
تعداد نشریات | 31 |
تعداد شمارهها | 805 |
تعداد مقالات | 7,764 |
تعداد مشاهده مقاله | 35,586,279 |
تعداد دریافت فایل اصل مقاله | 7,920,077 |
Enhanced SVM Classification Using Feature Variance Weighting in Linear and Non-linear Settings | ||
Computational Sciences and Engineering | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 15 شهریور 1404 | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22124/cse.2025.31583.1118 | ||
نویسندگان | ||
Mostafa Eslami* 1؛ Afsaneh pourmoezi1؛ Ali Tavakoli2 | ||
1University of Mazandaran | ||
2University of mazandaran | ||
چکیده | ||
Support Vector Machine (SVM) is a powerful classification algorithm that separates samples by finding an optimal decision boundary. Its performance can degrade when feature variances differ across classes, potentially leading to suboptimal decision boundaries. A variance-weighted framework is proposed that reduces the influence of high-variance features while enhancing the impact of low-variance features, resulting in more accurate and robust decision boundaries. The method is applicable in both linear and nonlinear settings. Evaluation on synthetic datasets and real-world datasets, including Breast cancer and {\it a9a}, using cross-validation demonstrates that the variance-weighted SVM achieves higher accuracy and F1-score compared to soft SVM and LDM, particularly in scenarios with significant variance differences between classes. | ||
کلیدواژهها | ||
Support vector machines؛ Classification؛ Variance-weighted features | ||
آمار تعداد مشاهده مقاله: 2 |