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 In real-world reliability analysis, the underlying data and prior 

knowledge are often imprecise, posing significant challenges to 

classical probabilistic models. This study presents a novel fuzzy 

Bayesian approach for analyzing the reliability of coherent systems 

under imprecise prior information, where system lifetimes follow a 

Pascal distribution. We construct uncertain Bayes estimators using 

both squared error and precautionary loss functions by modelling the 

system reliability as a fuzzy random variable with a prior fuzzy 

distribution. A key innovation of the proposed approach is the 

application of the α-pessimistic method, which allows for the 

estimation process to be carried out without relying on complex non-

linear programming, a common limitation in existing literature. 

Instead, this technique simplifies the computational procedure while 

enhancing interpretability and analytical tractability. The framework is 

applied to coherent systems, including parallel, series, and k-out-of-m 

structures, using Mellin transform techniques to derive the estimators. 

A numerical example is provided to demonstrate the practical 

applicability and effectiveness of the proposed method. 
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1. Introduction 

For some experiments, the costs of testing can depend more on the number of failures than on the 

number, which may be more influenced by the number of trials 𝑛. This is especially true if failures 

have a far higher economic cost than survivors. In this case, it will be more advantageous to fix the 

number of failures (𝑚) and treat (𝑁) as a random variable instead of a fixed number of trials. The 
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Pascal distribution is an appropriate tool fr modelling in such situations [20]. For a given 𝑟, the 

conditional probability function that 𝑁 trials are necessary to obtain (𝑚) failures is provided by  

 ( ) ( )
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| 1 , 0 1, 1,2,..., , 1,....
mn m

n
f n r r r r m n m m
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−
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 When the sample size or (the number) of statistical data is insufficient for more advanced (complex) 

statistical analyses, we must use another source of information. So, we employ Bayesian 

approaches. In a Bayesian analysis, there are data (a statistical model), the prior distributions for 

parameters, and the loss functions. Unlike the Bayesian approach, where the parameter is a random 

variable with a distribution function called the prior distribution, classical statistics treats the 

parameter as an unknown constant. After observing the sample, the extra information about the 

parameter is combined prior to obtaining the posterior distribution. A Bayesian estimator is obtained 

by minimizing the posterior loss function’s expected value [19]. 

In classical reliability theory it is assumed that the component lifetimes are formulated by exact 

numbers. However, due to uncertainty and inaccuracy in data, it is sometimes complicated to 

determine the exact values of these parameters in real-world systems. In fact, in analyzing system 

reliability, the uncertainty is an important aspect which needs to be considered. After introducing 

fuzzy set theory by Zadeh [28], many researchers have applied this theory in order to quantify the 

uncertainty, especially in the field of probability and statistics [23, 29].  

To the best of our knowledge, application of fuzzy probability to fault-tree analysis was first studied 

by Tanaka et al. [21] and by Furuta and Shiraishi [3]. After that, numerous researchers have made 

significant contributions to imprecise system reliability assessment [12, 16]. In the following, we 

review the primary studies on Bayesian fuzzy reliability. Wu [25, 26] studied a Bayesian approach 

to system reliability based on fuzzy random variables. He assumes the fuzzy parameters as fuzzy 

random variables with prior fuzzy distributions. To determine the membership function of the 

estimates of the reliability function of multi-parameter lifetime distributions, Huang et al. [9] applied 

an artificial neural network and a genetic algorithm. The fuzzy Bayes point estimators of system 

reliability based on the Exponential distribution for a coherent system were investigated by Wu [27]. 

After that, some classical and Bayesian procedures for reliability estimation were provided by Viertl 

[24] based on fuzzy data. Liu et al. [15] propose a new method for determining the membership 

functions of parameter estimates and, the reliability functions of multi-parameter lifetime 

distributions and formulate a preventive maintenance policy using a fuzzy reliability framework. 

Taheri and Zarei [22] developed a Bayesian approach to coherent system reliability analysis based 

on the vague set (intuitionistic fuzzy set) theory. Görkemli and Ulusoy [8] investigate a novel 

approach to compute the reliability and availability of a production system. Based on Wu’s approach 

[27], the fuzzy Bayes estimation of system reliability was extended by Gholizadeh et al. [6, 7] based 

on prior two-parameter exponential and Pascal distributions. Zarei et al. [30] provide the Bayes 

estimator of system aging (failure rate and mean time to failure) based on vague lifetime data in the 

case of complete and censored data sets. Based on Bayesian inference with fuzzy probabilities, 

Bamrungsetthapong and Pongpullponsak [1] developed the posterior fuzzy system reliability of a 

non-repairable multi-state series–parallel system. They consider the fuzzy failure rate function as 

an exponential fuzzy number. Hryniewicz [10] presents some results related to fuzzy Bayes 

methodology of imprecise reliability analysis and obtained some useful approximations according 

to shadowed sets. Gholizadeh et al. [5] using E-Bayesian estimation approach, investigate a 
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modified Bayesian estimator for system reliability and apply it to present a methodology for 

discussing uncertainty in the reliability assessment of the production system. Jegatheesan and 

Gundala [11] investigate the fuzzy Bayesian reliability assessment of the linear (circular) 

consecutive k-out-of-n: F system based on the squared error loss function. They consider the 

parameters as fuzzy random variables in the process of obtaining fuzzy Bayesian reliability. 

Recently, a hybrid reliability analysis framework was provided by Fang et al. [4]. For this purpose, 

they decomposed the structural parameters and external loads having fuzziness and extended them 

to fuzzy sets. 

In the present work, the Bayesian approach to system reliability estimation is incorporated into the 

fuzzy set theory to deduce the so-called imprecise Bayes estimator. First, in section 2, we briefly 

recall some notions of fuzzy random variables. Then, the concept of the Mellin transformation was 

recalled and the Bayesian approach to the modelling system reliability was presented. In Section 3, 

we explore the derivation of the Bayes estimator for structural system reliability using the 𝛼-

pessimistic method. A numerical example illustrating the proposed approach is presented in Section 

4. Finally, concluding remarks are given in Section 5. 

2. Problem Formulation 

In this section, we suggest the Bayesian point estimator of system reliability in imprecise 

environments.  

2.1. Fuzzy Numbers 

A fuzzy set 𝑀̃ of ℛ is called a fuzzy number 

(1) If ∀𝛼 ∈ [0,1], the set 𝑀̃[𝛼] will be represented by [𝑀̃𝐿[𝛼], 𝐴̃𝑈[𝛼]], as a non-empty 

compact interval. Where 𝑀̃𝐿[𝛼] = 𝑖𝑛𝑓{𝑥 ∈ 𝑅|𝑀̃ ≥ 𝛼} and 𝑀̃𝑈[𝛼] = 𝑠𝑢𝑝{𝑥 ∈ ℛ|𝑀̃(𝑥) ≥ 𝛼} 

respectively. 

(2) There is a single real number 𝑥∗ = 𝑥𝑀̃
∗ ∈ ℛ such that 𝑀̃(𝑥∗) = 1, i.e. 𝑀̃[1] is a singleton 

set and this real number is unique. 

ℱ(ℛ) represents the set of all fuzzy numbers of ℛ.  

One of the most popular fuzzy numbers is the 𝐿𝑅-fuzzy number. 𝑀̃ = (𝑚; 𝛿, 𝛾)𝐿𝑅 stands for the 𝐿𝑅 

fuzzy number 𝑀̃ with center value 𝑚 ∈ ℛ, right and left spread 𝛾 ∈ ℛ+, 𝛿 ∈ ℛ+. The following 

membership function is present.  

 𝑀̃(𝑥) =

{
 
 

 
 𝐿(

𝑚−𝑥

𝛿
)    𝑖𝑓 𝑥 ≤ 𝑚,

𝑅(
𝑥−𝑚

𝛾
)    𝑖𝑓 𝑥 ⩾ 𝑚,

     

 𝑅:ℛ+ → [0,1] and 𝐿:ℛ+ → [0,1], with 𝐿(0) = 𝑅(0) = 1, are decreasing right- and left-shaped 

functions.  

The following formula makes it simple to compute the 𝛼-cut of 𝑀̃  
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 𝑀̃[𝛼] = [𝑚 − 𝐿−1(𝛼)𝛿,𝑚 + 𝑅−1(𝛼)𝛾]. 𝛼 ∈ [0,1]. 

Remark 2.1 The 𝛼-pessimistic of 𝑀̃ ∈ ℱ(ℛ) is a mapping 𝑀̃𝛼: [0,1] → ℛ, for any 𝑀̃ ∈ ℱ(ℛ), and 

it is defined by:  

 𝑀̃𝛼 = {

𝑀̃𝐿[2𝛼]    𝛼 ∈ [0,0.5],

𝑀̃𝑈[2(1 − 𝛼)]    𝛼 ∈ (0.5,1].
     

 where 𝑀̃𝐿[𝛼] and 𝑀̃𝑈[𝛼] represent the lower and the upper bounds of 𝛼-cuts of 𝑀̃, respectively. It 

is clear that:  

 𝑀̃[𝛼] = [𝑀̃𝐿[𝛼], 𝑀̃𝑈[𝛼]] = [𝑀̃𝛼

2
, 𝑀̃1−

𝛼

2
]. 

For an 𝐿𝑅-fuzzy number 𝑀̃ = (𝑛; 𝛿, 𝛾)𝐿𝑅, the 𝛼-pessimistic are determined as follows  

 𝑀̃𝛼 = {

𝑚 − 𝛿𝐿−1(2𝛼)    𝛼 ∈ [0,0.5],

𝑚 + 𝛾𝑅−1(2(1 − 𝛼))    𝛼 ∈ (0.5,1].
     

 In the case of triangular fuzzy number 𝑀̃ = (𝑚; 𝛿, 𝛾)𝑇, we have that 

 𝑀̃𝛼 = {

(𝑚 − 𝛿) + 2𝛿𝛼    𝛼 ∈ [0,0.5],

𝑚 + 𝛾 − 2𝛾(1 − 𝛼)    𝛼 ∈ (0.5,1].
     

 2.2. Fuzzy Random Variables 

A well-stated and well-supported model for the random mechanisms generating fuzzy data in the 

probabilistic setting is random fuzzy numbers, or more generally, random fuzzy sets. They combine 

randomness and fuzziness so that the former impacts the creation of experimental data and the latter 

affects the nature of experimental data that are presumed to be intrinsically ambiguous. In some 

ways, the concept of the random fuzzy set may be formalized. 

Definition 2.2 A probability space (𝛺,𝒜,𝒫) describes a random experiment. If ∀𝛼 ∈ [0,1], the 

real-valued mapping 𝑊̃𝛼: 𝛺 → ℛ is a random variable with real-valued on (𝛺,𝒜,𝒫), the fuzzy-

valued mapping 𝑊̃: 𝛺 → ℱ(ℛ) is called an 𝑓𝑟𝑣. All random variables in this study are supposed to 

have the same space of probability (𝛺,𝒜,𝒫).  

The concept of 𝑓𝑟𝑣𝑠 was first suggested by Kwakernaak [14] and it was later developed clearly by 

Meyer and Kruse [13]. If the two real-valued mappings 𝑊̃𝛼
𝐿: Ω → ℛ and 𝑊̃𝛼

𝑈: Ω → ℛ are both real-

valued random variables ∀𝛼 ∈ [0,1], a mapping 𝑊̃: Ω → ℱ(ℛ) is said to be an 𝑓𝑟𝑣 in a probability 

space (Ω,𝒜,𝒫).The following relationships between the definition of 𝑓𝑟𝑣 proposed in this study 

and Kwakernaak and Kruse’s definition are easily demonstrated.  
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 𝑊̃𝛼 =

{
 

 
𝑊̃2𝛼

𝐿     𝛼 ∈ [0,0.5],

𝑊̃2(1−𝛼)
𝑈     𝛼 ∈ (0.5,1].

     

 𝑊̃[𝛼] = [𝑊̃𝛼

2
, 𝑊̃1−

𝛼

2
]. 

The first equation shows that the information contained in the two-dimensional variable (𝑊̃𝛼
𝐿 , 𝑊̃𝛼

𝑈) 

is summarized in the one-dimensional variable 𝑊̃𝛼 making the computational procedures in the 

problem easier. 

2.3. Imprecise Bayes Estimation 

To construct the Bayesian point estimator (BPE) of system reliability, each component of the 

underlying system was given certain prior distributions. As a result, we can use Bayes’ theorem to 

obtain the posterior distribution of each component’s reliability. The posterior distribution of the 

reliability of each component is then used to compute the posterior distribution of the system’s 

reliability. 

Suppose that the prior 𝑝𝑑𝑓 of the 𝑖-th reliability component, 𝑅𝑖, is 𝜋𝑖(𝑟𝑖). Then, the posterior 

distribution of 𝑅𝑖, denoted by 𝜋𝑖(𝑟𝑖|𝑚𝑖), is obtained as follows:  

 𝜋𝑖(𝑟𝑖|𝑚𝑖) =
𝑟
𝑖

𝑛𝑖−𝑚𝑖(1−𝑟𝑖)
𝑚𝑖𝜋𝑖(𝑟𝑖)

∫
1
0 𝑡

𝑛𝑖−𝑚𝑖(1−𝑡)𝑚𝑖𝜋𝑖(𝑡)𝑑𝑡
,    0 < 𝑟𝑖 < 1, (1) 

 where 𝑚𝑖 is the total number of failures 𝑛𝑖 trials that were detected.  

It should be noted that the system reliability can be expressed by multiplying independent random 

variables that correspond to component unreliability in parallel systems or component reliability in 

series systems. The main problem is to deduce the  pdf of such random variables. In other words, 

under the square error loss function, the 𝐵𝑃𝐸 of the system reliability is the mean of the posterior 

distribution, under the precautionary loss function, it is the square root of the second moment of the 

posterior distribution.  

The Mellin transform [2], which is described as follows, is an appropriate technique for answering 

this question.  

Definition 2.3 For a non-negative random variable 𝑋 with pdf 𝑓(𝑥). The Mellin transform of 𝑓, 

concerning the complex parameter 𝑢, is defined by:  

 𝑀(𝑓; 𝑢) = ∫
∞

0
𝑥𝑢−1𝑓(𝑥)𝑑𝑥 = 𝐸(𝑋𝑢−1). (2) 

Theorem 2.4  Suppose that 𝑋𝑖 are independent random variables with pdf 𝑓𝑖 for 𝑖 = 1, . . . , 𝑘 and 

𝑌 = 𝛱𝑖=1
𝑘 𝑋𝑖 has a 𝑝𝑑𝑓 denoted by 𝑔𝑘(𝑦). Then:  

 𝑀(𝑔𝑘; 𝑢) = Π𝑖=1
𝑘 𝑀(𝑓𝑖; 𝑢). (3) 

Theorem 2.5  Let 𝜃 be a Bayesian estimator of the parameter 𝜃. Then, 

(I) [19] Under the squared error loss function 𝐿(𝜃, 𝜃) = (𝜃 − 𝜃)2, denoted by SEL, the 

Bayesian point of estimation yields 𝜃𝑠 = 𝐸(𝜃|𝑋). 
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(II) [7] Under the precautionary loss function 𝐿(𝜃, 𝜃) =
(𝜃̂−𝜃)2

𝜃̂
, denoted by PL, the Bayesian 

point of estimation yields 𝜃𝑝
2 = 𝐸(𝜃2|𝑋). 

3. Fuzzy Bayesian Estimator of System Reliability 

In this section, we will derive a fuzzy 𝐵𝑃𝐸 of system reliability based on Pascal distribution under 

the squared error loss function and the precautionary loss function for parallel, series, and 𝑘-out-of-

𝑚 systems.  

3.1. Series Systems 

A suitable prior distribution for 𝑅𝑖 with the following 𝑝𝑑𝑓 is the Beta distribution, 𝐵𝑒𝑡𝑎(𝑚𝑖0, 𝑛𝑖0).  

 𝜋𝑖(𝑟𝑖) =
Γ(𝑛𝑖0)

Γ(𝑚𝑖0)Γ(𝑛𝑖0−𝑚𝑖0)
𝑟𝑖
𝑚𝑖0−1(1 − 𝑟𝑖)

𝑛𝑖0−𝑚𝑖0−1, 0 ≤ 𝑟𝑖 ≤ 1,    𝑚𝑖0, 𝑛𝑖0 > 0. (4) 

The posterior distribution of the 𝑖-th component of reliability 𝑅𝑖 is computed using Eqs. (1) and (4) 

as shown below:  

 𝜋𝑖(𝑟𝑖|𝑚𝑖) =
Γ(𝑛𝑖+𝑛𝑖0)

Γ(𝑛𝑖−𝑚𝑖+𝑚𝑖0)Γ(𝑛𝑖0−𝑚𝑖0+𝑚𝑖)
𝑟𝑖
𝑛𝑖−𝑚𝑖+𝑚𝑖0−1(1 − 𝑟𝑖)

𝑛𝑖0−𝑚𝑖0+𝑚𝑖−1. (5) 

 𝐵𝑒𝑡𝑎(𝑛𝑖 −𝑚𝑖 +𝑚𝑖0, 𝑛𝑖 + 𝑛𝑖0) is the posterior distribution as a result. 

The Mellin transform of 𝜋𝑖(𝑟𝑖|𝑚𝑖) derived from Eqs. (2) and (5), is:  

𝑀{𝜋𝑖(𝑟𝑖|𝑚𝑖); 𝑢} = 𝐸(𝑅𝑖
𝑢−1|𝑚𝑖) =

Γ(𝑛𝑖 + 𝑛𝑖0)

Γ(𝑛𝑖 −𝑚𝑖 +𝑚𝑖0)
×
Γ(𝑛𝑖 −𝑚𝑖 +𝑚𝑖0 + 𝑢 − 1)

Γ(𝑛𝑖 + 𝑛𝑖0 + 𝑢 − 1)
 

                    =
(𝑛𝑖+𝑛𝑖0−1)!

(𝑛𝑖−𝑚𝑖+𝑚𝑖0−1)!
×

1

(𝑛𝑖−𝑚𝑖+𝑚𝑖0+𝑢−1)(𝑛𝑖−𝑚𝑖+𝑚𝑖0+𝑢)…(𝑛𝑖+𝑛𝑖0+𝑢−2)
,    (6) 

 where 𝑅𝑒(𝑢) > −(𝑛𝑖 −𝑚𝑖 +𝑚𝑖0 − 1).  

Consider a series system with k independent components. 𝑅 = Π𝑖=1
𝑘 𝑅𝑖 is the reliability of the 

system. Obtaining a fuzzy 𝐵𝑃𝐸 of the reliability of a fuzzy system is our goal here. From Theorem 

2.4, Theorem 2.5 and Eq. (6), the Mellin transform 𝜋(𝑟|𝑠; 𝑛) of system reliability 𝑅 is thus given by  

𝑀{𝜋(𝑟|𝑚); 𝑢} = Π𝑖=1
𝑘 𝐸(𝑅𝑖

𝑢−1|𝑚𝑖) 

              = Π𝑖=1
𝑘 [

(𝑛𝑖+𝑛𝑖0−1)!

(𝑛𝑖−𝑚𝑖+𝑚𝑖0−1)!
.

1

(𝑛𝑖−𝑚𝑖+𝑚𝑖0+𝑢−1)(𝑛𝑖−𝑚𝑖+𝑚𝑖0+𝑢)…(𝑛𝑖+𝑛𝑖0+𝑢−2)
],  (7) 

In this case 𝑅𝑒(𝑢) > −(𝑛𝑖 −𝑚𝑖 +𝑚𝑖0 − 1),    ∀𝑖 = 1,2,3, … , 𝑘.  

Now, we are going to construct the uncertain 𝐵𝑃𝐸 of system reliability based on two types of loss 

functions.   

Under the 𝑆𝐸𝐿 function, the 𝐵𝑃𝐸 of system reliability is the mean of the posterior distribution. As 

a result, with 𝑢 = 2, we can apply Eq. (7) to get the 𝐵𝑃𝐸 of system reliability  

 𝑟̂𝑠 = 𝐸(𝑅|𝑚) = 𝑀{𝜋(𝑅|𝑚); 𝑢 = 2} = Π𝑖=1
𝑘 (

𝑛𝑖−𝑚𝑖+𝑚𝑖0

𝑛𝑖0+𝑛𝑖
). (8) 
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In the case of a series system, the 𝐵𝑃𝐸 of the system reliability 𝑅 is the second root of the second 

moment of the posterior distribution. We put 𝑢 = 3 in Eq. (7) and we have  

 𝑟̂𝑝 = Π𝑖=1
𝑘 [𝐸(𝑅𝑖

2|𝑚𝑖)]
1

2 

 = Π𝑖=1
𝑘 [𝑀{𝜋𝑖(𝑟𝑖|𝑚𝑖); 𝑢 = 3}]

1

2 

 = Π𝑖=1
𝑘 [

(𝑛𝑖+𝑛𝑖0−1)!

(𝑛𝑖−𝑚𝑖+𝑚𝑖0−1)!
.

1

(𝑛𝑖−𝑠𝑖+𝑠𝑖0+2)(𝑛𝑖−𝑠𝑖+𝑠𝑖0+3)⋯(𝑛𝑖+𝑛𝑖0+1)
]
1

2 

 = Π𝑖=1
𝑘 [

(𝑛𝑖−𝑚𝑖+𝑚𝑖0)

(𝑛𝑖+𝑛𝑖0)
.
(𝑛𝑖−𝑚𝑖+𝑚𝑖0+1)

(𝑛𝑖+𝑛𝑖0+1)
]
1

2. (9) 

 Now suppose that the component reliabilities are not exact values that can be measured, but rather 

are thought of as fuzzy random variables 𝑅̃𝑖 using the assumption that 𝑛𝑖0 is a known integer 

(representing the pseudo number of items for the 𝑖-th component) and 𝑠̃𝑖0 is a known fuzzy number 

(representing our imprecise knowledge of the pseudo number of failures). In actuality, 𝑚̃𝑖0 is taken 

as a fuzzy number because it’s possible that the exact number of failures wasn’t accurately recorded. 

In such a situation, the uncertain 𝐵𝑃𝐸 of (𝑟̃𝑠)𝛼 and (𝑟̃𝑝)𝛼 are obtained from Eqs. (8) and (9) as  

 (𝑟̂̃𝑠)𝛼 = Π𝑖=1
𝑘 (

𝑛𝑖−𝑚𝑖+(𝑚̃𝑖0)𝛼

𝑛𝑖0+𝑛𝑖
),    ∀𝛼 ∈ [0,1]. (10) 

 (𝑟̂̃𝑝)𝛼 = 𝜋𝑖=1
𝑘 [

(𝑛𝑖−𝑚𝑖+(𝑚̃𝑖0)𝛼)

(𝑛𝑖+𝑛𝑖0)
.
(𝑛𝑖−𝑚𝑖+(𝑚̃𝑖0)𝛼+1)

(𝑛𝑖+𝑛𝑖0+1)
]
1

2. (11) 

3.2. Parallel Systems 

We will consider a parallel system with 𝑘-independent components. The system reliability is 

obtained as 𝑅 = 1 − Π𝑖=1
𝑘 (1 − 𝑅𝑖), where 𝑅𝑖 is the component reliability of the system’s 𝑖 − 𝑡ℎ 

component. We employ the unreliability of the system, 𝑄 = 1 − 𝑅 = Π𝑖=1
𝑘 𝑄𝑖 and 𝑄𝑖 = 1 − 𝑅𝑖. 

Applying Eq. (5) and with a variable change, the posterior density function of 𝑄𝑖 = 1 − 𝑅𝑖 is as 

follows  

 𝜋𝑖(𝑞𝑖|𝑚𝑖) =
Γ(𝑛𝑖+𝑛𝑖0)

Γ(𝑛𝑖+𝑚𝑖0−𝑚𝑖)Γ(𝑛𝑖0+𝑚𝑖−𝑚𝑖0)
(1 − 𝑞𝑖)

𝑛𝑖+𝑚𝑖0−𝑚𝑖−1𝑞𝑖
𝑛𝑖0+𝑚𝑖−𝑚𝑖0−1. 

 Consequently, 

𝑄𝑖|𝑚𝑖 = (1 − 𝑅𝑖)|𝑚𝑖 ∼ 𝐵𝑒𝑡𝑎(𝑛𝑖0 −𝑚𝑖0 +𝑚𝑖, 𝑛𝑖 + 𝑛𝑖0). 

In the same way as the preceding subsection (series systems) and the Mellin transform, we have  

 𝐸(𝑄𝑖|𝑚𝑖) =
𝑛𝑖0−𝑚𝑖0+𝑚𝑖

𝑛𝑖+𝑛𝑖0
,    i = 1,2, … , 𝑘. 

 So, the following is how we can obtain the 𝐵𝑃𝐸 of the system’s unreliability for a 𝑆𝐸𝐿 function:  

 𝐸(𝑄|𝑚) = Π𝑖=1
𝑘 𝐸(𝑄𝑖|𝑚𝑖) = Π𝑖=1

𝑘 (
𝑛𝑖0−𝑚𝑖0+𝑚𝑖

𝑛𝑖+𝑛𝑖0
). 

 The 𝐵𝑃𝐸 of system reliability 𝑅, for the 𝑆𝐸𝐿 function, would be  

 𝑟̂𝑠 = 𝐸(𝑅|𝑚) = 1 − Π𝑖=1
𝑘 𝐸(𝑄𝑖|𝑚𝑖) 
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 = 1 − Π𝑖=1
𝑘 [1 −

𝑛𝑖−𝑚𝑖+𝑚𝑖0

𝑛𝑖+𝑛𝑖0
].  (12) 

 The 𝐵𝑃𝐸 of the system reliability 𝑅 for a parallel system and the 𝑃𝐿 function is  

 𝑟̂𝑝 = [𝐸(𝑅2|𝑚)]
1

2 = [𝐸(1 − 𝑄)2|𝑚]
1

2 = [𝐸(1 − 2𝑄 + 𝑄2)|𝑚]
1

2 

 = [1 − 2Π𝑖=1
𝑘 𝑛𝑖0−𝑚𝑖0+𝑚𝑖

𝑛𝑖+𝑛𝑖0
+ Π𝑖=1

𝑘 𝑛𝑖0−𝑚𝑖0+𝑚𝑖

𝑛𝑖+𝑛𝑖0
.
𝑛𝑖0−𝑚𝑖0+𝑚𝑖+1

𝑛𝑖+𝑛𝑖0+1
]
1

2.  (13) 

 With Eqs. (12) and (13), and under uncertain assumptions, we arrive to  

 (𝑟̂̃𝑠)𝛼 = 1 − Π𝑖=1
𝑘 [1 −

𝑛𝑖−𝑚𝑖+(𝑚̃𝑖0)𝛼

𝑛𝑖+𝑛𝑖0
]. (14) 

 (𝑟̂̃𝑝)𝛼 = [1 − 2Π𝑖=1
𝑘 𝑛𝑖0−(𝑚̃𝑖0)𝛼+𝑚𝑖

𝑛𝑖+𝑛𝑖0
+ Π𝑖=1

𝑘 𝑛𝑖0−(𝑚̃𝑖0)𝛼+𝑚𝑖

𝑛𝑖+𝑛𝑖0
.
𝑛𝑖0−(𝑚̃𝑖0)𝛼+𝑚𝑖+1

𝑛𝑖+𝑛𝑖0+1
]
1

2. (15) 

3.3. 𝒌-out-of-𝒍 System 

The system reliability for a 𝑘-out-of-𝑙 system made up of 𝑙 independent and identical components 

is given by the formula  

 𝑟𝑘𝑙 = Σ𝑗=𝑘
𝑙 (

𝑙
𝑗
) 𝑟𝑗(1 − 𝑟)𝑙−𝑗, (16) 

 where 𝑟 represents the reliability of each system component. For this issue, we can apply the 

Bayesian technique in a manner similar to earlier ones. It is assumed that the reliability of 

component 𝑟 is a random variable 𝑅 with a prior Beta distribution 𝐵𝑒𝑡𝑎(𝑚0, 𝑛0). 

The posterior distribution of 𝑅 is a 𝐵𝑒𝑡𝑎(𝑚 +𝑚0, 𝑛 + 𝑛0) distribution with the following 𝑝𝑑𝑓, 

according to Eq. (5).  

 𝜋𝑅(𝑟|𝑚,𝑚0) =
Γ(𝑛+𝑛0)

Γ(𝑛−𝑚+𝑚0)Γ(𝑛0+𝑚−𝑚0)
𝑟𝑛−𝑚+𝑚0−1(1 − 𝑟)𝑛0+𝑚−𝑚0−1. (17) 

 The 𝐵𝑃𝐸 of system reliability 𝑅𝑘𝑙 under a 𝑆𝐸𝐿 function would be:  

 𝑟̂𝑘𝑙𝑠 = 𝐸(𝑅𝑘𝑙𝑠|𝑚,𝑚0) = Σ𝑗=𝑘
𝑙 (

𝑙
𝑗
) ∫

1

0
𝑟𝑗(1 − 𝑟)𝑙−𝑗𝜋𝑅(𝑟|𝑚,𝑚0)𝑑𝑟 

 = Σ𝑗=𝑘
𝑙 (

𝑙
𝑗
) ∫

1

0

Γ(𝑛+𝑛0)

Γ(𝑛−𝑚+𝑚0)Γ(𝑛0+𝑚−𝑚0)
× 𝑟𝑛−𝑚+𝑚0+𝑗−1(1 − 𝑟)𝑛0+𝑙+𝑚−𝑚0−𝑗−1𝑑𝑟 

 =
Γ(𝑛+𝑛0)

Γ(𝑛−𝑚+𝑚0)Γ(𝑛0+𝑚−𝑚0)
× [Σ𝑗=𝑘

𝑙 (
𝑙
𝑗
)
Γ(𝑛−𝑚+𝑚0+𝑗)Γ(𝑛0+𝑙+𝑚−𝑚0−𝑗)

Γ(𝑙+𝑛+𝑛0)
].  (18) 

 Under uncertain assumptions and using Eq. (18), the 𝐵𝑃𝐸 of (𝑟̃𝑘𝑙𝑠)𝛼 is:  

 (𝑟̂̃𝑘𝑙𝑠)𝛼 =
Γ(𝑛+𝑛0)

Γ(𝑛−𝑚+(𝑚̃0)𝛼)Γ(𝑛0+𝑚−(𝑚̃0)𝛼)
 

                       × [Σ𝑗=𝑘
𝑙 (

𝑙
𝑗
)
Γ(𝑛−𝑚+(𝑚̃0)𝛼+𝑗)Γ(𝑛0+𝑙+𝑚−(𝑚̃0)𝛼−𝑗)

Γ(𝑙+𝑛+𝑛0)
].    (19) 

 The 𝐵𝑃𝐸 of system reliability under a 𝑃𝐿 function would be  
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𝑟̂𝑘𝑙𝑝 = [𝐸(𝑅𝑘𝑙𝑝
2 |𝑚,𝑚0)]

1
2 = [Σ𝑗=𝑘

𝑙 Σ𝑖=𝑘
𝑙 (

𝑙
𝑗
) (
𝑙
𝑖
)∫

1

0

𝑟𝑗+𝑖+2(1 − 𝑟)2𝑙−𝑗−𝑖𝜋𝑅(𝑟|𝑚,𝑚0)𝑑𝑟]
1
2 

 = [Σ𝑗=𝑘
𝑙 Σ𝑖=𝑘

𝑙 (
𝑙
𝑗
) (
𝑙
𝑖
) ∫

1

0

Γ(𝑛+𝑛0)

Γ(𝑛−𝑚+𝑚0)Γ(𝑛0+𝑚−𝑚0)
 

 × 𝑟𝑛−𝑚+𝑚0+𝑗+𝑖+1(1 − 𝑟)𝑛0+2𝑙+𝑚−𝑚0−𝑗−𝑖−1𝑑𝑟]
1

2 

 = [
Γ(𝑛+𝑛0)

Γ(𝑛−𝑚+𝑚0)Γ(𝑛0+𝑚−𝑚0)
. (Σ𝑗=𝑘

𝑙 Σ𝑖=𝑘
𝑙 (

𝑙
𝑗
) (
𝑙
𝑖
) 

             .
Γ(𝑛−𝑚+𝑚0+𝑗+𝑖+2𝑙)Γ(𝑛0+2𝑙+𝑚−𝑚0−𝑗−𝑖)

Γ(2𝑙+𝑛+𝑛0)
)]
1

2. (20) 

Eq. (20) and uncertain conditions give us  

 (𝑟̂̃𝑘𝑙𝑝)𝛼 = [
Γ(𝑛+𝑛0)

Γ(𝑛−𝑚+(𝑚̃0)𝛼)Γ(𝑛0+𝑚−(𝑚̃0)𝛼)
. (Σ𝑗=𝑘

𝑙 Σ𝑖=𝑘
𝑙 𝑙

𝑗
𝑙
𝑖

 

                 .
Γ(𝑛−𝑚+(𝑚̃0)𝛼+𝑗+𝑖+2𝑙)Γ(𝑛0+2𝑙+𝑚−(𝑚̃0)𝛼−𝑗−𝑖)

Γ(2𝑙+𝑛+𝑛0)
)]
1

2.  (21) 

4. Numerical Example 

Consider a series system that contains four independent components. We’ll presume the following 

information was gathered during a test. There are 𝑛1 = 13 tested items in the first component, of 

which 𝑚1 = 2 are failures. There are 𝑛2 = 11 and 𝑚2 = 2, 𝑛3 = 9 and 𝑚3 = 1, and 𝑛4 = 6 and 

𝑚4 = 1 in the second, third, and fourth components, respectively. 

The percentage of system failures is ”about 20%" for the first component, ”about 20%” for the 

second component, ”about 15%”for the third component, ”about 20%" for the fourth component 

based on previous information and experiences. As a result, we can infer that 𝑚̃10 = 𝑚̃20 = 3̃, 

𝑚̃30 = 𝑚̃40 = 2̃, 𝑛10 = 𝑛20 = 12, 𝑛30 = 11, and 𝑛40 = 9, where 3̃ = (3,4,5), and 2̃ = (1,2,3) are 

triangular fuzzy real numbers. The 𝛼-pesemesics of 2̃, and 3̃, are, respectively, 2̃𝛼 = 1 + 2𝛼, and 

3̃𝛼 = 2 + 2𝛼, 0 ≤ 𝛼 ≤ 1. 

Now, using Eq. (10), the 𝛼-level of uncertain 𝐵𝑃𝐸 (𝑟̃𝑠)𝛼 under 𝑆𝐸𝐿 function is obtained as follows:  

 (𝑟̂̃𝑠)𝛼 = Π𝑖=1
𝑘 (

𝑛𝑖−𝑚𝑖+(𝑚̃𝑖0)𝛼

𝑛𝑖0+𝑛𝑖
) =

(13+2𝛼)(11+2𝛼)(9+2𝛼)(6+2𝛼)

172500
,    0 ≤ 𝛼 ≤ 1. 

 In a 𝑃𝐿 function, for (𝑟̃𝑝)𝛼 the uncertain 𝐵𝑃𝐸 using Eq. (11) is:  

 (𝑟̂̃𝑝)𝛼 = 𝜋𝑖=1
𝑘 [

(𝑛𝑖−𝑚𝑖+(𝑚̃𝑖0)𝛼)

(𝑛𝑖+𝑛𝑖0)
.
(𝑛𝑖−𝑚𝑖+(𝑚̃𝑖0)𝛼+1)

(𝑛𝑖+𝑛𝑖0+1)
]
1

2 

 = [
(13+2𝛼)(14+2𝛼)

650
.
(11+2𝛼)(12+2𝛼)

552
.
(9+2𝛼)(10+2𝛼)

420
×
(6+2𝛼)(7+2𝛼)

240
]
1

2. 

 Finally, one can obtain the degree of membership of system reliability. The resulting system 

reliability functions, expressed in terms of 𝛼-levels, provide a clear view of how uncertainty affects 

reliability estimates. As shown in Figure 1, both SEL- and PL-based reliability estimates exhibit a 

slight decline as α increases, reflecting the growing pessimism in prior knowledge. Notably, the PL-

based reliability is consistently lower, highlighting its conservative nature and suitability for safety-
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critical applications. The graphical comparison confirms that the 𝛼-pessimistic technique not only 

captures uncertainty effectively but also eliminates the need for complex non-linear programming. 

This significantly simplifies computation while offering interpretable, robust, and flexible reliability 

assessments across varying degrees of imprecision in prior information. 

 

Figure 1: Fuzzy Bayes estimation of series system reliability (SEL vs PL) 

To further demonstrate the flexibility of the proposed α-pessimistic fuzzy Bayesian approach, a 

parallel system composed of four independent components was analyzed using the same prior fuzzy 

information. In this case, the uncertain 𝐵𝑃𝐸 using Eqs. (14) and (15) for (𝑟̃𝑝)𝛼 under the 𝑆𝐸𝐿 function 

and 𝑃𝐿 function as follows  

 (𝑟̂̃𝑠)𝛼 = 1 − Π𝑖=1
𝑘 [1 −

𝑛𝑖−𝑚𝑖+(𝑚̃𝑖0)𝛼

𝑛𝑖+𝑛𝑖0
]. 

            = 1 −
(12−2𝛼)(12−2𝛼)(11−2𝛼)(9−2𝛼)

172500
,    0 ≤ 𝛼 ≤ 1. 

 (𝑟̂̃𝑝)𝛼 = [1 − 2Π𝑖=1
𝑘 𝑛𝑖0−(𝑚̃𝑖0)𝛼+𝑚𝑖

𝑛𝑖+𝑛𝑖0
+ Π𝑖=1

𝑘 𝑛𝑖0−(𝑚̃𝑖0)𝛼+𝑚𝑖

𝑛𝑖+𝑛𝑖0
.
𝑛𝑖0−(𝑚̃𝑖0)𝛼+𝑚𝑖+1

𝑛𝑖+𝑛𝑖0+1
]
1

2. 

             = [1 −
(12−2𝛼)(12−2𝛼)(11−2𝛼)(9−2𝛼)

86250
 

 +
(12−2𝛼)(13−2𝛼)

650
.
(12−2𝛼)(13−2𝛼)

552
.
(11−2𝛼)(12−2𝛼)

420
×
(9−2𝛼)(10−2𝛼)

240
]
1

2. 

In the case of the parallel system, the uncertain Bayes point estimates under both the SEL and PL 

functions were computed using 𝛼-pessimistic fuzzy priors. Figure 2 displays the behaviour of 

system reliability across varying levels of pessimism (𝛼 ∈ [0,1]). As expected, the reliability values 

are substantially higher than those in the series configuration, reflecting the inherent robustness of 

parallel systems in tolerating individual component failures. The reliability estimates gradually 

decrease as 𝛼 increases, indicating that greater uncertainty in prior information results in more 

conservative reliability predictions. The PL-based reliability function again yields lower estimates 

than the SEL-based function, reinforcing its suitability for safety-critical assessments where 

conservative judgment is preferred. Notably, the smooth and interpretable decline of both curves 

demonstrates the advantage of the 𝛼-pessimistic technique, which allows nuanced control over 

uncertainty without requiring non-linear optimization [25, 26, 27, 30]. This computational 

simplicity, combined with the flexibility of fuzzy Bayesian inference, makes the method particularly 
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useful in practical engineering scenarios where prior information is imprecise but essential for 

decision-making. 

 

 

Figure 2: Fuzzy Bayes estimation of parallel system reliability (SEL vs PL) 

In the following, we consider a 2-out-of-4 system as having four independent and identical 

components. When ten items are included in a test, let’s assume that there are three failures, or 𝑛 =

12 and 𝑚 = 3. The failure rate, according to previous testing and experiences, is ”around 20%". 

Consequently, the fuzzy prior Beta distribution 𝐵𝑒𝑡𝑎(2̃, 10) is employed and 2̃ = (1,2,3) is a 

triangular fuzzy real number. 

Eqs. (19) and (21) can be used to obtain the uncertain 𝐵𝑃𝐸 for (𝑟̃𝑝)𝛼 under the 𝑆𝐸𝐿 function and 𝑃𝐿 

function as follows  

 (𝑟̂̃𝑘𝑙𝑠)𝛼 =
Γ(𝑛+𝑛0)

Γ(𝑛−𝑚+(𝑚̃0)𝛼)Γ(𝑛0+𝑚−(𝑚̃0)𝛼)
 

               × [Σ𝑗=𝑘
𝑙 (

𝑙
𝑗
)
Γ(𝑛−𝑚+(𝑚̃0)𝛼+𝑗)Γ(𝑛0+𝑙+𝑚−(𝑚̃0)𝛼−𝑗)

Γ(𝑙+𝑛+𝑛0)
] 

               =
Γ(22)

Γ(10+2𝛼)Γ(12−2𝛼)
× [Σ𝑗=2

4 (
4
𝑗
)
Γ(10+2𝛼+𝑗)Γ(16−2𝛼−𝑗)

Γ(26)
] 

 (𝑟̂̃𝑘𝑙𝑝)𝛼 = [
Γ(𝑛+𝑛0)

Γ(𝑛−𝑚+(𝑚̃0)𝛼)Γ(𝑛0+𝑚−(𝑚̃0)𝛼)
. (Σ𝑗=𝑘

𝑙 Σ𝑖=𝑘
𝑙 (

𝑙
𝑗
) (
𝑙
𝑖
) 

 .
Γ(𝑛−𝑚+(𝑚0)𝛼+𝑗+𝑖+2𝑙)Γ(𝑛0+2𝑙+𝑚−(𝑚0)𝛼−𝑗−𝑖)

Γ(2𝑙+𝑛+𝑛0)
)]
1

2 

             = [
Γ(22)

Γ(10+2𝛼)Γ(12−2𝛼)
. (Σ𝑗=2

4 Σ𝑖=2
4 (

4
𝑗
) (
4
𝑗
) .

Γ(18+2𝛼+𝑗+𝑖)Γ(20−2𝛼−𝑗−𝑖)

Γ(30)
)]
1

2 

 

The reliability estimates were computed using both the SEL and PL loss functions. As depicted in 

Figure 3, the estimated system reliability under both loss functions consistently decreases with 

increasing 𝛼, reflecting higher levels of pessimism in prior belief. Notably, the PL-based estimator 

provides slightly more conservative (lower) estimates compared to the SEL-based estimator, 
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particularly as  approaches 1. This behaviour underscores the effect of precautionary modelling in 

uncertainty propagation. The figure also visually confirms the robustness and interpretability of the 

proposed fuzzy Bayes approach using the 𝛼-pessimistic method for k-out-of-l systems. 

 

Figure 3: Fuzzy Bayes estimation of 2-out-of-4 system reliability (SEL vs PL) 

 

5. Summary and Conclusion 

This paper introduced a novel fuzzy Bayesian framework for system reliability analysis that 

effectively handles imprecise prior information by modelling parameters as fuzzy random variables 

with prior fuzzy distributions. This represents a significant advancement over traditional methods, 

which often lack a theoretical foundation in fuzzy random variables and fail to treat uncertainty at 

the parameter level naturally and realistically. We constructed fuzzy Bayes point estimators of 

system reliability based on the Pascal distribution for coherent systems, including parallel, series, 

and k-out-of-m configurations. These estimators were derived using the concept of uncertain Bayes 

estimation under squared error and precautionary loss functions, facilitated by the Mellin transform. 

A key innovation of our approach lies in the use of the  𝛼-pessimistic technique, which plays a 

central role in circumventing the complex non-linear programming procedures commonly required 

in related works. This technique significantly simplifies the computational process while enhancing 

the interpretability and applicability of the results. The proposed method offers three significant 

advantages: It leverages prior system knowledge through fuzzy distributions, provides a deeper and 

more precise analysis of system behaviour via uncertainty theory and eliminates dependency on 

non-linear programming through the 𝛼-pessimistic approach, enabling efficient and tractable 

reliability analysis. 

In conclusion, our methodology presents a flexible, theoretically grounded, and computationally 

efficient framework for reliability analysis in uncertain environments. Future research directions 

include extending the model to dynamic or multi-state systems and applying the framework to real-

world case studies in industrial reliability engineering. 
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