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Abstract. This study explores an iterative system of singular three-point boundary value problems
within the context of time scales. The objective is to identify conditions that guarantee the existence of
countable positive solutions. The research employs Holder’s inequality and Krasnoselskii’s cone fixed
point theorem, set within a Banach space framework, to derive the necessary criteria. The theoretical
findings are illustrated through a practical example, highlighting the sufficiency of the derived conditions
for ensuring multiple positive solutions.
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1 Introduction

Analyzing dynamic systems requires a framework capable of integrating both continuous and discrete
behaviors. Traditionally, this has been achieved through differential equations for continuous systems
and difference equations for discrete ones. This research focuses on the theory of time scales, which
offers a unified approach to these analyses [7]. Introduced by Stefan Hilger in 1988, time scales allow
for the modeling of hybrid systems by considering time as a non-empty, closed subset of the real numbers
[18]. This approach enables the study of phenomena that exhibit both continuous and discrete changes.
Over recent years, the theory of time scales has greatly enhanced our understanding of boundary value
problems (BVPs) [27]. Researchers have employed a variety of mathematical methods, including fixed-
point theorems, upper and lower solution techniques, degree theory, and variational methods, to explore
the existence and characteristics of solutions to these problems [16,21,25,28].
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Recent advancements in iterative BVPs on time scales include studies on singular multipoint prob-
lems [10, 15] and integro-dynamic equations [13]. For singular systems, works such as [24] explore
nonlocal initial value problems in Banach spaces, while [14,26] addresses impulses and nonlocal condi-
tions. Additional contributions include nonlocal initial value problems for first-order dynamic equations
[21,23], discrete Ponzi scheme models via Sturm-Liouville theory [8], and comprehensive overviews in
books like [2]. Our approach unifies these by focusing on iterative singular three-point BVPs, establish-
ing countable positive solutions under varied integrability conditions for coefficients.

Compared to prior works such as [10] on singular multipoint BVPs and [15] on p-Laplacian equa-
tions, the novelty lies in our iterative framework for singular three-point BVPs, the application of
Holder’s inequality for multiple integrability cases, and the proof of countable positive solutions using
Krasnoselskii’s theorem in a cone setting.

This unified framework transcends theoretical benefits, offering a powerful tool for modeling real-
world phenomena across disciplines. Its strength lies in its ability to capture systems exhibiting both
continuous and discrete dynamics, a common feature in fields like neural networks, heat transfer, and
epidemiology [22]. For instance, models for insect population dynamics or disease propagation necessi-
tate a hybrid approach to accurately represent the interplay between continuous changes (e.g., population
growth) and discrete events (e.g., birth events, transmission). The foundational aspects of this approach
have been extensively documented in the literature [1, 11, 12]. In this work, we use the mixed delta-
nabla derivative operator to perform the analysis without requiring too many jumpers in the computation.
Atici and Guseinov [9] were the first authors to propose the idea of equal search for mixed properties
(see [4,6, 19]).

In [10], Bohner and Luo studied the existence of solutions to the following singular second order
m-point boundary value problem on time scales:

rAV(s) = h(s,r,r*) +e(s), sc(a,b),

Recently, Dogan [15] developed positive solution by index theory to the following BVP:
%
(%("A( ))) +X(s)h(s,r(s)) =0, s € [0,d]s,
Z agr Cﬁ ¢p Z bi (PP

Building on recent advancements, we consider a dynamic iterative system subject to two-point boundary
conditions and the presence of multiple singularities. Using Krasnoselskii’s fixed point theorem within
a Banach space framework, we demonstrate the existence of a countable set of positive solutions to the

following BVP:
2V(s)+v($)hi(rivi(s) =0, 1 <i < j, s € (0,0(1)]s,
ey

r]+1( s)=ri(s), s € (0,0(1)]s,

r(0) =0, ari(o(1)) — bri(T) =

0,
where n € Nya,b € RT, with b < a, and 0 < T < 0(1)/2, v(s)
(pi > 1,1 <i <m) has a singularity in the interval (0,0(1)/2

1<i<j, 2

=T, vi(s) and v;(s) € Ly ((0,0(1)]s)
|s- Using Hoélder’s inequality alongside
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Krasnoselskii’s fixed point theorem within a Banach space, we demonstrate the presence of countable
positive solutions to (1)—(2). In this study, we operate under the following assumptions:

(Cl) h; € C([O,+°°)).
o(1)

(C2) {sa}7_, be a sequence that satisfies the condition 0 < 5441 < 54 < —

: o) _ _
}grgosd—s <T%hﬁrgvy(s)——koo,)/—1,...,m.

Moreover, for every y from 1 to m, there exists a positive constant 1, satisfying vy(s) > 1.

2 Preliminaries

In this section, we review key foundational results that will be useful in the subsequent sections. A time
scale S is a nonempty closed subset of R, introduced to unify and generalize results from continuous and
discrete analysis. The backward and forward jump operators, p and o, are defined as p(z) = sup{u € S:
u<z}and o(z)=inf{u€S:u> z}, respectively. The forward jump operator identifies the next point in
S larger than z, while the backward jump operator gives the previous point smaller than z. The graininess
function, u(z) = o(z) — z, measures the distance between a point and its forward jump. Intervals on a
time scale are defined similarly to real numbers, with the interval [c,d|s = {z € S: ¢ <z < d}. Points
on time scales can be classified based on their relation to the jump operators. A point z is called right-
scattered if o(z) > z and left-scattered if p(z) < z. A point is considered right-dense if 0(z) = z, and
left-dense if p(z) = z. If a point is scattered both left and right, it is called isolated, and if it is dense on
both sides, it is termed dense. The delta derivative, denoted as hA(z), of a function h at a point z € §¥
(the non-maximal set of S) is defined as the number such that for every € > 0, there exists a neighborhood
V of z where the inequality

[h(6(2)) —h(u) ~h*(z)(c(2) —u)| < €|o(z) vl
holds for u € V. This derivative generalizes the standard derivative to time scales.
Lemma 1. For any G(s) € C14((0,0(1)]s,R), the boundary value problem
Y (s)+G(s) =0, s € (0,0(1)];, (1
r1(0) =0, ari(o(1)) = bri(t) =0 (2)
has a unique solution

b
a—>b

ri(s) = /0 " (.G + /0 " MGV, 3)

where
o(l)—s, if 0<t<s<o(l),

M(s,1) = )
o(1)—t, if 0<s<r<o(l).
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Proof. Suppose r| is a solution of (1), then

//G VIAH—AS—I—B

_ _/0 (s—1)G(1)Vi +As+B,

where A = 74(0) and B = r{(0). From (2), we obtain A = 0 and

b
B—/ GV + 2 (7).
So, we get

i (s) = — /(s—t Vt+/ ()Vt+br1( )

_/ M(s,t)G Vt+ ri(T).

Set s = T and multiply by 2 . in the equation above (2). We obtain

o(1)
= M(t,t)G(t)Vr. 5
[ e )
By substituting (5) into (2), we obtain the desired solution (3). This concludes the proof. O

Lemma 2. Assume that conditions (Cy) and (C;) are satisfied. Let v € (0,0(1)/2)s and T € [v,0(1) —
V]s. The kernel M(s,t) exhibits the subsequent characteristics:

(i) 0 <M(s,t) < M(t,t) with respect to any s,t € [0,0(1)]s,
(ii) SiyM(t,1) <M(s,1) forall s € [v,0(1) = Vs and t € [0,0(1)]s.

Proof. To see that inequality (i) holds is straightforward. For the proof of (ii), let s € [v,0(1) — v]s and
assume ¢ < s. Then

M(s,t)  ofl)—s v

M(t,t)  o(l)—t ~ o(1)

Fors <t,
M(s,t)  o(l)—t 1>
M(t,t)  o(l)—t  ~ o(l)
This concludes the proof. O
Note that an j—tuple (r(s),72(s),73(s),...,7;(s)) is a solution of the iterative boundary value prob-

lem (1)—(2) if and only if

[ M opmia )

= [ Moo
0 a—>bJo

and
rivi(s) =ri(s), s € (0,0(1)]s, 1 <i<j.
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That is
/ M S l‘ h1 |:/ M h2|:/ M
<hj ) / OREARDICTONIY Y | an|
b o(1) S
w2 [ e tm] [ M)
a—>b
i [ [ Mo o | oo,
Let Y be defined as the Banach space C14((0,0(1)];,IR) where the norm is given by ||r|| = max |r(s)|.

s€(0,0(1)]g
For v € (0,0(1)/2)s, the cone Hy C Y be defined as

v
H, = < r € Y: r(s) is nonnegative and min r(s) > r(s .
{revirs)isomegatveand  min 1) > o1}

For any r; € Hy, define an operator U : Hy — Y by

(Or)( / M(s,t,)v(t,)h [/ (I)M(tl,tz)v(tz)hz[/OG(I)M(IZJS)...

xhjy [/ M(tj1,tj)v(tj)hj(r1(tj))Atj] -.-Ag}mz}ml

ab/ M(T,t,) hl[/ M(t (t,)-

X hj_ [/0 M(tj—1,t;)0(tj)h(r (tj))Atj] ~~A4A4Atl.

Lemma 3. Assume that (Cy)—(Ca) hold. Then for eachv € (0,0(1)/2)s, U(Hy) C Hy and U: Hy, — H,
are completely continuous.

Proof. According to Lemma 2, M(s,z) > 0 in all cases where s,7 € (0,0(1)];. So, (Ur)(s) > 0. Also,
for r; € H, we have
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ol = s [ wsavtem ] [ e e -
b [ G0t <r,~>>Ar,~] ---Aa]Aa]Aa
Ty R
| [ w6 <t,->>m]} ~--Ar3]mz]ml
< [ Mot | [ v
| [ w00 |,
T R RALIALYN T RATTS

hjy [/00(1)M(tj_l,tj)v(tj)hj(rl (tj))AtJ} ---Ag]Azz]Atl.

Again from Lemma 2, we get

Lmin B} > [ / M (rl>h1[ / " e 0)0(,)
“hj [/ M(fj—htj)v(tj)hj(rl(tj))Atj] ~~At3]At2]At1

o(1)
a b t17t )hl [~/O M<t17t2)v(t2)

i | /0 M1, 00 ) -0, 4, .
From the two inequalities above, it follows that

min  {(Ury)(s)} >

se€lv,0(1)—V]s

y
@HUHW

Therefore, Ur; € Hy, which implies that U(Hy) C Hy. Next, using standard techniques and the Arzela-

Ascoli theorem, it can be shown that the operator U is completely continuous. This concludes the proof.
O

3 Main Results

We will employ the following theorems to prove the existence of countable set of positive solutions for
the iterative system defined by BVP (1)-(2).
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Theorem 1 ([17]). Let 2 be a Banach space and & be a cone in 2 . Also, let mi,my be open sets with
0 € my and my C my. Define o7 : & N (mp \ my) — & as a completely continuous operator satisfying

or
Then there exists a fixed point of </ in & N (my \ my).
Theorem 2 ([3,5,20]). Let f € L5(J) with p > 1, g € LY (J) with g > 1, and % —I—é =1. Then fg € L\(J)
and | el < [17lglglg, where
1 .
£l [fj\f()\ As]r ifpeR,
inf{M eR | |f| <M A-ae onJ}, ifp=oo,

and J = [a,b)s.

Theorem 3 (Holder’s). Letf € LY(J) with p; > 1, fori=1,2,-- ,n and er'lzl — =1.Then [T, fi €

( ) and [T, fill; <TTeq || fill pi- Further, lffGLl( )and g € LY(J). Then fg ELA( )and || fglh <
1 £1111g]leo-

Three cases for v; € LY (0, 1)g are as follows:

l<1’il

Di i=1 Pi

1
Pi

> 1.

™=
™=

L,

I
—_
I
—

1
Firstly, we seek countable positive solutions for the case Z — <1
i=1 Pi

Theorem 4. Suppose (C1)—(Cz) hold. Let {v,};_, be a sequence with sq1 < Vq < sq. Let {J4};_, and
{Qu}5_, be such that

d Qu<Qu<0Q,u<J; and

v
Jd+1<m deN,

Vd
o) S 2

where

Also, assume that h; satisfies

NiJ,
(C3) hi(r) < %v s€(0,0(1)],,0 < r<Jy, where

-1

m -1 b m
Ni <min HMHLgIIJIHUiHLgi 7 r"M“L%g‘|vi|’L€i :
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0Q, v
(C4) hi(r) = ==V s € [va, 0(1) = Vals, —15Qa <r < Qu.
2 o(1)
Then the BVP (1)—(2) has countable positive solutions {(r1 , d], ..,rB.d])}j;:l with the property that

rl[d](s) > 0over (0,0(1)],,i=1,2,...,jandd € N.

Proof. Let

qis={reY:|r|l <Ji}, s ={reY:|r]| <Qu},

be open subsets of 7. Also, let {v,4}, be as specified earlier. Furthermore, it can be observed that

: o(1)
S<Sd+1<Vd<Sd<T.
Let s € N, and consider the cone Hy, constructed as follows:
Hy ={rev:r(s)=0, min ()= —r(s)] }
=qreY:r(s , min r(s) > r(s)|l ¢
" ~ 7 selvao)-vals o(1)

Also, let r; € Hy, N dq . Then ri(t) < J; = ||r1]| with respect to every r € (0,0(1)],. Given condition
(C3) and considering #;_; € (0,0(1)]s, it follows that

[ M0 < [ MG 1),

NJ e
ld/ Mtj,t]H (t;)Vt.

1
Since Z — < 1, there exists a ¢ > 1 such that — + Z = 1. So,
—1 Pi q Z1PDi

N1Jd

o(1)
/0 M(tj—1,t;) v(tj) h; (rl(tj HMHL‘I

[T

pi
LV

Nle
HMHL‘f HHDIHL"’

Ja
<¥ <y,
=5 d
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The same result can be obtained for #;_, belonging to (0, o(1)]s by following analogous steps:
o(l) o(1)
/0 M(tj2,tj1)V(tj-1)hj [/0 M(tj-1,1;) v(t;) hj(ri(t)) Vi | Vij—g
a(1)
S/O M(tj2,tj-1) 0(tj-1) hj-1(Ja) Vtj-

o(1)
< [ M) Ol ) by () Vi

N1Jd s
/ Ml‘J 1,t]1H t]1Vt]1
N]Jd
M| Hl!vzHy’z
<J—<J
=7 d-

By further applying this iterative argument, we obtain

/ M(s,1,) hl[/ M(t,,t,)v hz[/ M(,,t,)-

X hj_ [/O M(tjl,tj)v(tj)hj(rl(tj))th] ---Vt3]Vt2] \%2

Similarly,

afb/OG(I)M(T,tl)U(fl)/’ll [/OG(I)M(tl,tz)u(;z)

o(1)
/0 M(tj—l,tj)U(tj)hj(rl(tj))th .V

|
—_
| |

\%7

b o(1)
Sa b/ M(l‘l,l‘l)v(l‘l)hl(.]d)vtl

Nle
17|, Hllvzllm

S

IN
a

~

Jd
5

IN

Thus, (Or)(s) < 7" + % =Jy. Since J; = ||r1]|| for r; € Hy,Ndq; 5, we get

1O < lral- (©)

Next, let s € [vy4,0(1) — v4]s. Then

= |||l > ri(s) > min r — —
Qi = [l = ri( )_SE[W’G(I)%AS 1(s) > o1 )H rl > ( 7 Qi
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By (C4) and for tj_1 € [v4,0(1) — v4]s, we have

o(1) o(1)—vy
/O M(t,-,l,tj)u(tj)h,(rl(zj))]szz/v M(t;1,4)0(t)hj(r (1)) Vi

va 0Qg [o()va
2 G(I)Z/Vd M(1),1j)v(t)) Vi
va 0Qq “m_” -
>, M Tee)vy
vi 0Qq

and

2 [ vt [ )

X hj_ 1[/ M(tj—1,t;)v(t)j)h; (rl(tj))th] Vtz]th
a—bG / Mt )hl<Jd)V
b Vi eQd D=V
za_bg Hn,/ M(t,,t,)Vt,.

By further applying this iterative argument, we obtain (Ur)(s) > % + % = Q. Thus, if
r1 € Hy,NdHa, then

[Ori | = {|re]l- )
Itis clear that O € g2 C Qi C g1k From (6) and (7), it follows from Theorem 1 that the operator U has
a fixed point rgd] €H,,N () 4\g2.4) such that rgd] (s) >0on (0,0(1)],, and s € N. Next setting rj1 = ry,

we obtain countable positive solutions {(r1 ,rgd}, ., E'd])}:iozl of (1)-(2) given iteratively by

o(1)
:/ M(Sat)v(t)hi(riJrl(t))Vt? s € (076(1)]§a i=nn—1,...1
0
The proof is completed. O

m
1
For case Z — =1, we have the following theorem.
i=1 Pi

Theorem 5. Suppose (C1)—(Ca) hold. Let {v4}, be a sequence with s 1 < Vg < sq. Let {J4}5_, and
{Qu}5_, be such that

V4 V4 1
— 0 J, d — < —,deN.
O_(I)Qd<Qd< Qu<Jy an (1) <5 de

Also, assume that h; satisfies (C4) and

Ja1 <



Iterative boundary value problems on time scales 11

NoJ
(C5) hi(r) < =5 ¥ s € (0,0(1)];, 0 < r < Ja,
where
m -1 m
Ny < mm{ %% § (Y B M)z T Ty ] }
Then the system (1)-(2) has countable positive solutions, denoted by {(r1 ,rgd}, ., E.d])}‘;’:l which sat-

isfies rl[ ]( ) >0over (0,0(1)],i=1,2,...,jaswell asd € N.

Proof. Given a specific d, denote g; 4 as defined in Theorem 4. Consider the element r; € Hy, N dqs 4.
Then r(t) < J; = Hr1|| V t€(0,0(1)];. Fort;_y € (0, O'(l)]S and from (Cs),

/ M(tj—1,t;) v(t;) hj(r1(t})) Vi; < / M(t;,1;) (t;) hi(r(t;)) Vi
NJ U
2 d/ M(tj,t;) [Ti(e;) Vi
i=1
m
[To
i=1

N2 Jd m

HM”L“HHUZHLP'

N J
2 M1

pi
LV

Ju
<¥ <y,
=5 d

The same result can be obtained for #;_, belonging to (0, 0(1)]s by following analogous steps:

th—l

/oG(I)M(tj—z,tj—l) V(tj-1)hj-y [/OG(I)M(U—MJ) V(tj) hi(ri (/) Vi

o(1)
S/O M(tj-2,1j-1) V(tj-1) hj-1(Ja) Vij

o(1)
S/ M(tj-1,tj-1) V(tj-1) hj—1(Ja) V-1

NJ o(1) mn
< 22d M(tj-1,t;-1) [Toiltj-1) Vit
0 i=1
NQJd
M|z HHDIHLP‘
Ja
<y,
) d

By further applying this iterative argument, we obtain

/ M(s,1,) hl[/ M(t )hz[/oc(l)M(tz,tz)...

X hj_ [/O M(tj—1,tj)v(tj)h;i(r (tj))th} ~~Vt3]Vt2} Vi, < 5
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Also, we note that

afb/OU(I)M(TJI)v(zl)hl[/OG(I)M(H,Q)D(Q)

o(1)
hjl[/o M(tj-1,1;) V() hj(ri(t))) Vi | - Vi2 | Viy

b (1)
< . b/ M(l],l‘])’l)(l])h](./d)vt]

N2~]d
||MHL°°HHUzHL1’

S

IA
a

~

Jd
5

IN

Thus, (Ur1)(s) < % + % = J,. Since J; = ||r1|| for r| € Hy, N dq) 4, we get
1B < lrl- ®)

Now define ¢» s = {r1 € Y:||r1|| <Qq}. Letri € Hy,Ndgqr 4 and t € [v4, 0(1) —v4]s. Then, the argument
leading to (8) can be done to the present case. O

1
Lastly, for the the case Z — > 1, we have the following result.
i=1 Pi

Theorem 6. Suppose (C1)—(C2) hold. Let {v4}5_, be a sequence with sqy1 < Vg < sq. Let {J;}_, and
{Qa}5_, be such that

1
Qd<Qd<6Qd<Jd and i<f,deN.

o(l) 2

Jar1 <

( )

Also, assume that h; satisfies (C4) and

NoJ
(Co) hilr) < =54 ¥s € (0,0(1)];, 0 < r<Ja,
where
—1

-1
. m b m
N, < min [||M||L§H||Ui||L\17] ) [(1_||M||L°€HHUI'|L‘V
i=1 i=1

Then (1)-(2) has countable positive solutions, denoted by {(r1 T [d]

b ij[/.d])}jj: | which satisfies
rl[d}(s) >0over (0,0(1)],,i=1,2,...,jaswell as d € N.

Proof. The proof follows by adapting the arguments from the proof of Theorem 4. OJ
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4 Applications

13

To illustrate the applicability of our main results, we consider the following BVP on the time scale

S =[0,1].

Example 1. Consider

1
1)1(5) = . -
|s =3l
Fori=1,2, let
(059107, r€ (1074, 4o0),
21 107(4d+3) —0.59%x 104
: 10— (4d+3) — 107:1 (r—107%)+0.59 x 10~%
re [10_(4d+3)7 10—4d} 7
hi(”) =321 x 1()*(4d+3), re <0.59 % 107(4d+3)7 10(4d+3)>7
21 x 10”43 —0.59 x 108 _ _
0.59 x 10~ (4d+3) — 10— (4d+4) (r— 101449 +0.59 x 10787,
re <10(4d+4)70'59 % 10(4d+3)} :
0, F=0,
forall d € N.
Also, let

2 1
sg = g_I;W and vg =0.5(sg+5441), d €N,

then vi =0.39 and 541 < Vg < 84, % <vg < % It is clear that

251 1 1
:@<§, and Sd—Sd_H:gi deN.

. (d+2)%

©)

(10)
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- > 1
Since J;l 7 =50 and J;l 2 it follows that
* — 1'
2 & 1
5 l; 8(I+1)4
21 o
-~ 40 720
=0.39.
Also, we have 1 = % and
vy /G(l)v1 m/lo.”
— ; M(t,t)At =0.39 X —— 1—1t)dt
o(1) gnl vi (t.1) 3 Josg (1-1)
~ 0.046099050006,

b i o(1)=vi Y108 1-0.39
LHni/ M(t,1)Vt =0.39 x \/37/ (1—1)dt

a—bo(l)} " Jy 0.39
~ 0.04609905006.
So,
0= max{ ! , ! } =21.69242097.
0.04609905006 0.04609905006
Next, let 0 < a < 1 be fixed. Then vy, v, € L'*4[0,1].
o(l
/0 ( )vl(s)ds: ?—i—ﬁ.

So,let H; =1 fori=1,2. Then

gHuiHLg,» =1/14 /3~ 1.652891650,

and also [|M||= = 1. Therefore,

—1
HMlloo_Hle,-rLg,.] ~ 0.6050003338.

=

N <

Take N; = % In addition, if we take
Jd — 1074617 Qd — 107(4d+3)7

then
V4

o(1)

<Qu=10""*3) <, =104,

1
Jopq = 107G+ < 5% 10~ 44+3) < Qu
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0Q, = 21.69242097 x 10~ #d+3) < % x 107% = N1J;,d € N and h;(i = 1,2) meets the subsequent re-
quirements:

3
h(r) <NJg=3 <1074, re [0, 10—4d} |
hi(r) >0Qq = 21.69242097 x 10~ “44+3) ¢ [0_59 w 10~ (4d+3) 1o~ (@d+3) |

for s € N. All conditions of Theorem 4 are thus met. Consequently, by Theorem 4, the iterative BVP
(9)-(10) has countable positive solutions {(r[ld] , rgd])}z;’:l such that rl[d] (s)>0on|0,1],i=1,2andd € N.
Example 2. Application to heat transfer in composite materials with discrete thermal properties: The
BVP (9)-(10) can be applied to the study of heat transfer in composite materials, where each layer has
different thermal properties. The system involves continuous heat conduction within each material layer,
but experiences discrete changes at the interfaces due to differences in thermal conductivity. This kind
of system is common in industries such as construction, aerospace, and energy, where thermal insulation
is important. In this example

1. ri(s) represents the temperature profile in layer i at position s, which could denote the spatial
variable across the material layers.

2. v(s)hi(rit1(s)) models the heat exchange between layers, where v(s) represents material prop-
erties (such as thermal conductivity), and h;(r) captures non-linear thermal interactions at the
interfaces between layers.

1
4
ls—1]

3. The function v;(s) = introduces a singularity, reflecting the possibility of abrupt changes

in thermal conductivity or other material properties at certain points, such as s = %.
4. The relationship r}(0) = 0 represents no heat flux at one end, implying that the boundary is insu-
lated.

5. The condition r3(s) = r(s) could represent a system where, after progressing through multiple
stages (e.g., heat passing through different layers of a material), the conditions at the final stage
mirror those of the initial stage. For example, in heat transfer, this might mean that after heat flows
through three layers of a composite material, the temperature distribution in the third layer returns
to the same as in the first, indicating a cyclical or repeating thermal pattern.

6. The condition r;(1) — %ri (%) = 0 reflects a situation where the temperature at the far boundary

is related to the temperature at an intermediate point, possibly modeling thermal resistance at the
boundary.

This system can be used to simulate and optimize thermal insulation in multi-layered structures, such as
walls in high-temperature furnaces, where controlling heat flow is critical for efficiency and safety. The
model captures both the continuous and discrete dynamics of heat transfer, offering valuable insights into
the behavior of composite materials in real-world applications.
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5 Conclusion

This study successfully establishes the existence of countable positive solutions for singular iterative sys-
tems in three-point BVPs on time scales, leveraging advanced mathematical tools such as Krasnoselskii’s
fixed point theorem and Holder’s inequality. The research contributes to the growing field of time scale
calculus by unifying discrete and continuous dynamics, providing a versatile framework that can model
a wide range of hybrid systems. The rigorous theoretical analysis and the example presented confirm the
sufficiency of the derived conditions, emphasizing their applicability in solving complex boundary value
problems with singularities. This work advances our understanding of dynamic systems, offering new
insights into iterative processes with multiple singularities, which can be beneficial for various fields,
including population dynamics, epidemiology, and engineering.

Future Work: Based on the main results presented, future research can be extended in several important
directions. A concrete extension involves developing a numerical scheme for the operator U, such as an
iterative fixed-point approximation method, and validating it specifically for the composite heat transfer
model discussed in the applications section. Additionally, we plan to tackle specific challenges, such
as ensuring the stability of numerical approximations on irregular time scales and analyzing the impact
of singularities on convergence rates in these simulations. Further advancements could include explor-
ing higher-order BVPs with nonlocal or impulsive conditions, integrating machine learning techniques
for predicting solutions in data-driven scenarios like epidemiology, and investigating fractional-order
dynamic equations on time scales to enhance modeling capabilities in biology and finance.
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