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ABSTRACT 

The spatial variation in tree density and basal area provides crucial information for forest health assessment, 

sustainable forest management, ecosystem monitoring, carbon storage assessment, and climate change mitigation. 

Literature reviews confirm that geostatistical methods have been effectively applied across various forest 

management applications. However, their use in traditionally managed oak forests (silvopastoral systems) remains 

underexplored. The primary challenge in applying these methods lies in the clumped spatial distribution of trees 

within pollarded oak forests under silvopastoral management.This research applies geostatistical techniques to 

study the spatial distribution of tree density and basal area in the pollarded oak forests (9,178 ha) of the Northern 

Zagros region, Northwest Iran, managed under a silvopastoral system. Field measurements were taken in 2019 

using a random-systematic sampling design across 117 georeferenced circular plots (0.1 ha each). The mean tree 

density was 291 stem ha-1 (CV = 65.6%), while basal area averaged 14.12 m² ha-1 (CV = 49.9%). Variogram 

analysis showed isotropic behavior and high spatial dependence (SDD = 88% for tree density and 80% for basal 

area). An exponential model explained 72% and 68% of variability in tree density and basal area, respectively. 

Small nugget effect values (0.0384 for density, and 0.0476 for basal area) indicated the reliability of the models. 

Ordinary kriging produced the best predictions, with relative errors of 33.3% (MAEr) and 44.4% (rRMSE) for 

tree density as well as 30.63% (MAEr) and 41.8% (rRMSE) for basal area. Although higher rRMSE values 

reflected local deviations, t-test results revealed no significant differences between measured and estimated 

values. This study underscores the suitability of kriging methods for mapping spatial variations in tree density and 

basal area, offering valuable approach for forest health assessment and management.  
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INTRODUCTION 

Effective forest management demands proper assessment of forest structure regarding two key density 

characteristics: tree density, expressed as the number of trees per unit area, and basal area, defined as the cross-

sectional area of tree stems at breast height. These are critical characteristics that are needed for an understanding 

of forest health, while also informing activities on sustainable management such as wood harvest, thinning, and 

reforestation; ecosystem monitoring, stress, and decline; the capacity for carbon storage estimates; and the 

contribution a forest can make in mitigating climate change (Achard et al. 2006; Bonan 2008; Buongiorno et al. 

2012; Newton 2012; Woodall et al. 2012; Humagain et al. 2017; Hurteau 2021; Ray et al. 2023). Traditional 

methods of ground-based forest inventory, relying on the measurement of reference plots to estimate tree density 

and basal area, have several limitations. These methods work well in small, easily accessible areas but are time-

consuming, expensive, and only provide point estimates. Moreover, they are hard to carry out in remote or 

inaccessible areas like mountainous regions and are unable to catch the spatial distribution of forest attributes 

effectively (Scott & Gove 2002; Maselli & Chiesi 2006; SHE et al. 2007; Pascual et al. 2013; Zhao et al. 2022; 
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Hemingway & Opalach 2024). Given the limitations of traditional inventory methods, there is an increasing 

demand for more advanced data collection techniques. In this regard, geostatistics—a method of spatial 

statistics—provides considerable advantages by modeling spatial patterns of forest attributes, such as tree density, 

basal area, standing stock, tree species composition, biomass, and soil properties. Geostatistics, which uses spatial 

relationships, can predict values at unsampled locations, significantly enhancing the accuracy of forest maps and 

parameter estimates. This improved spatial understanding supports more informed and sustainable forest 

management decisions, including optimizing timber harvesting, planning reforestation efforts, and mitigating 

climate change impacts (Nanos et al. 2004; Tiryana 2005; Freeman & Moisen 2007; Akhavan & Kia-Daliri 2010; 

Akhavan et al. 2014; Raju 2016; Raimundo et al. 2017). Geostatistics is an important approach in forest science, 

being applied in several key areas. It allows detailed mapping of forest inventories, thereby enabling the practice 

of sustainable forest management even in areas where field data is scanty through robust modeling techniques. 

This has been shown by Akhavan et al. (2010), Yadav & Nandy (2015), Raimundo et al. (2017), and Karahan & 

Erşahin (2017). It is also instrumental in assessing forest health by mapping and monitoring ecosystem diseases, 

enabling timely decision-making and intervention (Augustin et al. 2009; Klobučar & Pernar 2012; Karami et al. 

2018). Geostatistics is used to project forest growth and yield, considering the existing conditions of the 

environment (Nanos et al. 2004; Raimundo et al. 2017; Pelissari et al. 2017). It provides an opportunity for soil 

mapping and characterization, useful for formulating forest management policies, as reflected in Mulder et al. 

(2013), Reza et al. (2017), Ahmed et al. (2020), John et al. (2021), and Selmy et al. (2022). Additionally, this 

helps to assess the effects of climate change on forest ecosystems regarding adapting to changing conditions of 

weather (Diodato 2005; Meyer et al. 2016; Raju 2016; Rehman et al. 2022). In recent decades, the application of 

geostatistics for estimating different forest characteristics has been considered, and we are going to address some 

of them briefly. Geostatistical methods have largely been applied for mapping different forest attributes and 

provide essential information for better management and conservation. Among those, these approaches have been 

previously adopted for the analysis of environmental hazards (Diodato 2005), mapping the site productivity of 

beech forests (Ahadi et al. 2017), and determining stand growth attributes, which includes the volume increment 

of a stand, the growth increment of diameter, and ingrowth. Additionally, they have been instrumental in mapping 

the intensity of forest dieback (Karami et al. 2018), assessing forest vegetation variability (Olthoff et al. 2018), 

and analyzing soil properties along with their spatial distributions (Ahmed et al. 2020; John et al. 2021). It has 

also been applied to mapping forest site indices by Günlü et al. (2020), forest canopy metrics by Vafaei et al. 

(2022), and the spatial distribution of aboveground carbon by Izadi & Sohrabi (2022). Other applications include 

the estimation of aboveground biomass, done by Sales et al. (2007), Yadav & Nandy (2015), Babcock et al. 

(2018), and Wu et al. (2024); mapping cork productive areas by Montes et al. (2005); and basal area, standing 

forest volumes, tree height, and height-diameter ratios by Nanos et al. (2004), Akhavan & Kia-Daliri (2010), and 

Akhavan et al. (2014). These methods have also been applied to site productivity and growth dynamics 

assessments in a wide range of forest ecosystems. The literature review indicated that geostatistics has been 

applied to various forest management applications and proved efficient, while in the case of pollarded forests, 

these methods are less explored. The main challenge to the application of geostatistical methods is the clumped 

spatial distribution of trees within pollarded oak forests managed under silvopastoral systems. This study explored 

and evaluated geostatistical methods to model the spatial distribution of stand density and predict stand density at 

unmeasured locations in a pollarded oak forest in the Northern Zagros region, Northwest Iran. Pollarding is an 

old, traditional method whereby tree branches and leaves are cut back to produce fodder for livestock and wood 

for different purposes. Pollarding was developed from ancient times up to the present day. The practice of 

pollarding is mainly done in Non-Mediterranean Europe, especially in the Pyrenees, Alps, and Basque regions, 

and is still practiced today in Iran, Greece, Crete, and Sicily. It also widely exists in specific areas of Asia, Africa, 

South America, and the United States (Burner et al. 2005; Rawat & Everson 2013; Alemu et al. 2013; Berhe & 

Tanga 2013; Peri et al. 2016). Pollarding is a form of severe pruning that drastically alters the tree's growth, and 

can stress the plant as a result of disturbing its natural crown structure and growth patterns (Pinkard & Beadle 

1998; Ranjbar et al. 2011; Khosravi et al. 2012; Abbasi et al. 2014; Rostami Jalilian et al. 2016; Ghahramany et 

al. 2017). Although the pollarding is marginal in some parts of the world, it remains widespread, particularly in 

arid and semi-arid regions where herbaceous pastures are scarce for much of the year (Alemu et al. 2013; Berhe 

& Tanga 2013; Franzel et al. 2014; Geta et al. 2014). This study applies geostatistical techniques to estimate the 



spatial distribution of tree density and basal area in the pollarded oak forests of the Northern Zagros region, 

Northwest Iran. Key research questions were: 

1. How accurate is the estimation of tree density and basal area in pollarded oak forests using geostatistical 

techniques? 

2. Which variogram model best captures the spatial distribution of tree density and basal area in pollarded oak 

forests? 

3. Which kriging interpolation technique provides the best estimates of tree density and basal area in pollarded 

oak forests? 

The findings of this research will, therefore, add to the literature about the spatial distribution of forest density 

attributes for good and sustainable forest management amidst continuous conservation challenges. The results of 

this study can be expected to offer useful new information on aspects relating to how spatial modeling may 

improve the monitoring and management of forests, including in complex systems such as the pollarded oak. 
 

MATERIALS AND METHODS 

Study area 

This study was conducted in a pollarded oak forest located within the Northern Zagros region, Northwest Iran. 

These forests account for about 449000 hectares of the vast oak forest area measuring about 5,500,000 hectares, 

which is located on the western parts of Iran. These forests have three main oak species: Quercus brantii Lindle, 

Quercus libani Oliv., and Quercus infectoria Oliv., and are mixed with coppice and high oak stands (Ghazanfari 

et al. 2004; Marvi Mohajer 2005). These forests are not commercially harvested for their timber, but they play an 

important role in maintaining ecological balance through erosion control, carbon storage, and regulation of the 

hydrological cycle. Though such forests protected, local people still harvest these forests for purposes like 

pollarding, collecting fuelwood, grazing by cattle and harvesting non-timber forest products (NTFPs) such as 

mature oak acorns, galls of different types and wild pistachio resin. Further, the forested area is also used for 

agriculture (Jazirehi & Ebrahimi Rastaghi 2003; Ghazanfari et al. 2004; Valipour et al. 2014; Ghahramany et al. 

2018). The study area covers an area of 9178 hectares and is bounded by longitudes 45°44'14" to 45°53'22" E and 

latitudes 35°51'14" to 35°57'45" N. It holds about 7,209 hectares for the forested class while about 1,969 hectares 

make up the non-forest areas (Fig. 1). The study area consists of low hills with schist, conglomerate, shale, and 

metamorphosed limestone as parent materials. These soils are representative of the region due to their deep brown 

color, calcareous in nature. The average annual rainfall in the area is 647 mm, while the average temperature is 

around 11.4 °C (Shahabedini et al. 2018). 

 

Data acquisition and preparation 

Field data 

This study utilized geostatistical methods to analyze spatial patterns within a network of 117 georeferenced 

permanent sample plots (each 0.1 ha), established in 2005 and resurveyed in 2019 as part of a multipurpose forest 

management plan for pollarding in traditionally managed oak forests. The plots were systematically distributed 

across the study area using a dual-grid sampling design (600×600 m and 670×670 m spacing; Fig. 1) to capture 

spatial variability in tree density and basal area. All trees with diameter at breast height (DBH) ≥5 cm was 

measured, allowing for calculation of stand density and basal area parameters. This sampling strategy enabled 

both evaluation of long-term pollarding effects and comprehensive spatial analysis of forest structure dynamics. 

The basal area of each tree was determined using the following Equation 1: 

𝑔1.30 = 𝜋
4⁄ × 𝑑1.30

2     (Equation 1) 

where g1.30 is the basal area in cm2 and d1.30 is the DBH in cm. 

 

Geostatistical Analysis 

The fundamental elements of geostatistical analysis are exploratory data analysis, variogram analysis and kriging 

interpolation method. Exploratory data analysis is an essential step in the geostatistical workflow. It provides 

valuable insights into spatial distribution, data variability, and outliers (Harris 2017). Geostatistical analysis was 

performed using data from georeferenced sample plots and their geographic coordinates. The following statistics 

were calculated to summarize the tree density and basal area distributions: mean, standard deviation, minimum, 

maximum, coefficient of variation, asymmetry, and kurtosis. Normality tests were carried out to assess suitability 



for geostatistical analysis using a one-sample Kolmogorov-Smirnov test, quantile-quantile plots, and visual 

inspections of histograms (Bivand 2010). Because of non-normality, a logarithmic transformation was considered 

to normalize data on tree density and basal area. To investigate the pattern or trend, the Trend Analysis tool has 

been executed against density indices data. 
 

 
Fig. 1. Location of the study area in Iran (a), Kurdistan Province (b), and sample plot’s locations within the study area (c) 

[Image from Landsat 9 (RGB 543)]. 
 

Variogram analysis, one of the most important methods in geostatistics, focuses on the spatial autocorrelation of 

a variable in line with the variation of the observation pairs by a fixed distance between them. This is a statistical 

procedure used to measure the autocorrelation or dependency between observations concerning their geographical 

position. Understanding the spatial structure of a variable helps to predict and make better inferences about its 

behavior at unsampled locations. Fig. 2 explains the estimates of the degree of spatial dependence due to 

covariance distance between pairs. Semivariance is one of the basic ingredients of variogram analysis. It defines 

the average squared difference between two observations separated by a specific distance, h. (Walter et al. 2007; 

Chiles & Delfiner 2012; Webster & Oliver 2007; Arétouyap et al. 2015; Schiappapietra & Douglas 2020). 

Semivariance is calculated by using Equation 2. 

𝛾(ℎ) = 1/2 × ∑ [(𝑍(𝑋𝑖) − 𝑍(𝑋𝑖 + ℎ))
2

] /𝑛(ℎ)
𝑛(ℎ)
𝑖=1        (Equation 2) 

where: γ(h): Semivariance at distance h; Z(xᵢ): Value of the variable at location xᵢ; Z(xᵢ+h): Value of the variable 

at location xᵢ + h (a distance h away); n(h): Number of pairs of points separated by distance h. By fitting a 

theoretical model to the experimental variogram, we can investigate the spatial structure of the data and make 

informed decisions about the interpolation and prediction techniques. Spherical, exponential, and Gaussian are 

common variogram models, each with unique properties (Hengl et al. 2007; Chiles & Delfiner 2012). The spatial 

structure of tree density and basal area was investigated by variogram analysis. Semivariances between pairs of 

sample plots were computed and plotted against the distance separating them. The best-fitted model was chosen 

by statistical criteria such as coefficient of determination (r2) and residual sum of squares (RSS). The degree of 

spatial dependence (DSD) was calculated using equation 3: 

𝐷𝑆𝐷 = (
𝑆𝑖𝑙𝑙−𝑁𝑢𝑔𝑔𝑒𝑡 𝑒𝑓𝑓𝑒𝑐𝑡

𝑆𝑖𝑙𝑙
) × 100       (Equation 3) 

Where: Sill represents the total variance of the data and nugget effect is the variance at zero distance.  

The spatial dependence degree (SDD) was categorized based on the thresholds proposed by Cambardella et al. 

(1994) and Ganawa et al. (2003): 

a) Weak structure: SDD < 25%  

b) Average structure: 25% ≤ SDD ≤ 75% 

c) Strong structure:  SDD > 75%  



Data isotropy was checked by directional experimental variogram calculation in four directions: 0°, 45°, 90°, and 

135°, with a deviation angle of 22°. Anisotropy was checked by superimposing plotted variograms for the 

mentioned directions and calculating the anisotropy ratio according to Wackernagel (2003), Chiles & Delfiner 

(2012), Allard et al. (2016), Svidzinska (2019), and Verbovšek (2024). The anisotropy ratio was calculated by 

dividing the maximum range by the minimum range. The anisotropy ratio that indicates isotropy is close to 1. 

According to Thonon & Cacheiro Pose 2001; Golden Software 2025, the ratio below 2 is considered mild, and a 

ratio above 4 is rated as severe. Also, the anisotropy in the stand density indices distribution was analyzed using 

the variogram surface tool in GS+ software (Tiryana 2005). Kriging interpolation method is an interpolation 

geostatistical method based on data spatial autocorrelation. It is a method of prediction of values to unknown 

locations as the weighted sum of known observations. In last years, Kriging has been highly used in very different 

fields as forest sciences. Equation 4 represents the general kriging formula (Webster & Oliver 2000): 
 

𝑍∗(X0) = ∑ λi
n
i=1 Z(Xi)     (Equation 4) 

 

where: Z∗(x0): Predicted value at location X0; Z(Xi): Observed value at location Xi; λi: Weights assigned to each 

observation, determined based on the spatial autocorrelation structure. Different kriging methods are proposed 

depending on various characteristics of the dataset and assumptions considering the nature of the spatial 

variability. Every kriging type has particular advantages and will be chosen concerning the specific requirements 

of the study, nature of data, and application foreseen. The major variants of kriging include, but are not limited 

to, Ordinary Kriging, Simple Kriging, Global Kriging, and Disjunctive Kriging. Ordinary Kriging (OK) operates 

under the assumption of an unknown but constant mean, optimizing weights for minimum variance and unbiased 

predictions (Negreiros et al. 2010; Miao & Wang 2024). Simple Kriging (SK) requires prior knowledge of a 

constant mean, offering computational efficiency when this parameter is known (Siviero et al. 2024). For datasets 

with deterministic trends, Universal Kriging (UK) simultaneously models both spatial structure and trend 

components (linear/polynomial). Disjunctive Kriging (DK) uniquely handles nonlinear relationships and 

threshold probabilities by transforming variables while preserving spatial dependence, proving valuable for 

probabilistic environmental modeling (Oliver et al. 1996; Hawchar et al. 2018). The validation of interpolation 

methods ensures the accuracy and dependability of geostatistical models and their predictions. In this research, 

sample data will be divided into two datasets in order to assess the performance and accuracy of various spatial 

interpolation models: (i) Training dataset (70% of sample plots, 82 plots): This set was used to model the spatial 

distribution and develop the interpolation method for estimating density indices; (ii) Validation dataset (30% of 

the sample plots, 35 plots): This dataset was used to validate and to assess the performance of the interpolation 

method. The differences between the observed values from georeferenced sample plots and the predicted values 

in the validation dataset were calculated. Mean error (MAE), relative mean absolute error (rMAE), root mean 

square error (RMSE), and relative root mean square error (rRMSE) are some of the statistical metrics that have 

been used to assess the performance of the interpolation method. The equations for MAE, rMAE, RMSE, and 

rRMSE are given in Equations 5 – 8, respectively. The lower the value of these metrics, the better the accuracy 

(Oliver & Webster 1990; Heuvelink 1998; Chiles & Delfiner 2012). 
 

MAE =
1

N
∑ |z(Xi) − ẑ(Xi)|N

i=1             (Equation 5)                                    rMAE =
MAE

Z̅(Xi)
× 100     (Equation 6) 

RMSE = √
1

N
∑ [z(Xi) − ẑ(Xi)]2N

i=1     (Equation 7)                                   rRMSE =
RMSE

Z̅(Xi)
× 100    (Equation 8) 

 

Where: N is the number of sample plots, ẑ (Xi) is the predicted index value, and Z(Xi) is the measured index value. 

The actual versus predicted values for tree density and basal area were also compared for the training dataset of 

82 sample plots using a paired-sample t-test to further ensure the accuracy of the applied kriging method. The 

great advantage of the Kriging interpolation method is to give not only the predictions themselves but also the 

estimate of prediction uncertainty. Based on the variogram model best fitted to the data, prediction maps and 

standard error maps have been produced accordingly. 
 

Software Tools 

Descriptive statistics and normality of data were conducted using R-software. Spatial trends analysis in the data 

on the density indices identified using ArcGIS 10.8. GS+ 5 was utilized to create semivariograms and conduct 

spatial structure analysis for the stand density. Additionally, geostatistical analysis was performed using ArcGIS 

10.8 with the Geostatistical Analyst extension. This included trend analysis, variogram modeling and kriging 



interpolation conducted through the Geostatistical Wizard. The software was employed to generate prediction 

maps and associated standard error maps of the studied characteristics. 

 

 
Fig. 2. Illustration of a Variogram. The points represent observed data measurements, while the curve depicts the empirical 

model function. The term "range" refers to the distance at which spatial correlation becomes negligible, "sill" indicates the 

maximum semivariance value, indicating the overall variability in the data, "nugget" the semivariance value at zero lag 

distance, representing the inherent variability or measurement error in the data, and the "lag distance" referes to the distance 

between two data points. 
 

RESULTS AND DISCUSSION 

This study utilized data from permanent sample plots in the study area. The existing dataset met precision 

requirements for estimating tree density and basal area, with an error margin below 10%. Consequently, no 

preliminary survey was conducted to determine sample plot quantity or establishment methodology. Fig. 1-c 

shows the sampling scheme (random-systematic) and the spatial distribution of the georeferenced sample plots in 

the study area. Summary statistics of density indices from georeferenced sample plots are shown in Table 3. Tree 

density averaged 291 stem ha-1 (with a variation ranging from 100 to 1200 stem ha-1) with a coefficient of variation 

of 65.6%. Basal area averaged 14.12 m² ha-1 (ranging from 3.05 to 42.30 m² ha-1) with a coefficient of variation 

of 49.9%. Considering the high density of trees, the low average basal area would then imply a stand dominated 

by a large number of small-diameter trees. This may be relevant to the coppice structure of the forest and the high 

density of small-diameter oak sprouts, which are common in this unique ecosystem. Ghazanfari et al. (2004) and 

Ghahramany et al. (2018) reported an increase in the abundance and dominance of small-diameter oak sprouts 

due to traditional management practices that have been going on within the region under study. Tree density and 

basal area showed high variation and heterogeneity in this oak forest, as described by the coefficient of variation 

class presented by Dalchiavon et al. (2012). Such heterogeneity can be the result of clumped spatial distribution 

of trees, which has been confirmed in various studies such as Safari et al. (2010) and Akhavan et al. (2018). 

Notably, the trees are unevenly distributed within the study area; small-diameter oak sprouts are densely and 

sparsely distributed in some and other areas, respectively. This distribution is determined by management 

practices that, in combination with site-specific conditions, affect tree growth and regeneration. Traditional 

management practices, such as silvopastoral systems, influence forest structure by shaping tree distribution 

patterns (Villegas et al. 2021). Moreover, the widely used practice of pollarding in the studied forest likely 

influences tree growth and distribution, thus affecting the observed spatial pattern. This has also been asserted by 

Rostami Jalilian et al. (2016) and Ghahramany et al. (2017). Such a relationship between forest structure, tree 

density, growth pattern, and various physiographic features, with shifting soil quality and moisture, was also 

confirmed by Ghahramany et al. (2018). This was also affirmed by the association of environmental variables and 

species distribution in tropical forests analyzed by Huang et al. 2012. 

 

Trend analysis 

Owing to the mountainous nature of the study area, a trend analysis of the density measures was conducted, and 

the results are presented in Fig. 3. A weak trend in tree density in the north-south and east-west directions and a 

significant trend in basal area in the west-east direction were identified. However, the inclusion of these trends 

into the kriging interpolation process did not improve the accuracy of the results. Hence, the trends in the data 

were excluded to generate the prediction maps and standard error maps for the density indices. 

 



 
Fig. 3. Spatial trends in tree density (A) and basal area (B) field data across the study area in the west-east (X) and the north-

south (Y) directions, the Z-axis represents the values of the examined characteristics (tree density or basal area). 
 

Variogram analysis 

The results of the variogram analysis of tree density and basal area are shown in Table 1. Experimental variograms 

are reliable in all distance classes with more than 25 data pairs according to the criteria set by Myers (1997). Of 

the models compared, the exponential model represented in Equation 9 best-described changes in tree density and 

basal area (Table 1). This is in agreement with a high coefficient of determination and low residual sums of squares 

that were observed with r² = 0.72 for tree density and r² = 0.68 for basal area, RSS = 0.0331 for tree density, and 

RSS = 0.0126 for basal area. Such results show that the exponential model accounted for 72% of the tree density 

and 68% of the basal area, while other factors or processes not measured result in the remaining variability 

(Akhavan & Kiadaliri 2010). Both tree density and basal area showed isotropic behavior, with their anisotropy 

ratios close to unity, 1.04 and 1.18, respectively (Thonon & Cacheiro Pose 2001; Golden Software 2025). Isotropy 

was further supported by the symmetric variogram surface shown in Fig. 4; thus, omnidirectional variogram could 

be used for both examined characteristics during geostatistical modeling (Fig. 5). 

𝛾(ℎ) = 𝐶0 + 𝐶 [1 − exp (−
ℎ

𝑅
)] ⇰ ℎ ≥ 0   (Equation 9) 

where: 

 γ(h) is the variogram value at a separation distance h, 

 C0+C is the sill (the maximum value that the variogram reaches), 

 h is the lag distance (or separation between data points), 

 R is the range, which is the distance at which the variogram reaches the sill. 

The high values of DSD (88% for tree density and 80% for basal area) indicate that both variables present 

variability or continuity in space. This characteristic establish them as regionalized variables, fulfilling one of the 

main prerequisites for applying spatial interpolation methods, confirming that geostatistical methods, such as 

kriging, are efficient for accurate modeling and prediction according to Ganawa et al. (2003) and Appel et al. 

(2018). Despite the strong heterogeneity, strong spatial autocorrelation of tree density and basal area 

characteristics would thus suggest that this variability is structured rather than random. This structured variability 

is influenced by environmental factors and traditional management practices (Rozas et al. 2009). Understanding 

these dynamics can support effective management strategies for forests by recognizing the underlying spatial 

dynamics. The analysis revealed spatial dependence ranges of 1,790 m for tree density and 1,500 m for basal area, 

representing the maximum distances over which spatial similarity persists (Table 1). Beyond these ranges, the 

density characteristics become independent. The identified ranges are crucial for determining the dimensions of 

sampling grids. According to Akhavan & Klein (2009), a distance of two-thirds of the spatial dependence range 

should be used between sample plots. This information can be used in calculating the dimensions of the sampling 

grid. For isotropic variograms, a square grid is suitable, while anisotropic variograms necessitate a rectangular 

grid, optimizing sampling in directions of highest variability. There were nugget effect values of 0.0384 and 

0.0476 for the tree density and basal area, respectively. These values were low, which meant that very little 

variance could not be accounted for by the models, usually because of measurement errors or small-scale spatial 

variation that increases the reliability of the models (Webster & Oliver 2007). The differences in sill values show 

greater spatial variability for tree density compared to basal area at 0.3198 for tree density and 0.2392 for basal 



area. This variability is probably due to such factors as soil fertility, topography, and disturbances by fire or 

management practices. In contrast, basal area variability is seen to be less in the sense of the homogeneous age 

structure of the forest (Ghahramany et al. 2018). 

 

Fig. 4. Surface variogram maps in the west-east (W-E) and north-south (N-S) directions, calculated for tree density (A) and 

basal area (B). 

Table 1. Result of variogram analysis for tree density and basal area. 

 Index Fitted model  (Co)  (C) Co + C A0 (m) 
SDD 

(%) 
Ar r2 RSS 

Tree density (stem ha-1) 

Exponential 0.0384 0.2814 0.3198 1790 88 1.04 0.72 0.0331 

Spherical 0.1490 0.3300 0.4790 19590 68.9 - 0.641 0.0422 

Gaussian 0.1970 0.9210 1.1180 19730 82.4 - 0.538 0.0543 

Basal area (m2 ha-1) 

Exponential 0.0476 0.1916 0.2392 1500 80 1.18 0.68 0.0126 

Spherical 0.1109 0.1369 0.2478 6950 55.2 - 0.62 0.0149 

Gaussian 0.1217 0.1227 0.2444 3000 50.2 - 0.58 0.0169 

Note: Co: nugget effect; C: Structural variance; Co + C: sill; A0: range of spatial dependence; SDD: Spatial dependence degree according to Ganawa et al. 

(2003); Ar: Anisotropy ratio; r2: coefficient of determination; RSS: residual sum of squares. 

 

Comparison of kriging interpolation techniques 

Table 2, illustrates the validation results of some kriging interpolation techniques, including ordinary kriging, 

simple kriging, global kriging, and disjunctive kriging for predicting tree density and basal area. Among them, 

ordinary kriging has the best performance in terms of lowest relative errors, rMAE = 33.3% and rRMSE = 44.4% 

for tree density, and rMAE = 30.63% and rRMSE = 41.4% for basal area. As a result, ordinary kriging was used 

to produce prediction maps and the corresponding prediction standard error maps for both tree density and basal 

area, as shown in Figs. 6 and 7. The estimated tree density and basal area derived using ordinary kriging are 

summarized in Table 3. Although ordinary kriging demonstrated moderate rMAE for tree density and basal area, 

the high rRMSE values clearly indicate significant variability and heterogeneity in the data. These might be 



improved by increasing sample size and using stratified ground sampling methods and may improve the accuracy 

of the estimated density index; hence, these are worthy of further studies in subsequent research works. 
 

 
Fig. 5. Best-fit isotropic semivariogram models (with search neighborhood=5) of tree density (A) and basal area (B). 

 

The results showed that the means of tree density and basal area estimated by applying the geostatistical kriging 

method were very similar to those calculated from the ground-based inventory (Table 3). The estimation error for 

tree density using the kriging method is 12.8%, which is 8.6% lower than the estimation error obtained from 

ground-based sample plots (14%; Table 3). Accordingly, the basal area estimation error was reduced from 11% 

using georeferenced sample plots to 9.4% with the kriging technique, which is about a 14.5% reduction compared 

to the ground-based inventory (Table 3). The similarity between statistics derived from ground inventory data and 

those estimated via ordinary kriging confirms the reliability of geostatistical estimations (Akhavan & Kiadaliri 

2010). The paired t-test comparing measured and estimated tree density and basal area in the training sample plots 

showed no significant differences for tree density (t = 0.230, p-value = 0.819, df = 81) or basal area (t = 0.361, p-

value = 0.719, df = 81). These results demonstrate that ordinary kriging achieved reasonable accuracy in 

estimating density indices.  The results of forest density estimation using Kriging method (Figs. 6 and 7) confirmed 

significant spatial variability in tree density and basal area across the study area. Tree density was highest in the 

western region, reaching 1,155 stem ha-1, and lowest in the northern region, at 110 stem ha-1 (Fig. 6). The highest 

area, which was 5,622.01 ha, was attributed to the tree density class of 110–319 stem ha-1. On the other hand, the 

lowest area covered 10.82 ha with a density class of 737–946 stem ha-1. Similarly, the basal area also showed 

marked spatial variation: from the highest of 35.81 m² ha-1 in the eastern part to the lowest of 3.76 m² ha-1 in the 

western portion of the study area (Fig. 7). Maximum land area-3,732.77 ha fell under basal area class 10.17–16.58 

m² ha-1, and minimum area-6.18 ha fell under the highest basal area class of 29.40–35.81 m² ha-1. The effectiveness 

of ordinary kriging in estimating various forest attributes has been extensively demonstrated, highlighting its 

reliability and precision in forest resource management. As a widely used geostatistical tool, kriging excels in 



spatial interpolation, monitoring forest dynamics, and optimizing forest management decisions by capturing both 

natural and anthropogenic spatial patterns (Sukkuea & Heednacram 2022; Teresinha et al. 2023). Ordinary kriging 

is favored for its simplicity and lower error rates compared to more complex models like co-kriging, proving 

highly reliable in tasks such as mapping forest stand volume (Tiryana 2005; Silveira et al. 2019), estimating cork 

production areas (Montes et al. 2005), and determining basal area and tree height (Akhavan & Klein 2009). Its 

adaptability is evident in diverse ecological contexts, including forest canopy mapping (Vafaei et al. 2022) and 

coppice forest management, with strong spatial autocorrelation observed in stem density and crown cover (Rezaei 

et al. 2014). Comparative studies consistently confirm kriging’s superiority over methods like IDW, particularly 

in estimating tree density in dense forests (Munyati & Sinthumule 2021) and mapping productivity in beech forests 

and coppice stands (Akhavan et al. 2010; Ahadi et al. 2017). Kriging has been very efficient in mapping diameter 

growth, tree mortality, and ingrowth in the studies of Kalbi et al. (2017); it is similarly reliable for estimating tree 

height variability within the complex dynamics of forest change, as carried out by Goergen et al. (2020). Its 

efficiency in spatial analysis, optimal grid design, and density prediction further underscores its crucial role in 

sustainable forest management (Raimundo et al. 2017; Luo et al. 2024). The importance of geostatistical methods, 

in particular, kriging, for effective forest management based on precise and unbiased estimates of forest attributes, 

is underlined in this study. These geostatistical methods will be of increasing relevance in researching the impacts 

of traditional management practices to support informed decisions in sustainable forest management and 

conservation. Future studies should focus on adapting these methods to different forest types and management 

systems to improve their precision and broader applicability. 

 

Table 2. Validation results of kriging interpolation methods for predicting tree density and basal area. 

Basal area Tree density  

Interpolation 

method 

rRMSE 

(%) 

RMSE (m2 ha-

1) 

rMAE 

(%) 

MAE 

 (m2 ha-

1) 

rRMSE 

(%) 

RMSE  

(stem ha-

1) 

rMAE 

(%) 

MAE 

 (stem ha-

1) 

41.8 5.53 30.63 4.05 44.4 137 33.3 103 Ordinary kriging 

44.6 5.89 35.15 4.64 53.0 164 38.8 120 Simple kriging 

42.2 5.58 31.08 4.11 44.9 139 33.8 104 Global kriging 

44.3 5.85 34.76 4.59 53.0 164 38.8 120 Disjunctive kriging 

 

 
Fig. 6. Prediction map (A) and prediction standard error map (B) of tree density for the study area. 

CONCLUSION AND RECOMENDATIONS 

This study highlighted the application and capability of geostatistical methods, particularly kriging interpolation, 

to assess the spatial distribution of tree density and basal area in pollarded oak forests in the Northern Zagros 

region of Iran. The findings revealed significant spatial variability in both tree density, averaging 291 stem ha-1 

with a coefficient of variation of 65.6%, and basal area, averaging 13.81 m² ha-1 with a coefficient of variation of 

49.9%. The observed dominance of small-diameter trees and clumped distribution patterns reflect historical 

management practices and localized environmental factors. Geostatistical analysis, including variogram 



modeling, confirmed strong spatial autocorrelation for both tree density and basal area, with high degrees of spatial 

dependence (88% for tree density and 82.2% for basal area). The exponential model and omnidirectional 

variograms for both variables proved effective for capturing spatial patterns, supporting the use of kriging 

techniques for accurate estimation. Ordinary kriging emerged as the most reliable interpolation method, with 

reasonable relative errors (rMAE = 33.3% for tree density, 30.63% for basal area) and no significant differences 

between measured and estimated values, though high rRMSE values indicated substantial variability and 

heterogeneity in the dataset. 
 

 
Fig. 7. Prediction map (A) and prediction standard error map (B) of basal area for the study area. 

 

Table 3.  Summary statistics of density indices at field sample plots and estimated using the ordinary kriging interpolation 

method. 

Estimation method Attribute n Mean SD Min. Max. CV (%) CS CK E (%) 

Georeferenced sampling Tree density (stem ha-1) 82 291 191 100 1200 65.6 2.4 7.5 14 

Basal area 

(m2 ha-1) 

82 14.12 7.06 3.05 42.30 49.9 1.04 1.84 11 

Ordinary Kriging Tree density (stem ha-1) 82 285 167 110 1155 58.6 2.5 9.4 12.9 

Basal area 

(m2 ha-1) 

82 13.81 5.92 3.76 35.81 42.91 0.84 1.04 9.4 

n: Sample Size; SD: Standard deviation; CV: Coefficient of variation; CS: Coefficient of asymmetry; CK: Coefficient of kurtosis; E: Error of estimate. 

 

The similarity in the ground inventory data and ordinary kriging estimates, along with the non-significant 

differences in tree density and basal area from the paired t-test, serves to confirm that ordinary kriging is an 

accurate approach in the estimation of density indices. This study highlights how geostatistical approaches, 

particularly kriging, can transform forest resource management through spatially explicit decision-support 

systems. By accurately estimating critical stand parameters like tree density and basal area, this methodology 

provides forest managers with a powerful framework for sustainable ecosystem management that could be applied 

across comparable forest landscapes. 

Based on the findings of this study, the following recommendations are provided to improve geostatistical 

techniques in pollarded oak forests: 

1. Given the high variability and heterogeneity observed in tree density and basal area, increasing the sample size 

and utilizing stratified sampling methods are recommended. The latter can better represent different areas of the 

forest while considering environmental conditions and tree growth patterns. This approach can enhance the 

accuracy of geostatistical models and make spatial predictions more precise and reliable. 

2. Considering the limitations of ordinary kriging, as indicated by the elevated rRMSE values suggesting potential 

for improved prediction accuracy, future research should focus on refining variogram modeling and exploring 

alternative kriging techniques to better capture complex spatial relationships. This would enhance the precision 

and comprehensiveness of forest assessments. To improve the accuracy of density and basal area estimations, 

survey intervals should be adjusted according to specific forest conditions, and advanced geostatistical methods, 

such as Co-Kriging, should be employed. By incorporating auxiliary variables, including spectral indices (i.e. 



NDVI, EVI), soil fertility, and topography, Co-Kriging can improve predictive accuracy and reduce spatial 

heterogeneity. 
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