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Abstract. This paper addresses the numerical approximation of a system of differential equations
involving fractional derivatives of arbitrary order. The derivatives are governed in the Caputo sense of
orders αi ∈ (0,1). Motivated by the complexity of modeling coupled fractional dynamics, an efficient
numerical scheme based on the classical L1 discretization technique is developed. The proposed method
effectively captures the behavior of the system across various fractional orders and parameter regimes.
A rigorous convergence analysis confirms the consistency of the proposed technique and establishes a
convergence rate of order minp{2−αp}. Numerical experiments are conducted to validate the theoret-
ical findings, demonstrating excellent agreement with exact solutions and confirming the computational
efficiency of the approach. These results highlight the robustness of the proposed scheme for solving the
differential system with memory effects.
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1 Introduction

Fractional calculus is a generalization of classical calculus that extends the concept of derivatives and
integrals to non-integer (fractional) orders. This field has gained significant attention due to its ability
to model memory and hereditary properties inherent in various physical and biological systems. Unlike
integer-order models, fractional-order models can better capture long-range temporal or spatial interac-
tions, making them ideal for processes with non-local effects. Applications of fractional calculus are
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found in diverse fields such as viscoelasticity, control theory, signal processing, diffusion processes,
bioengineering, etc [10, 11, 14, 21, 23]. The two most commonly used definitions of fractional deriva-
tives are the Caputo and Riemann–Liouville derivatives, each suited for different types of problems. In
many physical and engineering problems, initial conditions are naturally given in terms of integer-order
derivatives (e.g., initial position, velocity). Caputo derivative allows these classical initial conditions to
be applied directly, making the modeling process more intuitive and physically meaningful. In contrast,
the Riemann–Liouville derivative requires initial conditions defined via fractional derivatives, which are
often difficult to interpret physically and to implement in practice. This makes the Caputo derivative
better suited for describing processes. Systems of ordinary differential equations (ODEs) arise when
modeling real-world phenomena involving multiple interdependent variables that change with respect
to a common independent variable, typically time or space. These systems are central in fields such
as population dynamics, electrical circuits, chemical reactions, and mechanical systems. Depending on
the nature of the equations, ODE systems can be linear or nonlinear, autonomous or non-autonomous
. If the order of differential equations is non-local, the system transitions into the domain of fractional
differential equations (FDEs). These equations offer a more accurate description of processes exhibiting
memory effects and hereditary properties compared to traditional integer-order ODEs. The application of
fractional calculus in these contexts provides deeper insights into systems with irregular or complex be-
haviors, yielding more precise results. In general, due to the unavailability of exact analytical solutions,
researchers across various fields focus on developing efficient numerical techniques for solving FDEs
while ensuring their stability and convergence. The Morris-Lecar model, originally proposed in 1981,
is a reduced biophysical model that describes the membrane potential dynamics of excitable cells, such
as neurons and muscle fibers. It simplifies the more complex Hodgkin-Huxley model by reducing it to a
two-dimensional system, capturing essential features of neuronal excitability with lower computational
complexity. The model is particularly effective in analyzing neuronal firing patterns, type-I and type-II
excitability, and oscillatory behaviors near bifurcation points. The classical form of the Morris–Lecar
model consists a pair of coupled ODEs given by{

C dV
dt = Iapp −gL(V −VL)−gCaM∞(V )(V −VCa)−gKN(V −VK),

dN
dt = N∞(V )−N

τN(V ) ,
(1)

where V is the membrane potential, N is the recovery variable, and the other parameters represent ionic
conductances and reversal potentials. M∞(V ) and N∞(V ) are voltage-dependent activation functions,
while τN(V ) is a time constant. Recent research has extended the Morris-Lecar model to incorporate
fractional-order derivatives, motivated by the need to capture memory and hereditary effects observed
in neuronal dynamics. These extensions replace the classical derivatives of (1) by the derivatives of
non-integer order as follows{

CDα1
t V (t) = Iapp −gL(V −VL)−gCaM∞(V )(V −VCa)−gKN(V −VK),

Dα2
t N(t) = ϕℓ(V )(N∞(V )−N),

where Dαi denotes the Caputo derivative of order αi ∈ (0,1), with α1 ̸= α2 in the incommensurate case.
Such models provide a richer and more accurate framework for analyzing subdiffusive and long-term
memory behavior in neuronal systems. Upon linearization around an equilibrium point, the fractional
Morris–Lecar system reduces to a linear inhomogeneous system of the form:

Dα
t U(t)+A(t)U(t) = F(t),
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which corresponds directly to the type of multi-order fractional system considered in this work. This
connection highlights the practical relevance of our system in modeling real-world dynamical processes
in neurophysiology that involve memory and complex coupled behavior.

In this article, we consider the following general class of fractional-order systems{
Dα

t V(t)+A(t)V(t) = F(t), t ∈ (0,T ],

V(0) = V0,
(2)

where T ∈ R+, V is the unknown vector function which is required to be evaluated and

α = [α1,α2, . . . ,αn], A(t) = [ai j(t)], i, j = 1,2, . . . ,n,

V(t) = [v(1)(t),v(2)(t), . . . ,v(n)(t)]T ,

F(t) = [ f (1)(t), f (2)(t), . . . , f (n)(t)]T ,

V0 = [v(1)(0),v(2)(0), . . . ,v(n)(0)]T ,

αi ∈ (0,1) for each i, ai j : [0,T ] → R, and the vector function F(t) are known and sufficiently smooth.
The theoretical and numerical analysis of FDEs poses significant challenges, primarily due to the nonlo-
cal nature of fractional derivatives. This nonlocality complicates the derivation of exact analytical solu-
tions for most real-world problems, thereby motivating the development of robust and efficient numerical
methods. Several numerical approaches have been proposed in the literature for fractional systems, in-
cluding finite difference, finite element, and spectral methods. The existence and uniqueness of solutions
for initial value problems involving fractional-order systems have been rigorously studied in foundational
works such as those by Delbosco and Rodino [4], and later by Odibat [17], who provided generalizations
under various fractional operators. In [8] Khader et al. introduced the Chebyshev collocation method
for solving high-order FDEs, demonstrating its ability to yield accurate approximations for complex sys-
tems. Chen et al. [3] developed a multi-domain spectral method for time-FDEs, combining three-term
recurrence relations for Jacobi polynomials with high-order Gauss quadrature. Their approach achieved
high-order accuracy across domain partitions. In [6] Duan et al. presented two spectral approximation
strategies-one based on truncated series expansion and the other on interpolation using shifted Jacobi
polynomials—to approximate the fractional derivative. Coupled with a collocation method, both tech-
niques provided highly accurate solutions with provable exponential convergence for smooth problems.
Diethelm et al. [5] examined the asymptotic behavior of linear multi-order fractional systems, offer-
ing a theoretical framework that supports stability analysis and long-term solution behavior-key aspects
for reliable numerical modeling. Ziane and Cherif [25] proposed the Variational Iteration Transform
Method, a hybrid technique that combines the Variational Iteration Method with the Laplace transform
to solve linear and nonlinear FDEs. In [22] Soradi-Zeid developed direct and indirect meshless methods
based on radial basis functions to solve fractional optimal control problems. These methods approx-
imated both the state and control variables without requiring meshing, and yielded precise results for
multi-dimensional fractional systems. In the same year, Ruman et al. [19] applied the Galerkin method
to linear fractional-order two-point boundary value problems, addressing both homogeneous and non-
homogeneous cases. Their approach utilized differentiable polynomial basis functions. Abdeljawad et
al. in [1], introduced a Haar wavelet collocation technique to solve systems of FDEs. By expanding un-
known functions in Haar series and using collocation points, they transformed the system into algebraic
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equations and demonstrated significant computational savings. Most recently, Algazaa and Saeidian [2]
presented two powerful numerical strategies for nonlinear multi-order fractional systems. The first one
employed a fractional operational matrix based on Bernstein polynomials, while the second one utilized a
spectral collocation method with Bernstein polynomials at Chebyshev–Gauss–Lobatto points, evaluated
through Jacobi–Gauss quadrature. Recent advances in numerical treatment of fractional systems can be
found in [9, 12, 16, 20, 24], where efficient iterative and spectral methods have been proposed.

These diverse methodologies demonstrate the rapid evolution of numerical techniques for solving
FDEs. They provide a solid foundation for further exploration into stable and accurate schemes, par-
ticularly for multi-variable, multi-order systems like those considered in this study. While earlier work
have addressed numerical methods for scalar or linear multi-term fractional differential equations, they
do not fully explore systems with multiple Caputo fractional derivatives of distinct orders, especially in a
coupled nonlinear setting. In contrast, the present work develops and analyzes a generalized L1 scheme
tailored for such systems, offering both theoretical convergence guarantees and numerical validation.
The L1 scheme is used to approximate the fractional derivative of order α ∈ (0,1). It is derived using
a piecewise linear interpolation of the integrand over each subinterval. Owing to its simple form and
ease of implementation, the L1 approximation has been widely employed in the numerical treatment of
both single and multi-term fractional differential equations; see [7,13,15,20] and the references therein.
However, fewer studies have explored its implementation in coupled systems involving multiple Caputo
fractional orders with distinct dynamics. The novelty of our proposed scheme lies in its tailored adap-
tation of the classical L1 method to a multi-dimensional setting, allowing for component-wise treatment
of distinct fractional orders.

The main objective of this study is to develop and analyze a robust and accurate numerical method
based on the classical L1 difference scheme for solving systems of differential equations involving frac-
tional derivatives. The method is designed to handle multi-order coupled systems and to effectively
capture the non-local memory effects characteristic of such systems. By leveraging the structure of the
Caputo derivative, the approach ensures compatibility with classical initial conditions and offers prov-
able convergence behavior, as validated through both theoretical analysis and numerical experiments.
The structure of the paper is as follows In Section 2, we present fundamental definitions from fractional
calculus. The construction of the numerical scheme for solving (2) is provided in Section 3. The conver-
gence analysis is done in Section 4. Section 5 focuses on numerical simulations, and concluding remarks
are presented in Section 6.

2 Preliminaries

The following definitions and properties will be useful for this work. For more detail one may refer [18].

Definition 1. Let φ(t) ∈ C [a,b], the Riemann-Liouville fractional integral of order ν ∈ R+ of φ(t) is
defined by

Jν
t φ(t) =

1
Γ(ν)

∫ x

a
(x− t)ν−1

φ(t)dt,

Γ(·) is Euler’s gamma function.
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Definition 2. Let n− 1 < ν ≤ n,n ∈ N. The Caputo derivative of order ν ∈ R+ of the function φ(t) ∈
C n[a,b], is defined by

Dν
t φ(t) =


1

Γ(n−ν)

∫ x

a
(x− t)n−ν−1

φ
(n)(t)dt if n−1 < ν < n,

φ (n)(t) if ν = n.

Definition 3. The two parameters β ,γ > 0 Mittag-Leffler function is defined by

Eβ ,γ(z) =
∞

∑
k=0

zk

Γ(βk+ γ)
, z ∈ C.

The following are some basic properties of the fractional calculus:

• Linearity: Let λ1,λ2, be positive constants, then

Jν
x {λ1ϕ1(t)±λ2ϕ2(t)}= λ1Jν

x ϕ1(t)±λ2Jν
x ϕ2(t),

Dν
x {λ1ϕ1(t)±λ2ϕ2(t)}= λ1D

ν
x ϕ1(t)±λ2D

ν
x ϕ2(t).

• For x ∈ [a,b], m−1 < ν < m, we have

Dν
x Jν

x ϕ(t) = ϕ(t) and Jν
x Dν

x ϕ(t) = ϕ(t)−
n−1

∑
k=0

ϕ
(k)(a+)

(x−a)k

k!
, x > a.

3 The discretized problem

Let N ∈ N. The uniform mesh t j = jτ for j = 0(1)N with equal step length τ = T/N. The computed
solution of v(p) at the mesh point t j is denoted by V (p)

j . D
αp
t v(p)(t) at t j for j = 1(1)N can be written as

D
αp
t v(p)(t j) =

1
Γ(1−αp)

j−1

∑
k=0

tk+1∫
s=tk

(t j − s)−αp (v(p)(s))′ ds,

for p = 1(1)n, which can be discretized as follows [13]:

D
αp
N v(p)(t j) =

1
Γ(1−αp)

j−1

∑
k=0

v(p)(tk+1)− v(p)(tk)
τ

tk+1∫
s=tk

(t j − s)−αp ds

=
τ−αp

Γ(2−αp)

j−1

∑
k=0

[
v(p)(tk+1)− v(p)(tk)

]
b(p)

j−k, (3)

with the truncation error ε
(p)
j =(D

αp
t −D

αp
N )v(p)(t j) and the coefficient b(p)

q = q1−αp −(q−1)1−αp for q=
1(1)N. Using (3), model (2) is transformed to D

αp
N v(p)(t j)+

n
∑

i=1
api(t j)v(i)(t j) = f (p)(t j)+ ε

(p)
j , j = 1(1)N,

v(p)(t0) = ηp,
(4)
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for each p = 1(1)n. Neglecting the remainder term ε
(p)
j , the discrete problem (4) reduces to

τ−αp

Γ(2−αp)

j−1

∑
k=0

(
V (p)

k+1 −V (p)
k

)
d(p)

j−k +
n

∑
i=1

(api)(t j)V
(i)
j = f (p)

j , j = 1(1)N,

V (p)
0 = ηp,

(5)

for each p = 1(1)n. It is possible to express (5) as a N ×N linear system of equations

G(p)V (p) = F(p) for p = 1(1)n,

where V (p) = [V (p)
1 ,V (p)

2 , . . . ,V (p)
N ], F(p) = [F(p)

1 ,F(p)
2 , . . . ,F(p)

N ], µp =
h−αp

Γ(2−αp)
, and for i = 1(1)N



G(p)
i,i = µpb(p)

1 +aii(t j),

G(p)
i,k = aik(t j), k = i+1(1)n,

G( j)
l,i = ail(t j), l = 1(1)i−1,

F( j)
i = f (i)j +µb(p)

1 V (i)
j−1 +

j−2

∑
k=0

(
V (i)

k −V (i)
k+1

)
b(p)

j−k.

4 Convergence analysis

This section establishes the convergence result and estimates the global error of the proposed scheme (3).

Lemma 1. Truncation error of the discretization from (3) satisfies

|ε(p)
j | ≤Cτ

2−αp , j = 1(1)N.

Proof. Let v(p)(t) ∈ C 2[0,T ], we have∣∣ε(p)
j

∣∣= ∣∣(Dαp
t −D

αp
N )vp(t j)

∣∣
=

∣∣∣∣∣ 1
Γ(1−αp)

j−1

∑
k=0

∫ tk+1

tk
(t j − s)−αp

[dv(p)(s)
ds

− v(p)(tk+1)− v(p)(tk)
τ

]
ds

∣∣∣∣∣
≤C

∣∣∣∣∣ 1
Γ(1−αp)

j−1

∑
k=0

∫ tk+1

tk

t j + t j−1 −2s
(t j − s)αp

ds+O(τ2)

∣∣∣∣∣.
From [13], we get

∣∣∣∣∣ 1
Γ(1−αp)

j−1
∑

k=0

∫ tk+1
tk

t j + t j−1 −2s
(t j − s)αp

ds

∣∣∣∣∣≤ 2τ2−αp . This however means |ε(p)
j | ≤Cτ2−αp .

Hence the proof is completed.
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Denote e(p)
j =

∣∣v(p)(t j)−V (p)
j

∣∣ for j = 1(1)N. From (4) and (5), we get Dα
N e(p)

j +
n
∑

i=1
api(t j)e(i)j = ε

(p)
j ,

e(p)
0 = 0.

(6)

Lemma 2. For any mesh function {V (p)
j }N

j=0 with V (p)
0 = 0, we have for j = 1(1)N,

∣∣V (p)
j

∣∣≤ max
k=1(1) j

{
Γ(2−αp)

b(p)
k τ−αp

D
αp
N

∣∣V (p)
k

∣∣}.

Proof. Let max
k=1(1) j

∣∣V (p)
k

∣∣= ∣∣V (p)
q

∣∣ for some q ∈ {1,2, · · · , j}. Since V (p)
0 = 0, (3) yields

Dα
N

∣∣V (p)
q

∣∣= τ−αp

Γ(2−αp)

{∣∣V (p)
q

∣∣− q−1

∑
k=1

(
b(p)

k −b(p)
k+1

)∣∣V (p)
q−k

∣∣}.
Now, b(p)

1 = 1 and b(p)
k > b(p)

k+1 for all k ≥ 1 implies that

Dα
N

∣∣V (p)
q

∣∣≥ τ−αp

Γ(2−αp)

{∣∣V (p)
q

∣∣− q−1

∑
k=1

(
b(p)

k −b(p)
k+1

)∣∣V (p)
q

∣∣}≥ τ−αp

Γ(2−α)
b(p)

q
∣∣V (p)

q
∣∣.

Therefore,
∣∣V (p)

q
∣∣≤ Γ(2−αp)

b(p)
q τ−αp

D
αp
N

∣∣V (p)
q

∣∣. Hence, the desired result.

Theorem 1. Let {v(p)(t j)}N
j=1 be the true solution and {V (p)

j }N
j=1 be the approximate solution of problem

(2) for each p = 1(1)n. Then we have

∣∣e(p)
j

∣∣≤CT αp(τ
min

p
{2−αp}

+T τ
2).

Proof. Multiplying (6) by e(p)
j and using (3), we obtain

µ
∣∣e(p)

j

∣∣2 + n

∑
i=1

∣∣api(t j)
∣∣∣∣e(i)j

∣∣∣∣e(p)
j

∣∣≤ ∣∣ ∣∣e(p)
j

∣∣+µ

j−1

∑
k=1

(
b(p)

k −b(p)
k+1

)∣∣e(p)
j−k

∣∣ ∣∣e(p)
j

∣∣.
Therefore

µ
∣∣e(p)

j

∣∣2 ≤ ∣∣e(p)
j

∣∣+µ

j−1

∑
k=1

(
b(p)

k −b(p)
k+1

)∣∣e(p)
j−k

∣∣ ∣∣e(p)
j

∣∣.
Dividing by

∣∣e(p)
j

∣∣, we get Dα
N

∣∣e(p)
j

∣∣≤ ∣∣E (p)
j

∣∣. Lemma 1 shows that

∣∣E (p)
j

∣∣≤ ∣∣ε(p)
j

∣∣≤C(τ
min

p
{2−αp}

+T τ
2) if v(p)(t) ∈ C 2[0,T ].
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Since b(p)
1 = 1 and b(p)

q > b(p)
q+1 for all q ≥ 1, the mean value theorem implies that

(1−αp)q−αp ≤ b(p)
q ≤ (1−αp)(q−1)−αp for q ≥ 2,

and using Lemma 2, we obtain

∣∣e(p)
j

∣∣≤ max
k=1,2,..., j

{
ταp Γ(2−αp)

b(p)
k

∣∣E (p)
j

∣∣}

≤
ταp Γ(2−αp)

(1−αp)N−αp
C(τ

min
p
{2−αp}

+T τ
2)

≤CT αp
(
τ

min
p
{2−αp}

+T τ
2).

This proves the theorem.

5 Numerical illustration

To demonstrate the effectiveness of the proposed approach, we present a couple of test examples in this
section. By comparing the results for various fractional orders, we establish that the proposed method is
highly effective and convenient. The maximum error (ΣN) and the corresponding order of convergence
(ρN) are calculated by

ΣN = max
0≤ j≤N

∣∣V (t j)−Vj
∣∣, ρN = log2

(
ΣN/Σ2N

)
. (7)

Numerical computations are performed in MATLAB R2016a.

Example 1. Consider the following test case in t ∈ (0,1] :
Dα1

t v1(t)+ v1(t)+ v2(t) = g1(t),
Dα2

t v2(t)+ v1(t)+ v2(t) = g2(t),
v1(0) = v2(0) = 0.

We choose g1(t) and g2(t) so that the exact solution becomes v1(t) = t(2+α1+α2), v2(t) = −t(3+α1+α2).
Figure 1 depicts the comparison between the exact and approximate solutions for Example 1 with varying
values of α1 and fixed α2 = 0.5. Similarly, Figure 2 shows the approximate solutions of v1(t) and v2(t) for
fixed α2 = 0.5 and varying α1 . It is clear from the graphs that the approximate solutions get closer to the
exact one. Figures 3-4 illustrate the effect of fractional order on the solutions profile for v1(t) and v2(t),
respectively and confirm the stability and accuracy of the proposed method. Numerical computations of
ΣN and ρN in Table 1 demonstrate that the proposed scheme achieves convergence rates ranging from
approximately 1.10 to 1.49 for v1(t), depending on the chosen fractional orders. A similar trend is
observed for v2(t) in Table 2, with convergence rates ranging from 1.16 to 1.49. It can be observed that
the order of convergence increases with increasing values of α1 and α2, in agreement with the theoretical
estimate of O(τ2−αp) for the proposed scheme. Figures 5 present the log-log plots of the error versus
the number of discretization points N for different values of α1 and α2, respectively. The observed
slopes align well with the theoretical convergence rates, validating the accuracy of the proposed scheme.
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Figures 6 show the surface plots of the numerical error with respect to the fractional orders α1, α2, and
the mesh size N. The decreasing trend of the error across the domain demonstrates the stability and
effectiveness of the proposed numerical method.
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Figure 1: The exact and approximate solutions with α2 = 0.5, N = 32 for Example 1
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Figure 2: The exact and approximate solutions with α1 = 0.5, N = 32 for Example 1

Example 2. Consider the following model for t ∈ (0,1] :
Dα1

t v(1)(t)+(1− t)v(3)(t) = f (1)(t),

Dα2
t v(2)(t)+ tv(1)(t) = f (2)(t),

Dα3
t v(3)(t)+ t2v(2)(t) = f (3)(t),

v(1)(0) = 0, v(2)(0) = 1, v(3)(0) = 0.

To ensure that the exact solution is v(1)(t) = t(t − 1), v(2)(t) = et , v(3)(t) = t3, we choose the source
terms f (1)(t), f (2)(t), f (3)(t), accordingly. Figure 7 illustrates the comparison between the exact and
approximate solutions of v(1)(t),v(2)(t), and v(3)(t) for the parameter values α1 = 0.3, α2 = 0.5, α3 = 0.3.
As shown, the numerical solutions obtained using the proposed scheme closely track the exact solutions
across the entire domain. Tables 3–5 present the numerical errors ΣN and the corresponding convergence
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Figure 3: The approximate solutions with α2 = 0.5, N = 32 for Example 1

Table 1: ΣN and ρN of v1 for Example 1

(α1,α2) 32 64 128 256 512 1024
(0.1,0.9 ) 1.774E-2 8.276E-3 3.861E-3 1.802E-3 8.405E-4 3.921E-4

1.100 1.100 1.100 1.100 1.100 1.100
(0.2,0.8) 1.140E-2 4.945E-3 2.145E-3 9.307E-4 4.040E-4 1.755E-4

1.205 1.205 1.205 1.204 1.203 1.202
(0.3,0.7 ) 7.735E-3 3.097E-3 1.239E-3 4.957E-4 1.987E-4 7.977E-5

1.321 1.322 1.321 1.319 1.316 1.314
(0.4,0.6) 6.050E-3 2.255E-3 8.350E-4 3.083E-4 1.137E-4 4.196E-5

1.424 1.433 1.437 1.439 1.438 1.437
(0.5,0.5 ) 6.003E-3 2.189E-3 7.908E-4 2.837E-4 1.013E-4 3.608E-5

1.455 1.469 1.479 1.485 1.490 1.493
(0.6,0.4) 7.557E-3 2.873E-3 1.085E-3 4.083E-4 1.534E-4 5.757E-5

1.395 1.405 1.410 1.413 1.414 1.414
(0.7,0.3) 1.097E-2 4.467E-3 1.812E-3 7.341E-4 2.972E-4 1.203E-4

1.296 1.301 1.304 1.305 1.305 1.304
(0.8,0.2) 1.681E-2 7.349E-3 3.205E-3 1.396E-3 6.077E-4 2.645E-4

1.194 1.197 1.199 1.200 1.200 1.200
(0.9 ,0.1) 2.602E-2 1.218E-2 5.691E-3 2.658E-3 1.240E-3 5.789E-4

1.096 1.097 1.099 1.099 1.100 1.100

rates ρN for v(1), v(2), and v(3), respectively, under various fractional orders αi. The results confirm that
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Figure 4: The approximate solutions with α1 = 0.5, N = 32 for Example 1

Table 2: ΣN and ρN of v2 with α1 = 0.5 for Example 1

α2 32 64 128 256 512 1024
0.1 1.815E-3 6.367E-4 2.225E-4 7.765E-5 2.711E-5 9.475E-6

1.512 1.517 1.519 1.518 1.517 1.515
0.2 2.424E-3 8.333E-4 2.850E-4 9.731E-5 3.325E-5 1.138E-5

1.541 1.548 1.550 1.549 1.547 1.543
0.3 3.424E-3 1.176E-3 4.006E-4 1.358E-4 4.591E-5 1.552E-5

1.541 1.554 1.561 1.564 1.565 1.564
0.4 5.052E-3 1.775E-3 6.165E-4 2.126E-4 7.293E-5 2.495E-5

1.509 1.526 1.536 1.543 1.548 1.550
0.5 7.662E-3 2.805E-3 1.015E-3 3.649E-4 1.304E-4 4.648E-5

1.450 1.466 1.477 1.484 1.489 1.492
0.6 1.177E-2 4.544E-3 1.739E-3 6.617E-4 2.508E-4 9.488E-5

1.372 1.386 1.394 1.399 1.403 1.405
0.7 1.809E-2 7.420E-3 3.025E-3 1.228E-3 4.976E-4 2.014E-4

1.285 1.295 1.300 1.303 1.305 1.306
0.8 2.763E-2 1.207E-2 5.258E-3 2.285E-3 9.922E-4 4.307E-4

1.195 1.199 1.202 1.204 1.204 1.204
0.9 4.181E-2 1.946E-2 9.056E-3 4.214E-3 1.962E-3 9.133E-4

1.103 1.104 1.104 1.103 1.103 1.102

the proposed method achieves convergence rates ranging from approximately 1.05 to 1.75. As expected,
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Figure 5: Log-log plots for Example 1

the convergence rate improves with increasing values of the fractional orders, aligning well with the
theoretical rate of O(τ2−αi). A sharp convergence rate is presented through the log-log plots in Figure 8.
Moreover, the surface plots in Figure 9 depict how the error varies with respect to αi and mesh size N.
These plots provide further evidence that the method is robust and performs reliably across a wide range
of fractional orders.

6 Conclusion

In this work, we have investigated a system of differential equations involving a fractional derivative
of distinct orders. To solve this system numerically, the L1 scheme is employed for the differential
operators. A thorough convergence analysis was conducted, and it is shown that the numerical method
achieves an order of convergence of (2−αp), where αp denotes the maximum fractional order among the
system components. This theoretical establishment was further validated through numerical experiments.
Future work will focus on refining the method using graded temporal meshes to better handle initial
singularities and on extending the approach to multi-scale or real-world models involving fractional-
order dynamics.
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Figure 8: Log-log plots for Example 2
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Figure 9: Error surface plots for Example 2
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