(1),1), (38)
must satisfy the following nonlinear Volterra integral equation
0=2 [ G016 0MENE +2 [ Glo(0)1,0(2), Dw(
(39)
+2/ G (9(1),1,0,7)8 dr+2// Go(0(1),1,E,7)S(E, T)dEd,
where G is the Green function and K is the fundamental solution, defined respectively by
G(X,l,éﬂ,’) - K(X,l,é,'f) —CXP(XV)K(—)C,I,};,T), (40)
H(t—7) (x—&—v(t—1))?
X,t, —————exp(— .
Kot 6,0) = 5 7 Esenpl = )

Proof. Suppose that c(x,t),9(z) constitute a solution of (13)-(18). We integrate, on the domain D =
((E,7),e<t<t—¢g,0<& < ¢(1),), the Green identity

(Geg —cGe)e —v(Ge)e — (Ge)r = —GS(x,1). (41)

By letting € — 0, and using (14)-(18), we obtain
b
cler) = [ Gt EOMEWME+ [ Gt 0(e).0)ce (9(0). e
+/ Ge(x,2,0,7)g dT—{—// G(x,t,&,7)s(E, 1)dEdT.

By differentiating both sides of (42), taking x — ¢(#)~ and applying jump relation in Lemma 1, we can
obtain

(42)

2/(; (1),1,€,0)h( d§+2/G 1),1,0(2), D)w(t)de

43)
+2/ Ge(9(1),1,0,7)g dr—|—2// G(0(1),1,&,7)S(E,1)dédT.



10 G. Darkhoshi, K. Ivaz

We have thus shown that for any solution c(x,#), ¢ (¢) of the problem (13)-(18) for # < 7, the function
w(t) defined by (38) satisfies the nonlinear Volterra integral equation (39). Conversely, suppose that the
function w(t) is a solution of (39), with ¢(¢) given by (37). We shall prove that c(x,7), ¢ (¢) then constitute
a solution of (13)-(18), where c(x,?) is defined by (36) with c¢ (¢ (7),7) replaced by w(7). Verification
of (13) and initial/boundary conditions (14) and (16)-(18) is straightforward. It remains to verify that
c(¢(t),r) = 0. In order to prove condition (15) we define y(z) = c¢(¢(¢),t). By integrating the Green’s
identity (41) over the domain 0 < € < T <t —¢€,0 < & < ¢(7) and letting € — 0, we obtain

c(x,1) /Gx,t,c‘,‘ 0)h d§+/Gx,t,¢ ), 7)w (T)df—i—/olGg(x,t,O,r)g(T)dr
+ / / G(x,1,E,7)S(E, 1)dEd T — / Ge (x,1,0(7), 1) w(T)dT (44)
—v/Gxnp dr+/ Glx,1,€,0 7 (£))c(E, 91 (&))dE.

Comparing the resulting integral representation of c(x,7) with the definition of c¢(x,7) by (36), with
ce(9(7),7) = w(t), we conclude that

/y/ Ge(x,1,0(1),7 )+vG(x,t,¢(r),r)+G(x,t,¢(r),r)w(r)]d1:0. (45)

Taking the limit x — ¢ (¢)~ and using jump relation from Lemma 1, we find that the function W¥(r) =
c(¢(t),t) satisfies

P04 [ 9(0)[600),4,0(0)5) +96(0(0),1,0(2), ) + G0 (0)1,0(2), w(@)]d =0, (46)
As in [3], we can show that
O <A [ 12(0)][Ge(00),1,6(2), 1)+ VG0 (1)1,0(5),7) +w(D)G(9 (1),1,0(2), )|z
<a [ ¥ |‘G5 1),1,0(1),7) + (v+)G(6 (1).1,9(2), ) |de

G C
<A Y(t d
/ | \/t \/t—’c) 4

<C/F (47)
<C2/F /()'cp

_
—C /0 \‘P(n)ld"/n [(t_f)(r—n)]

1
= nC* [ 1¥(m)lan.

=

where C = C(t). Hence, using the Gronwall’s inequality, we conclude ¥ () = 0, and thus ¢(¢(¢),) =0
holds. O
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5 Existence and uniqueness of solution

We now apply the Banach fixed point theorem to prove the local existence and uniqueness of solution
w(t) to the nonlinear Volterra integral equation (39), where o, is a sufficiently small positive number
0 < o < T to be determined. Consider the Banach space

Cro = (w|w:[0,0] = R w e Cl0,0]|wllo = mascip o[ w()] < R).
We define the map 7' : Cg ¢ — Cg 6 by

Z/G (1),,&,0)h( d§+2/G 0),1,6(2), T)w(t)dT

+2/ Ge(9(1),1,0,7)g dr+2// G(9(1),1,&,7)S(&,1)dEdT
=Hy +H,+ Hs+ Hjy.

(48)

Theorem 3. Let h(x) for 0 <x <b, g(t) for 0 <t < eo, and S(x,t) for 0 <x < ¢(t) and 0 <t < o be
continuously differentiable functions. Then, the map T : Cr ¢ — Cg s is well-defined and is a contraction
mapping provided that R and o satisfy the following inequalities:

3
R> ||| Y Ci(m,b,e,Rv,[[s]]; [lgl]), (49)
i=1
and
R / 1
ﬁ<min{ —Hh\,}- (50)
Z?:lci(ﬂvbae7va7HsH7HgH) 217:07(’1'

Proof. The boundedness of ||H;|| for i = 1,2,3,4 is proved as follows. For ||H;||, we have

1<l [ HEIGU(6(0).1.8,0a8

" (Kg (1):1,€,0) +Ke (0(0),1,~€,0) ) h(E)d|
i

|h

IN

K(0(0),1,6,0)+K(9(1).1,—&,0) )1 (£)dE|

(1 [ K@w).E0dE +] [ K(=9(0).1.£.0)d2])
<Ci[|]].

| A
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We note that
1Gx(¢(1),2,0(7),T)| <|K:(9(2),1,9(7), T)[+V]exp(v.9(2))[|K(—9(2).1,9(7), )]
+ lexp(vo (1)) || Kx(—9(2),2,0(7),7)]
L29() —¢(7) +v(t—7)| 1 (9(1) —9(7) +v(t— 1))
- 4(t—1) 2/n(t —1)

1
2/m 1) A=)
LA o +v-o), 1 (¢(t)+¢(f)+v(tff))2‘
4(t—1) 22/t —71) 4(t—1)
R+v C 3bC’ 4 G,

4\/ (t—1) 2\/7T(I—T)+8\/D7L'(t—f)(@b (t—1)

Now we are able to estimate H; for i = 2,3,4 as follows

+[v[[M] | 51

il =] [ Gu(o(0).1.0(2), 2wln)ar]
< [16.(6(0).1.0(2). D) w() e
<R/ G(9(1),1,6(7),7))d7

SCZ(b7 v, e, TC?R) \/77

] =1 [ Ge.00),1.0,7)5(0)a
< [16e60..0.9)ls(laz
<lgll [/ 1~ Gul9(0).1,0.0)ldx
<C;(b,v,e,7,R,||g]|)\V O,
= [ [ 60008 0)5(6 Dagar

_// Go(0(1),1,E,7)S(E, T)dE|dT

<ciis) [ 2 m dr

<Cq4(b,v,e,m,R,||S||)Vo.
Therefore, we can write

1T )| <[[H: ||+ || Ha| + [|H5 || + [ | Hal |

3
<|IW'[|+ Y Ci(m,b,e.R,v.[Is]]. l1gl)V/o,

i=1



A theoretical study for an air pollution model 13

where the constants C,C3,Cy are simple combinations of 7, e, b, 4 5k, M, R.
If R is now taken to be

3
R>|[n ||} Ci(m,b,e.R,v [s]]. llgll), (52)
i=1

then for

R

— |1, (53)
Z?:lci(nabaevRav’HSH’||g”)

Vo <

the ball Cg & is mapped into itself.
Now, we prove that T is a contraction on Cg 5. Let Uj = T'(w;) and U = T (w>), then

Ui — U =T (w;)—T(w2)

[ [ G0 0..6.0mE)E - [ Gul6:0).1.£.0) (&)dé}
.

/G 01(1),t,01(7), T)wi(7)dT — /G 1),1,02(1), T)w 2(’E)d’c}
+ /ng ),,0,7)g dr—/o Gex(92 t),t,O,T)g(T)dr} 54
" //d)l (1):1,1(1),7)S(§, 7)dEd
// (1)1, 2(7), )(é,f)dédr]
=AH| +AH, + AH; + AHy.

We can write

=|[Ke(91(2),1,8,0) —vexp(v.1 () x K(—¢1(1),1,,0)
—exp(v.91 (1)) Ki(—¢ ()’t’é O)] [ ( (t) ’tvg 0)
+vexp(v.g2(1))K(—¢2(2),1,8,0) +exp(v.92(t)) K (— 2(2),,,0)]

S‘Kx((Pl(t)vtaéaO) _Kx(¢2(t)vt7évo)|
+v|exp(v.¢1 (t))K(_(Pl (l‘),t,g,()) _exp(v'¢2(t))K(_¢2(t)7t7570)|
+ lexp(v-91(1)) Ke(=91(2),,6,0) — exp(v-$2(1)) Kx (= 2(2), 1,6, 0)]
=E| +vE, + ME;.

|Gx(91(2),1,6,0) — Gx(2(2),1,6,0)

(55)

By the mean value theorem, there exists d; = d (¢) between ¢; (¢) and ¢, (¢) such that

E; = |Kx(¢l(t)at7§a0) _Kx(¢2(t)at7§a0)‘ = |Kxx(dl(t)vt7€ao)||¢l(t) _¢2(t)|

_ CE ) (56)
=100~ 02| 5+ O k(@ 0),0,6,0).
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Using the elementary inequality ye > < const for y > 0, we find

b o e 5
I [ v <V gl [ 51+ O

(di(t) =& —vr)?

x exp(— o VdE
—&—v _E_ )2 e
oyl O (OB
Y o

<|[lh |2\/ﬁ|d\[(tt)HW’_W2H(dl(t)2t 1) exp(_(ﬁh(tzh 1) )

const.

<V g — g ST
w
IV P P gy
NG
<l||h||—= — R
<l s —wal

where

const.
< R;.
di(6) —ve] =

By the mean value theorem for E,, we have
E :|exp(v.¢1 (t))K(_(Pl (t)at’§70) - exp(v.(bz(t))K(—(Pz(t),t,5,0)|
:eXp(V.¢1 (t)) X |K(_¢1(t)’t7§’0) _K(_¢2(t)’t7§’0)|
+1exp(v.91 (1)) — exp(v.92(t)) K (= $2(1),2,£,0)]|
< LS K (1)1, .0)101(0) — 020
+[exp(v.91 (1)) —exp(v.92(1)) K (—92(1),2,£,0) .
Then

il [ B <omii] [ EE e),1,8,0)101 () a0

+V|!h|!/ |exp(v.1(2)) —exp(v.92(1))[K (= 92(1),,§,0)|dS

V. v v )
S gL AR AR SSIRW:
2| [ exp(v.d (1 ))HWI_WZHI/O K(—s(0),1,E,0)|dE

MV () +&+v)?

_'2w/7 4t

< (0 ) s -l

Al llws = wallexp(~ )|+l 1w = wa e

(57)

(58)

(59)
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Finally, for E3, we have

E;3 §exp(v.¢1(t)) Kx(_¢1(t)’t’€70) _Kx(_¢2(t)7tv§70)
+ [exp(v.91(2)) —exp(v.2(t)) | Kx(—2(t),1,&,0)]
<MK (c"(1),1,8,0)[|91(r) — ¢2(1)]

" (60)
+vexp(v.c ())lK( ()Jaé 0)l1¢: (2 )—¢2(f)!
t)+¢+ "
<Migu (1) (0} | 5+ LOEER ) 1,2,0)
+MV|¢1() $2(1)||1Kg (—92(1),1,6,0)],
where there exists ¢(z), ¢/(r) and ¢”(t) between ¢; (r) and ¢ (). Then
t)+E+
ol [ B < M s el (G EOEEEE
G <)+€+vt) >
M [A]11(6) — 02(0)| [ Ke(~02(0).1.6,0)a
2
< | quw]— ol (LS (O E Ve
0] B]1 oy — |
Vi (0P, ()
SMHhHWHW—W2||(T)€xp(—T)
o+ M ]| wy = |
\/ c t
<M||hl| \fHWI HW‘FMVWMEHWI—WH
§M4\\§El|w1—wz||R2+Mv;Hw1—wZH.
Now we are able to estimate AH; as follows:
M VM
!AH1!<HhH(4f e [ I
vM VM (61)

M /G
< h( R M—) _
||| 4\f tr =t \/6+4ﬁ 2+ My ) w2l[v/o

= Xollw; —wal[Vo.
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In the same way, we have

|Gx(91(2),2,91(7),T) = Gx(92(2),1, 92(7), 7))

[K(91(1),2,¢1(7), T) — vexp(v.u (¢

—exp(v.91(1))Ku(=91(1),1, 1 (1), T
)

NK(=01(2),1,01(7), 7)
7)]

+[=Ku(92(1),1,2(7), 7)

verp(r:0a(1)K (~9a(0).1,62(2), )+ exp(s:9a(1) K(—0a(0 )1, 02(7). )]

<[ (016,61 (2),7) — Kl (0).1,5(5), ) ©2
o]expl0:61 (1)K (=01 (1)..01(2). ) — exp(s 021 K (—42(0).1.0n(2). )|
exp 0161 (0) K (=91 (0).1,01(0). ) — exp(1 g2 (1)K (—02(0)..62(2). )

—E, +VE> + E3.

Define f; z(x) := exp( - 4(;“7;)) We can write

Bl = - fLl01(0) = 01() = ¥(t = )~ (02(0) — 02(2) (e — 7).
n(t—1)

By the mean value theorem, there exists d; = d; (¢, T) between ¢ (1) — ¢ (7) and ¢2(¢) — ¢2(7) such that

|E1 | —Jﬂ(ltiflf[’f(dl)lwl (1) = ¢1(7) =v(z = 7) — 92(1) + 2(7) +-v(r — 7))
T2/t —1)l2(t - r) 4(r—1)? “p 4(t—1)

><(\¢1()— 2(0)]+161() = 02(9)] ).
Because

di] < max (19:(1) = () —v(t— )|, i=1,2) <Rlt—7|+vlr—1],
then

R/tE <Rt|| H/w L 1 .
wp—w —
0o = T 2\F(t 7)2

TRt —1)2+2Rv(t — 1)> +v2(t — 1)2
4 Ri|jwi —wa]| / =t +vE=T)7 ),
2\F 4(t—1)2
R+v
<Ri|jw) — WZH/ AT+ Reljwy —wa| / (64)
> 2Vm

1 R(R+v)
< R z) _ 7
—2\/5( += [lw; —wa| [Vt

1 R(R+v)?
SZ\/E(R+ ( 4+v) G>le_WZH\/g:;LlHW,_WZHﬁ.
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For E,, we have

Es <exp(v.¢r (t))’K(—% (1),6,01(7), 7) = K(=2(1), 1, $2(7), 7)
+ ‘exp(wm (1)) —exp(v.92(1)) | K (= $2(1),1, $2(7), T)

§M21 [fi2(@1() + ¢1(7) +v(t = 7)) — fr.2(92(1) + 92(7) +v(1 — 7))
n(t—1)

+exp(ve(r))|91(1) — 2() |[K(—=a2(2), 1, 02(7), 7).

By the mean value theorem, there exists dy = da(t,7) between ¢;(t) — ¢1(7) +v(t — T) and @ (1) —
¢2(7) +v(r — 7) such that

b<b+vt < (t)+¢1(7)+v(t—7) <da(t,T) < $2(t) + $2(7) +v(t — 7) < 3b+ 1.

Then

Ey Zw%\ﬁ’,r(dz)lw (1) +91(7) +v(t = 7) = 2(t) — ¢2(7) —v(t = 7)|

+M|91(1) = $2(1) K (=a(1),1,62(7), 7)

M 3b+v(t — 1) d3?
S2 n(t—1) 2(t-71) exp(—4(t_1_))
< 1(101(6) = 02(0) + [61() — 42(2)]) + .
M 3b+4v(t—7) b

SavEao o P Ie —wele Miles — el (= 6a(0).1.42(). )
3Mb,, 6 3 b?
(372 ) + s =g ) H MK 02(0),6,02(0), ) ) [ =
We deduce that
vR/ Eydt 3va 6 )3 \/+3I\i’} M\I;Kt)Hw, WzH\/
3va 6 .3 3Rv? MRVG (65)

S(m(@)ZGﬁJM\F \f)HWI wallv/o
= halwi —w2||Vo.

Finally, for E3, we have

E;

=|exp(1:01 (1) Ki(=01(1).1,91 (7). 7) = exp(v.92(1) K(~02(0).1,02(7).7)|
SexP(v'(Pl (t)) KX(_‘Pl (t)at7 il (7)7 T) - Kx(_(PZ(t)’tv ¢2(T)7 T)‘
+ [exp(r01(0) — exp(2(6)) | Ku(=02(0).1,92(9). 7)1
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By applying the mean value theorem, there exists d3 = d(r,T) between ¢;(¢) — ¢;(7) +v(r — 7) and

¢2(t) — ¢2(7) +v(t — 7) such that
b<b+vt < (t)+¢1(7)+v(t—7) <d3(t,7) < pa(t) + P2 (7) +v(t —T) < 3b+ vt

Then
2 =Nﬁ|ﬂ;<d3>||¢l (1) = 91(2) +v(t = 1) = 62(0) = 02(x) —v(t )|
+exp(v.d(1))|¢1(z) — ¢2(2)|[Ke(—92(2), 2, 62(7), 7)|
- 1 ’ -1 a3
“2/r(t—1)12(t—7) 4(t—1)?
2
<exp(= g2 (1010 = (0] +101(5) — () )
+Mt||wi —wal||[Kx(=¢2(2).1,92(7),7)]
and
3 v\l — 2
R/ E3d1:<4f( 6 )2t 2\F/ 3b+t_tr) 2k exP(—4(tdjT))|WI—W2thT
| MR ot +¢ +vt—) (92(1) + 92(7) +v(t — 7))
Tl [ e )

ngf(2< 22)’\ﬁ+9” (1b°2>vﬁ+6iv( )r/+—z)||w] wal| V7

13b, 6 4
+ e wll( [ 5 )it [ ﬁ dr)
<= (3G Vit 220 i ) s~ ol
+—f§§t(€f( 22)3»/7+ )qu wal[Vt

R /1,6 .3 9% 10 s 6bv 6
<——|(=(—)20V 204/
—2\/E<2( 2 oVet T (gp)rovot (0

)1+ )il

:/lg,HW] —WQH\f.

)zc\er c

Therefore, we can estimate AH, as follows:
(Al |< (M + 20+ ) [l = wa|[V/G.
In the same way, we obtain

(AH3] < (R 425+ Ao ) lwy — w2l Vo

(66)

(67)
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and
|AHY| < A9[lwi —w2| Vo, (68)
where the constants A4, A5, Ag, and A7 are simple combinations of 7, e,b, %,v,k,M ,R,o. Therefore, we
can write
7
IT(wr) =T (w2)|| < ) Aillws —w2||Vo.
i=0
By selecting
1
VO < s
Yok
the map T becomes a contraction mapping on Cg s and therefore it has a unique fixed point. O

Proof of Theorem 1: Taking into account Theorem 2, problem (13)-(18) is equivalent to the problem
of finding a continuouse solution w(z) for the integral equation (39). Employing Theorem 3, we conclude
that 7' has a unique fixed point w(z) in Cg . The w(t) is then a solution of (39). In view of Theorem 2,
we have thus proved the existence of a solution of (13)-(18) for all # < o, for some ¢ sufficiently small (
restricted only by (50)). Therefore, the proof of Theorem 1 is completed. O

6 Conclusion

We have proposed a robust mathematical framework for modeling air pollution as a free boundary prob-
lem, offering a dynamic and physically consistent representation of pollutant dispersion in the atmo-
sphere. Unlike traditional fixed-boundary models, our approach accounts for the evolving nature of the
spatial domain, allowing the pollutant front to move in response to physical processes and boundary
interactions. This makes the model particularly well-suited for representing real-world situations, where
pollutant plumes propagate dynamically due to variable emission rates, atmospheric transport, and chem-
ical reactions. The theoretical analysis was carried out by reformulating the original partial differential
equation with a free boundary into a nonlinear Volterra integral equation using the Friedman—Rubinstein
integral representation. This reformulation allowed us to rigorously prove the existence and uniqueness
of the solution by applying the Banach fixed-point theorem, under Dirichlet boundary conditions. The
resulting framework incorporates key transport phenomena such as advection, diffusion, and reactive
mechanisms, together with time-dependent source terms, offering a solid basis for analytical exploration
of air pollution dynamics in bounded regions.

While the main objective of this study has been to establish a rigorous framework for proving the
existence and uniqueness of the free boundary problem, the proposed method also offers potential for
future analytical and computational works. In particular, the extension of the model to include Neumann
boundary conditions would enable the treatment of impermeable boundary conditions, broadening the
range of physical configurations that can be studied. Another potential direction lies in the application
of this framework to multi-dimensional settings or more complex chemical interaction mechanisms.
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