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Abstract. An effective numerical method using gradient projection is proposed for solving an optimal
control problem that involves time-varying delays in control and state variables. First, a variational in-
equality is established as necessary conditions. The main idea in variational inequality is to compute the
gradient of the objective functional, taking into account time-dependent delays in control and state vari-
ables. Then, an iterative scheme utilizing a projection operator is presented, followed by a convergence
analysis of the method for a coercive objective functional. At the end, several examples are provided to
illustrate that the theoretical finding is efficient.
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1 Introduction

In real-life phenomena modeling, delays (if occur) depend on time. Moreover, to study optimal control
problems involving time delays, when the delays in state or control variables are varying with time, the
problems are converted to optimal control problems with time-varying delays (OCPTVD). Therefore,
analyzing such problems sounds interesting to many researchers.

Here is a brief review of some articles on diverse categories of delayed optimal control problems. In
the context of optimal control problems characterized by constant delays in control and/or state variables,
the Pontryagin maximum principle has been proved, which can be found in [3, 6, 8, 10, 18,20,23]. In
particular, Banks [2] obtained some necessary conditions of optimality while solving optimal control
problems containing a time-dependent delay in the state variable. After that, in function spaces, the
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theory of necessary conditions for optimization problems was stated by Colonius and Hinrichsen [4].
They have also provided an approach for optimal control problems involving a delay in the state variable.
For nonlinear delayed optimal control problems satisfying constraints of function-space state inequality,
Angell and Kirsch [ 1] presented some optimality conditions. The inherent complexity of optimal control
problems with time delays has led to the development of numerical methods for solving these problems.
Several studies in this field can be found in [7, 12, 13,16, 17,19,22,24]. In recent years, A class of
nonlinear systems with a time-varying state delay in the control function was studied by Liu, et al.
[14]. They introduced a numerical strategy that yields an approximate optimization problem with finite
dimension. Then, by developing a method grounded in variational argument, they generated approximate
solutions for their optimal control problem. They also [15] proposed an alternative numerical method for
solving an optimal control problem for nonlinear systems with fractional order that have multiple time-
varying delays. Gong, et al. [9] presented a numerical method for solving optimal control of nonlinear
systems that are fractional-order and have multiple pantograph time delays. Their approach is founded
on a numerical integration method combined with a procedure for calculating gradients. In [21], the
necessary optimality conditions of OCPTVD problems are given by the authors; however, when time-
varying delays are present, this approach leads to complex boundary value problems involving delay
differential equations (DDESs), which are often difficult to solve. It is important to note that this classical
approach remains valuable when structural analysis and theoretical optimality characterization are of
primary interest.

In the present study, we propose an effective gradient projection method for OCPTVD in state and
control variables. First, we obtain a variational inequality as necessary optimality conditions by intro-
ducing the gradient of the objective functional with time-varying delays. The variational inequality has
gained attention for developing an efficient and convergent numerical algorithm. Computation of the
gradient is a critical issue in variational inequality. Then by defining a projection operator and finding a
relation with variational inequality, we achieve an iterative scheme for solving OCPTVD. For coercive
objective functional, the method’s convergence is ensured.

The structure of the remainder of this paper is outlined as follows: We formulate the OCPTVD
problem in Section 2. The variational inequality is given as necessary conditions in Section 3. The
method of gradient projection is introduced in Section 4. Numerical examples are solved by using the
proposed method to illustrate the theoretical findings in Section 5. Finally, Section 6 provides some
concluding remarks.

2 OCPTVD statement

We consider an OCPTVD in which k(¢) is the delay function in the state variable x(¢) and r(z) is the
delay function in the control variable u(z). This problem reads as

min J = G(x(tf),ty) +/th(x,xk,u,ur,t)dt, (1)
subject to
X:F(X7xk>uaur7t)a te [t0>tf]v (2
x(t) = (1), to— k(1) <t <1, 3)
u(r) = (1), to—r(to) <t <to, “)
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in which x € (H'[to,t¢])" and u € U that U is a convex subset of (L*[tg,#7])™. Also, o and ¢ are fixed
and [to,77] C R Furthermore, u,(¢) and xk(¢), the shifted control and state vectors, are as:

731 (l‘— r1 (l‘))
uz(t—rz(t))

ur(r) =u(r—r(r)) =
U (t — 1 (1))

and
X1 (l‘ *kl (l‘))

i) = (k) = | 20|

Xn(t — kn(2))

in which k; : R* — R* fori=1,...,nand r; : R" — R* for j=1,...,m and 0 < k() < 1 and
0 <1i(t) < 1. Other relevant mappings, which will be used in this paper, are

G:R'xR" — R,

A s (H [ro,1])" > (H ' [to,17])" % (L[t0, 7)™ % (L?[t0, )" x R — L[to,1],

F o (H [to,1])" x (H[t0,271)" x (L2[t0,17))" x (L*[t0, /)" x R — (L2]10,1¢))",
where all of them are twice continuously differentiable. We recall that H![tg, /] is a Sobolev space, and
its n-fold product is denoted by (H'[to,t¢])". Also, L?[to,t/] is the space of square integrable functions,

and its m-fold product is represented by (L?[to,7¢])™. Moreover in (3) and (4), 1(t) and ¢(t) are specific
functions.

3 Variational inequalities

We show that the necessary optimality conditions for the OCPTVD (1)-(4) can be formulated as a vari-
ational inequality. To begin with, let us state some definitions and theorems.

Definition 1. Assume that 4 is a functional on a locally convex topological vector space X. Then the
Gateaux derivative at @ € X in the direction U € X, also referred to as the G-derivative, is as

lim Y(0+0u)—9 (o)
6—0 0

=069 (o, ).

The functional 4 is G-differentiable at ® € X, if 89 (o, 1) exists for all p € X.

In a Banach space equipped with a well-defined inner product, by applying the G-derivative, one can
generally characterize the gradient of a functional.

Definition 2. Suppose that X is a Hilbert space with inner product {-,-) and 9 is a G-differentiable
functional on X. The gradient of 4 at ® € X, denoted V¥4 (®), is defined as

09 (w,v)=(V¥Y(w),v), forallveX.
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Now, we recall the following key result (variational inequality necessary condition).

Theorem 1. Assume that X is a topological vector space and that V C X is an arbitrary convex set.
Let functional 4 (w) on X be G-differentiable at w* € V. Then the following condition is necessary for
w* €V to be the minimum of 4 on'V:

0G (W, w—w*) >0, forallweV. 5)

Proof. For the proof, see [5]. O

We mention that, for an arbitrary convex subset V of a Hilbert space, if the gradient of a functional
¢ exists, then the variational inequality (5) becomes as

w* €V suchthat (VZ(w"),w—w") >0, forallw e V. (6)

In fact, when V is convex, w — w* gives rise to all direction vectors from w* for allw € V.
To determine the variational inequality for our problem, using (2) and (3), we obtain

t

X(t) = ¢(t0) + | FIx,xx,u,ur,]dG,

fo

SO

OF . OF OF . OF
S5x — /[axa X S Oxt Sodut 2o Su dE.

From this equation, we get

d oF oF oF oF
wa) = $5X(Z) + a—xk&(k(t) + %5u(t) + a—ur5ur(t), 0x(tp) = 0. (7)

The variational of J obeys

t
57— | 29500 50y +/f 75x+—5xk+a—A5u+ A Sue ). ®)
Jx du Juy

Let us consider terms in (8), which involve variations A with respect to both x and x;. The change of
variable 3; =t — k;(t) in these terms (details are in the Appendix) results in

[ (G smam)a=2 [ (55 + ey, * e o

oy [ ( oA ) Sxidr.  (9)

j=1"7 0x;




A gradient projection method for solving OCPTVD

We introduce A as the adjoint variable, which is a solution to a final-value problem as follows:

( dX

for t€[to,ty—kj(ty)] and
AN _, [(9dA . OF
(_I)E: j=1 (8 }\T(9XJ> for te[ty—k;(ty),tf] and
dG(x(1),t)
SN
/ Jx =,

By using (10), we have

tr—k(tr) . " OF oF 1
— A=A <+ . ﬂs dt
A [ L ox " ot R )
.

+ [ [ A— ATZ(ng)]Sxdt

ty—k(ty)
ly .
= (— }\) oxdt
To
ty—klty) OF  OF 1
B (O N P
o ]; axj 8(xk)j l—kj(t—l-kj(t))
Iy " OF
+ =Y ] oxdt.
1y =k(1y) [ ,; (8’5})
Since 0x(tp) = 0, we have
s AG(x(t7),t7)\ "
NTox(0)| = NI ax(ar) - )l oxtao) = (2CEI ) i),
To

and therefore

[ (=Xasai= ["x7

fo fo

d _ a7 _ T4 _
wa)dt [)\ 5x(t)][0— g A dt(5x) .

DG == (y“Tii* [(aif>,- “Ta?xi») " 1—/‘<,~<rl+kj<r>>]>’

Y[ s QG ) o

(10)

(1)

(tr)-
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It follows from (7) that

t .
/j(—)\)Sxdt / )\T<8F5 +— oF 5Xk+aF5 +8F5ur>dt
1o k

ox ox Ju ouy
— < tf tf > 6X tf
1f— ff 1 oF 1
— — X _ oxdt
/ro ; (9 d(xe) j 1—kj(f+kj(t))>
Z g Sxdt

tr— Jj

Hence

Jx
tr—k(tr) " OF oF 1
AT ( + X g >5xdt
/to };1 axj 8(xk),- l—kj(t+kj(t))
t n
[T ) (a—F)6xdt

X

¢ T
AT 3F§u+aF Sur)dt<aG(X(§tf)’tf)> 5x(t/)
17 —k(ty) "/ OF JoF 1
+ AT ( + X g >]6xdl
{ L dx;  d(xk); (1))
d

= X ) j l—kj(t—l—kjt
n 1
+ [ [—)\T Y (F)} oxdt + ! <8A5u+8A§ur>dt,
lf—k(lf) j:1 / I au aul‘

and therefore

N
5]:/’ {‘“5%‘”5 r+>\T(aF5u+”5ur>}dt- (12)
0w [ du du, u

We define the Hamiltonian function H by

H(x(t),xx(1),u(t),ue (), A, 1) = A (x(2), Xk (£),u(t), 0 (1),2) + XL F (x(2),xx(¢), (1), 0 (2) 1) ,

and then we rewrite (12) as follows:

t
5/ = /f [aHaqu aHm] dr. (13)
v | du duy

By change of variable 1; =t — r;(t), and noting that Su; = 0 for any time 7 < #y, (13) can be written as

n ty=rilty) [QH o0H 1 oH
SJ(u) = / Susd M sud 14
(1) Z{ \ {auﬁ(a(ur)fx1—r',-<r+n<r>>ﬂ wdtt J f} a4)
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We define the gradient of the criterion (1) as follows:

8H+(8H X ! ) f 1€ fto,tr —ri(t))]
- l 0,Lf—Ti
[VJ(u)] — 31”} d(up)i  1—ri(t+rit)) S
N if telty—ri(ty)ts],
for i =1,...,m. According to Theorem 1, we have the variational inequality optimality condition as
follows: ”
Iy
6J(u*) = Z/ {Vj(u*)] (u; —u)dt >0, forallueU. (15)
i=1710 i
Finally
YuaeU, 0J(u*) = (VJ(u*),u—u*) > 0. (16)

4 Gradient projection method

In this section, for solving the optimality condition (16), we provide a gradient projection method. We
define the mathematical program

min  |ju—w|| suchthat uecU CX,

1
in which ||w|| = (w",w)? and X is a Hilbert space. We consider the projection operator Py : X — U as

Py(w) = argmin||u —w||. (17)

uclU

We mention that (17) can be considered as the following inequality:
(Py(w) —w,u—Py(w)) >0 forallueU. (18)
We recall from [5] that for any positive constant ¥ and all u € U, the inequality
(u" — (u* —yVJ(u*)),u—u*) >0, (19)

is equivalent to the variational inequality (16). We compare the above inequality with (18), and for the
optimal control u*, we rewrite it as follows:

ut =Py (uf = yVJ(u)). (20)

The optimal control u* is the fixed point of Py (u* — yVJ(u*)) on U. Now, we are ready to numerically
approximate the control u*. For obtaining the approximated optimal control, we introduce the following
fixed point iteration scheme:

vt = p, (uN—yVJ(uN)), N=1,2,.... 21

The procedure (21) is a projected gradient method used to solve the variational inequality (16). Next, in
Theorem 2, the convergence property of (21) is stated. We need to introduce coerciveness (Q-convexity),
which is important to state the convergence.
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Definition 3. Suppose that 4 : X — R! is a functional on normed vector space X. Then 9 is called
coercive (a-convex) if a real scalar o > 0 exists such that

GI(1-AV)o+Av] < (1-21)%(0)+ A9 (v) — %1(1 —M)o-v| 22)

holds for all ®,v € X and A € (0,1).
If we put o = 0, then (22) is the usual notion of convexity. The following result can now be stated.

Lemma 1. Let 4 : X — R! be G-differentiable at X. Then ¥ is coercive if and only if

89 (w,0—Vv)—89(v.o—Vv)>al|o—vV|* foradlo,veX. (23)
Proof. For the proof, see [5]. ]
Note that (23) can also be written as

(V¥4 (@) —VZ(v),0 - V) > allo— V|, (24)

when the gradient of ¢ is defined on X.
Theorem 2 demonstrates the convergence of our projection algorithm.

Theorem 2. Suppose that X is a normed vector space and that 4 : U C X — R is a coercive functional
for which o > 0 exists such that V¥4 (o) is defined. If the inequality

IVY(0) — VY (v)|| < Bllo—V]| forall®,veU, (25)

20
,— ), the
B2

which is called the Lipschitz condition, holds, then by choosing Y as the fixed step size from (0

projection method (21) converges to the minimum @* of ¢ on U.

Proof. For the proof, see [5]. O

4.1 Structure of the algorithm

We state the algorithm of gradient projection method by the following rule:
Step 0: Set N = 0 and select an error tolerance € and the initial control estimate u® € U.
Step 1: Solve the following problem by using u”(¢):

{fczF((x(r) xi(0),u (1), u (1), 1)), 06
X(1) = 0(1), to—K(to) <1 <1o.

The solution is denoted as x" ().
Step 2: Solve the following problem using u” (¢) and x" (¢):

N, xi N0 u N A r) [8H(X XV uN uN oA f) 1 o7

7)‘ i (x X
Vi ~ ox; 9 (%), L—kj(t+k;(0))]
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fort € [ty,ty —k;(ts)] and

dhx & oHEY x( N u u N At
— 2
dt ; ox;j ’ 28)
J
fort € [ty —kj(ty),t7] and A(tf) = {8G ]
Step 3: Using u” (¢), x"(¢), and A" (¢), fori = 1,...,m, compute
N
|:VJ(UN)] oH (xN x N ,u e AN (1))
N N N
OH(xV x N uN u N AN (1), ) . 1 ’ 29)
d(uy); 1 —Fi(t+ri(t))
ift e [l‘(),tf—r,'(l‘f)] and
N ¢ N gN g N \N
[VJ(uN)] _ JH (xV x M u uN X (z‘),t)7 (30)
i 8u,~
if r € [ty —ri(ty),ty].
Step 4: Update u, according to
=Py (u" —yVJ(u")), 31)

by a suitable step size 7.
Step 5: Repeat Steps 1-4 until the error ||u V|| reaches the tolerance €.

For updating u in (31), we state how to compute the projection onto the convex set U.

Let us consider U = {u € R" : a < u < b}, where a,b € R™ in which R = U U {+e0, —co} and also
a <b,b# —o, and a # +oo. Then Py is given by

N+1 _

b ifu>b,
Py(u)=<u ifa<u<b,
a ifu<a.
if0<
Thus, for example, if U = R}, then Py (u) = u iy,
0 ifu<o.

5 Numerical results

The examples presented in this section demonstrate the effectiveness of the method discussed. We de-
velop the codes using MATLAB 2020 on a machine with 8 GB of RAM and an Intel(R) Core(TM) i5
processor.

Example 1. The first example was studied in [7] and the analytical optimal solution is given. Consider
the optimal control problem containing the time delay r(z) = 2 in the control and k(¢) = 1 in the state as

follows:
3
Min  J= / <x2(t) +u2(t)>dt, (32)
0
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subject to
dx
o =x(t—Du(t—2), t€][0,3], (33)
x(t)=1, —1<t<0, (34)
u(t)=0, -2<t<0, (35)
—1<u<l. (36)

The algorithm is run setting #° = 0, ¥ = 0.1, and the tolerance as € = 107>, The iterative procedure has
the following structure:

Step 1:

d

di; = x(t— Du(t —2),

x(t) =1, —-1<r<0,
Step 2:

We know from (27) and (28) that

and 1(3) =0.
Step 3:
Also from (29) and (30), we have

2u(t), 1<r<3
Step 4:
Update u as follows:
1 ifu>1,
VT =Py — VI W) = LU — VI if —1<u<],
-1 ifu<-—1.

Step 5:
Repeat this for subsequent iterations until the stopping test is satisfied.
After implementing the algorithm, the stopping condition is satisfied after 9 iterations in 67 seconds.
In Table 1, some iterations are provided. The numerical convergence can be found in the right column.
Numerical results obtained by the method are shown in Figure 1. By using the optimal solution, we
determine the optimal performance index explicitly as follows:

3
J:/‘Gﬂﬂ+f@>mz2ﬂﬂwﬁz
0

Gollmann, Kern, and Maurer [7] proposed a numerical method to solve the problem given by (32)—(36).
Also, the analytical solutions of this problem are presented in [7]. We compare analytical solutions with
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Table 1: Control function in iterations for Example 1.

N | (1) t e — ]|
1]02t—-0.6,0 [0,1),[1,3] -
2 | —1,0.36r—1.0667,0 [0,0.19), [0.19,1), [1,3] | 0.3067
3| —1,035—-1.1121,0 [0,0.18), [0.18,1), [1,3] | 0.0554
8 | —1,0.29155t —1.01514,0 [0,0.11), [0.11,1), [1,3] | 0.0022
9 | —1,0.28851r —1.01227,0 [0,0.10), [0.10,1), [1,3] | 0.00017
Table 2: Cost functional values for Example 1.
Method J
Presented method 2.76159752
Analytical solution 2.761594156

Gollmann, Kern, and Maurer [7]  2.761598

our suggested method results. The comparison results of control and state variables are shown in Figure
1. A comparison among the analytical solution, the value of J reported in [7], and the value of J obtained
by our method, is shown in Table 2.

Example 2. This example is taken from [11]. Consider the following delayed problem:
t—1
x(r) = Txk(t)x(t) +u(t), 1<r<3, (37)
x(r)=1, 0<r<I, (38)

where k(f) = In(¢) 4 1 is a continuous variable time-varying lag in state and the performance index that

must be minimized is as follows: ;
J= / <x2(t) i (z)) dt. (39)
1

In order to employ the algorithm, we set u® = In(t) —2, ¥ = 0.1, and the tolerance as € = 10~3. Note that

. 1
k(r) = 7 Therefore by using (27) and (28), the adjoint equation and its condition become

a5 123
A(3)=0.

Also from (29) and (30), we have
VJ =2u(t)+ 7.

Figure 2 shows the approximate values of our gradient projection method. The computational result of
the cost functional is J = 1.663243. This was achieved in 132 seconds. Table 3 indicates a comparison
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Analytical Optimal State State of proposed method
1 1
0.9 095
s 03
0.85| 0.85
—~ ~
T o s
-~ -~
0.75 0.75
07 07
065 065
0 05 1 [ 2z 25 3 0 05 1 15 2 25 3
Analytical Optimal Control Control of proposed method
0 or
]
!
o1
01 |
|
tef |
02 |
S3p ‘
|
03 |
B4f |
~
~ < !
~— D4 T oesp |
= = |
05 |
05
|
o7k !
06
otk
0.7
e
08 4 1
1] L33 . 15 2 25 3 e as 1 1.5 & i) 3

Figure 1: Results from the simulation of state and control for Example 1 and comparing with the optimal solution.

between our method results and the values of J in different cases reported by Hoseini and Marzban [11].

Example 3. Consider the OCPTVD

Min J= /2 (xz(t) +u? (t)) dr (40)
k r )
0

subject to
d
Ex(t) =1x(t) +xi(t) +ur(t), 0<r<2, (41)

u(t) = 1.4t —2.8, 1<0, 43)
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x(t)
u(t)

Figure 2: Approximation of state x(¢) and control u(¢) and costate A (¢) for Example 2.

Table 3: Comparison results for Example 2.

Method J
Hoseini and Marzban [11] for d=1 1.667931637055
Hoseini and Marzban [1 1] for d=2 1.667931637160
Proposed method 1.663243

2

t
2(1+1)
k(t)>0,r(t) >0,and 0 < k(t) < 1and 0 < #(t) < 1 for 0 <t < 2.

1
where k(1) = 1+ and r(t) =1— ;3 e the delay functions in control and state that satisfy

We perform the algorithm with u® = 1.4t —2.8, y = 0.01, and the tolerance as € = 10~3. The results
are shown in Figure 3. We calculate J = 6.0745 as the minimum cost functional value. The CPU time
for this example is 148 seconds.

6 Conclusion

We proposed a method to solve the OCPTVD problem using the gradient projection method. First, by
defining the gradient of the objective functional, we derived a variational inequality as an optimality
condition. Then, we introduced a projection operator and achieved a convergent iterative method. To
illustrate the effectiveness of our method, we applied it to several examples. The results demonstrated
the applicability and validity of the presented method.
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x(1)
u(t)

L L L L L L L L . 3 L L L )
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
t t

Figure 3: State x(¢) and control u(¢) for Example 3.

Appendix

The term of the form

it dA ty JA < >
—(6x3) dt = | ————— | 6x;(t —k;(2)) |dt,
1, g 0= g (Bte =40

is re-expressed by change of variable

3j=l‘—kj<l). (44)
Since the k;(¢) is differentiable, we have

=1 —ki(1). 45

dt ]( ) ( )

Therefore using the change of variable defined in (44) implies that

i 0A
o 0xj(t—kj(r))

tr=kitr) [ 0A 1
0

5Xj(l‘—kj(t))dt :/ (xk)j X l_kj(t):|t—3+kj(3)

Sxidyi.  (46)
I —kj(to) 77

By changing the apparent variable, (46) becomes the equivalent expression

r A tr—kj(tr) JA 1
98 () dt = / . Sx.dt. 47
o ), ! fkm><mawxl— )x’t 7

kj(r +k;j (1))
Furthermore, the facts that x(z) = ¢(¢) and that ¢(¢) is a specified function for any time 7 < #y, imply that
the variational ¢ is zero and that ox; = O for any time ¢ < #. Therefore, we conclude from (47) that

1 0A tr—k;(tr) 0A 1
— dt = / < X . >6 dt.
o 90, W= f 2y Tk k() )
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