
تعداد نشریات | 31 |
تعداد شمارهها | 802 |
تعداد مقالات | 7,695 |
تعداد مشاهده مقاله | 35,288,611 |
تعداد دریافت فایل اصل مقاله | 7,808,793 |
Short-term high temperature stress in plants: Stress markers and cell signaling | ||
Caspian Journal of Environmental Sciences | ||
دوره 23، شماره 3، مهر 2025، صفحه 805-844 اصل مقاله (1007.54 K) | ||
نوع مقاله: Reviewers | ||
شناسه دیجیتال (DOI): 10.22124/cjes.2025.8961 | ||
نویسندگان | ||
Kuralay Zhanassova1؛ Mereke Satkanov1؛ Abay Samat1؛ Nurgul Iksat1؛ Assemgul Bekturova1؛ Manira Zhamanbayeva2؛ Assylay Kurmanbayeva1؛ Zhaksylyk Masalimova* 1 | ||
1Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan | ||
2D. Serikbayev East Kazakhstan Technical University, Ust-Kamenogorsk, Kazakhstan | ||
چکیده | ||
Heat stress, intensified by rising global temperatures, presents significant challenges to plant growth, development, and reproduction. Plants respond with specific physiological and molecular changes, traditionally categorized as short-term (acute) or long-term (chronic). However, current classifications often lack the precision needed to adequately characterize short-term heat stress (STHS), leaving its specific markers and biological implications under-defined. This review proposes a time-range-based classification for heat stress responses, emphasizing STHS as a distinct phase rather than a milder form of prolonged stress. We differentiate between main thermotolerance, acquired thermotolerance, and acclimatization as separate strategies tied to specific exposure patterns. We also examine the roles and dynamics of key molecular and biochemical markers, including reactive oxygen and nitrogen species (ROS/RNS), transcription factors, small RNAs, heat shock responses, antioxidants, phytohormones, and osmolytes, analyzing their functional interplay. Based on recent evidence, we re-evaluate the importance of ROS and antioxidant defense, highlighting the underestimated role of RNS and osmolytes in acute heat episodes. This review summarizes current concepts about STHS, emphasizing its distinct nature and providing a foundation for more accurate identification of early-stage stress markers in plants exposed to high temperatures. | ||
کلیدواژهها | ||
Short-term heat stress؛ Molecular markers؛ Heat shock proteins؛ Reactive oxygen species؛ Antioxidant defence؛ Proline؛ Apoptosis؛ Programmed cell death؛ Oxidative | ||
مراجع | ||
Abdelaal, K, Alsubeie, MS, Hafez, Y, Emeran, A, Moghanm, F, Okasha, S et al. 2022, Physiological and biochemical changes in vegetable and field crops under drought, salinity and weeds stresses: Control strategies and management. Agriculture 12, DOI: 10.3390/agriculture12122084.
Abdel-Ghany, SE & Pilon, M 2008, MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. Journal of Biological Chemistry, 283: 15932–15945, DOI: 10.1074/jbc.M801406200.
Abdukarimov, N, Kokabi, K & Kunz, J 2025, Ferroptosis and iron homeostasis: Molecular mechanisms and neurodegenerative disease implications. Antioxidants 14, DOI: 10.3390/antiox14050527.
Aitlessov, K, Zhumabekova, B, Sagyndykov, U, Tuyakbayeva, A, Bitkeyeva, A, Bazarbaeva, K Zh, et al. 2023, Foliar fertilization with molybdate and nitrate up-regulated activity of nitrate reductase in lemon balm leaves. Horticulturae 9, DOI: 10.3390/horticulturae9121325.
Akhiani, AA & Martner, A 2023, Role of phosphoinositide 3-Kinase in regulation of NOX-Derived reactive oxygen species in cancer. Antioxidants 12, DOI: 10.3390/antiox12010067.
Alamri, S, Siddiqui, MH, Mukherjee, S, Kumar, R, Kalaji, HM, Irfan, M et al. 2022, Molybdenum-induced endogenous nitric oxide (NO) signaling coordinately enhances resilience through chlorophyll metabolism, osmolyte accumulation and antioxidant system in arsenate stressed-wheat (Triticum aestivum L.) seedlings. Environmental Pollution, 292: 118268, DOI: 10.1016/j.envpol.2021.118268.
Alghabari, F, Shah, ZH, Elfeel, AA & Alyami, JH 2021, Biochemical and physiological responses of thermostable wheat genotypes for agronomic yield under heat stress during reproductive stages. Agronomy, 11, DOI: 10.3390/agronomy11102080.
Ali, MK, Azhar, A, Rehman, HU & Galani, S 2021, Antioxidant defence system and oxidative damages in rice seedlings under heat stress. Pure and Applied Biology (PAB), 5: 1131–1141, DOI: 10.19045/bspab. 2016.50136.
Almeselmani, M, Deshmukh, PS, Sairam, RK, Kushwaha, SR & Singh, TP 2006, Protective role of antioxidant enzymes under high temperature stress. Plant Science, 171: 382–388, DOI: 10.1016/j.plantsci. 2006.04.009.
Al-Yaari, A, Zhao, Y, Cheruy, F & Thiery, W 2023, Heatwave characteristics in the recent climate and at different global warming levels: A multimodel analysis at the global scale. Earth’s Future, 11: e2022EF003301. DOI: 10.1029/2022EF003301.
Amitrano, C, Junker, A, D’Agostino, N, De Pascale, S & De Micco, V 2022, Integration of high-throughput phenotyping with anatomical traits of leaves to help understanding lettuce acclimation to a changing environment. Planta, 256: 68, DOI: 10.1007/s00425-022-03984-2.
Ammar, A, Ali, Z, Saddique, M, Habib-Ur-Rahman, M & Ali, I 2023, Genetic analysis and expression profiling of TaHSP90A transcripts confer heat tolerance in wheat. SABRAO Journal of Breeding and Genetics, 55: 653–670, DOI: 10.54910/sabrao2023.55.3.5.
Amokrane, L, Pokotylo, I, Acket, S, Ducloy, A, Troncoso-Ponce, A, Cacas, J-L et al. 2024, Phospholipid signaling in crop plants: A field to explore. Plants 13, DOI: 10.3390/plants13111532.
Andrási, N, Pettkó-Szandtner, A & Szabados, L 2021, Diversity of plant heat shock factors: Regulation, interactions, and functions. Journal of Experimental Botany, 72: 1558–1575, DOI: 10.1093/jxb/eraa576.
Andrés, CM, Lastra, JM, Juan, CA, Plou, FJ & Pérez-Lebeña, E 2023, Chemical insights into oxidative and nitrative modifications of DNA. International Journal of Molecular Sciences, 24, DOI: 10.3390/ijms242015240.
Andrés, CM, Pérez de la Lastra, JM, Andrés Juan, C, Plou, FJ & Pérez-Lebeña, E 2022, Impact of reactive species on amino acids: Biological relevance in proteins and induced pathologies. International Journal of Molecular Sciences, 23, DOI: 10.3390/ijms232214049.
Anstett, DN, Branch, HA & Angert, AL 2021, Regional differences in rapid evolution during severe drought. Evolution Letters, 5: 130–142, DOI: 10.1002/evl3.218.
Aslam, MA, Ahmed, M, Hassan, FU, Afzal, O, Mehmood, MZ, Qadir, G, et al. 2022, Impact of temperature fluctuations on plant morphological and physiological traits,” in Building Climate Resilience in Agriculture: Theory, Practice and Future Perspective, eds. WN, Jatoi, M, Mubeen, A, Ahmad, MA, Cheema, Z, Lin, & MZ, Hashmi (Cham: Springer International Publishing), pp. 25-52. DOI: 10.1007/978-3-030-79408-8_3.
Aubakirova, K, Satkanov, M, Kulataeva, M, Assylbekova, G, Kambarbekova, A & Alikulov, Z 2023, Molybdoenzymes isolated from S. glanis liver can produce nitric oxide from nitrates and nitrites. Czech Journal of Animal Science, 5: 222–230, DOI: 10.17221/206/2022-CJAS.
Avalbaev, A, Fedyaev, V, Lubyanova, A, Yuldashev, R & Allagulova, C 2024, 24-Epibrassinolide reduces drought-induced oxidative stress by modulating the antioxidant system and respiration in wheat seedlings. Plants 13, DOI: 10.3390/plants13020148.
Averill-Bates, D 2024, Reactive oxygen species and cell signaling. Review. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1871: 119573, DOI: 10.1016/j.bbamcr.2023.119573.
Babbar, R, Karpinska, B, Grover, A & Foyer, CH 2021, Heat-Induced oxidation of the nuclei and cytosol. Frontiers in Plant Science Volume 11, 2020, DOI: https://doi.org/10.3389/fpls.2020.617779.
Bai, WP, Li, HJ, Hepworth, SR, Liu, HS, Liu, LB, Wang, GN et al. 2023, Physiological and transcriptomic analyses provide insight into thermotolerance in desert plant Zygophyllum xanthoxylum. BMC Plant Biology 23: 7, DOI: 10.1186/s12870-022-04024-7.
Bal, A, Panda, F, Pati, SG, Das, K, Agrawal, PK & Paital, B 2021, Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 241: 108971, DOI: 10.1016/j.cbpc.2020.108971.
Balfagón, D, Zandalinas, SI & Gómez-Cadenas, A 2019, High temperatures change the perspective: Integrating hormonal responses in citrus plants under co-occurring abiotic stress conditions. Physiologia Plantarum, 165: 183–197, DOI: 10.1111/ppl.12815.
Bao, L, Liu, J, Mao, T, Zhao, L, Wang, D & Zhai, Y 2024, Nanobiotechnology-mediated regulation of reactive oxygen species homeostasis under heat and drought stress in plants. Frontiers in Plant Science, Volume 15, DOI: https://doi.org/10.3389/fpls.2024.1418515.
Batool, I, Ayyaz, A, Qin, T, Wu, X, Chen, W, Hannan, F et al. 2025, Morphological, physiological, and molecular responses to heat stress in brassicaceae. Plants, 14, DOI: 10.3390/plants14020152.
Baxter, A, Mittler, R & Suzuki, N 2014, ROS as key players in plant stress signalling. Journal of Experimental Botany, 65: 1229-1240, DOI: 10.1093/jxb/ert375.
Beard, RA, Anderson, DJ, Bufford, JL & Tallman, G 2012, Heat reduces nitric oxide production required for auxin-mediated gene expression and fate determination in tree tobacco guard cell protoplasts. Plant Physiology 159: 1608-1623, DOI: 10.1104/pp.112.200089.
Benkő, P, Gémes, K & Fehér, A 2022, Polyamine oxidase-generated reactive oxygen species in plant development and adaptation: The polyamine oxidase—nadph oxidase nexus. Antioxidants, 11, DOI: 10.3390/antiox11122488.
Berens, ML, Wolinska, KW, Spaepen, S, Ziegler, J, Nobori, T, Nair, A et al. 2019, Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. Proceedings of the National Academy of Sciences, 116: 2364–2373, DOI: 10.1073/pnas.1817233116.
Berger, A, Boscari, A, Horta Araújo, N, Maucourt, M, Hanchi, M, Bernillon, S et al. 2020, Plant nitrate reductases regulate nitric oxide production and nitrogen-fixing metabolism during the Medicago truncatula–Sinorhizobium meliloti symbiosis. Frontiers in Plant Science, Volume 11-2020, DOI: doi.org/10.3389/ fpls.2020.01313.
Berka, M, Kopecká, R, Berková, V, Brzobohatý, B & Černý, M 2022, Regulation of heat shock proteins 70 and their role in plant immunity. Journal of Experimental Botany, 73: 1894-1909, DOI: 10.1093/jxb/erab549.
Bethke, PC, Badger, MR & Jones, RL 2004, Apoplastic synthesis of nitric oxide by plant tissues. The Plant Cell, 16: 332–341, DOI: 10.1105/tpc.017822.
Bhardwaj, R, Lone, JK, Pandey, R, Mondal, N, Dhandapani, R, Meena, SK et al. 2023, Insights into morphological and physio-biochemical adaptive responses in mungbean (Vigna radiata L.) under heat stress. Frontiers in Genetics, Volume 14, DOI: doi.org/10.3389/fgene.2023.1206451.
Bhatt, M, Pandey, SS, Tiwari, AK & Tiwari, BS 2021, Plastid-mediated singlet oxygen in regulated cell death. Plant Biology, 23: 686–694, DOI: 10.1111/plb.13260.
Bolen, DW 2001, Protein Stabilization by Naturally Occurring Osmolytes,” in Protein Structure, Stability, and Folding, ed. KP, Murphy (Totowa, NJ: Humana Press), 17-36, DOI: 10.1385/1-59259-193-0:017.
Borisov, VB, Siletsky, SA, Nastasi, MR & Forte, E 2021, ROS defense systems and terminal oxidases in bacteria. Antioxidants, 10, DOI: 10.3390/antiox10060839.
Bourgine, B & Guihur, A 2021, Heat shock signaling in land plants: From plasma membrane sensing to the transcription of small heat shock proteins. Frontiers in Plant Science, Volume 12, DOI: 10.3389/fpls.2021.710801.
Breeze, E & Mullineaux, PM 2022, The passage of H2O2 from chloroplasts to their associated nucleus during retrograde signalling: Reflections on the role of the nuclear envelope. Plants, 11, DOI: 10.3390/plants11040552.
Brunquell, J, Snyder, A, Cheng, F & Westerheide, SD 2017, HSF-1 is a regulator of miRNA expression in Caenorhabditis elegans. PLOS ONE, 12: e0183445, DOI: 10.1371/journal.pone.0183445.
Burke, R, Schwarze, J, Sherwood, OL, Jnaid, Y, McCabe, PF & Kacprzyk, J 2020, Stressed to death: The role of transcription factors in plant programmed cell death induced by abiotic and biotic stimuli. Frontiers in Plant Science, Volume 11, DOI: 10.3389/fpls.2020.01235.
Cai, W, Yang, S, Wu, R, Cao, J, Shen, L, Guan, D et al. 2021, Pepper NAC-type transcription factor NAC2c balances the trade-off between growth and defense responses. Plant Physiology, 186: 2169-2189, DOI: 10.1093/plphys/kiab190.
Cao LiYong, CL, Zhao JianGen, ZJ, Zhan XiaoDeng, ZX, Li DengLou, LD, He LiBin, HL & Cheng ShiHua, CS 2003, Mapping QTLs for heat tolerance and correlation between heat tolerance and photosynthetic rate in rice. Chinese Journal of Rice Science, 17: 223–227.
Carillo, P & Rouphael, Y 2022, Nitrate uptake and use efficiency: Pros and cons of chloride interference in the vegetable crops. Frontiers in Plant Science, Volume 13, DOI: 10.3389/fpls.2022.899522.
Caverzan, A, Casassola, A & Brammer, SP 2016, Antioxidant responses of wheat plants under stress. Genetics and molecular biology, 39: 1–6, DOI: 10.1590/1678-4685-GMB-2015-0109.
Cejudo, FJ, Sandalio, LM & Van Breusegem, F 2021, Understanding plant responses to stress conditions: Redox-based strategies. Journal of Experimental Botany, 72: 5785–5788, DOI: 10.1093/jxb/erab324.
Chamizo-Ampudia, A, Sanz-Luque, E, Llamas, A, Galvan, A & Fernandez, E 2017, Nitrate reductase regulates plant nitric oxide homeostasis. Trends in Plant Science, 22: 163–174, DOI: 10.1016/j.tplants. 2016.12.001.
Chatelain, P, Astier, J, Wendehenne, D, Rosnoblet, C & Jeandroz, S 2021, Identification of partner proteins of the algae Klebsormidium nitens no synthases: Toward a better understanding of NO signaling in eukaryotic photosynthetic organisms. Frontiers in Plant Science, Volume 12, Available at: https://www.frontiersin.org/ journals/plant-science/articles/10.3389/fpls.2021.797451.
Checa, J & Aran, JM 2020, Reactive oxygen species: Drivers of physiological and pathological processes. Journal of Inflammation Research, pp.1057-1073, DOI: doi.org/10.2147/JIR.S275595.
Cheikh, N & Jones, RJ 1994, Disruption of maize kernel growth and development by heat stress (role of cytokinin/abscisic acid balance). Plant Physiology, 106: 45–51, DOI: 10.1104/pp.106.1.45.
Chen, H, Qiu, S, Chen, Y, Li, J, Xu, T, Zhong, P et al. 2024, Integrated transcriptomics and metabolomics provides insights into the Nicotiana tabacum response to heat stress. Frontiers in Plant Science, Volume 15-2024. doi: 10.3389/fpls.2024.1425944.
Chen, X, Ding, Y, Yang, Y, Song, C, Wang, B, Yang, S et al. 2021, Protein kinases in plant responses to drought, salt, and cold stress. Journal of Integrative Plant Biology, 63: 53–78, DOI: 10.1111/jipb.13061.
Chen, X, Zhang, Z, Liu, D, Zhang, K, Li, A & Mao, L 2010, SQUAMOSA promoter-binding protein-like transcription factors: Star players for plant growth and development. Journal of Integrative Plant Biology, 52: 946–951, DOI: 10.1111/j.1744-7909.2010. 00987.x.
Chen, YE, Mao, HT, Wu, N, Mohi Ud Din, A, Khan, A, Zhang, HY et al. 2020, Salicylic acid protects photosystem II by alleviating photoinhibition in arabidopsis thaliana under high light. International Journal of Molecular Sciences, 21, DOI: 10.3390/ijms21041229.
Chen, Z, Galli, M & Gallavotti, A 2022, Mechanisms of temperature-regulated growth and thermotolerance in crop species. Current Opinion in Plant Biology, 65: 102134, DOI: 10.1016/j.pbi.2021.102134.
Chirivì, D & Betti, C 2023, Molecular links between flowering and abiotic stress response: A focus on poaceae. Plants, 12, DOI: 10.3390/plants12020331.
Ciacka, K, Staszek, P, Sobczynska, K, Krasuska, U & Gniazdowska, A 2022, Nitric oxide in seed biology. International Journal of Molecular Sciences, 23, DOI: 10.3390/ijms232314951.
Cocetta, G, Landoni, M, Pilu, R, Repiso, C, Nolasco, J, Alajarin, M et al. 2022, Priming treatments with biostimulants to cope the short-term heat stress response: A transcriptomic profile evaluation. Plants, 11, DOI: 10.3390/plants11091130.
Collado-González, J, Piñero, MC, Otálora, G, López-Marín, J & Amor, FM 2021, The effect of foliar putrescine application, ammonium exposure, and heat stress on antioxidant compounds in cauliflower waste. Antioxidants, 10, DOI: 10.3390/antiox10050707.
Cooper, TG & Beevers, H 1969, β oxidation in glyoxysomes from castor bean endosperm. Journal of Biological Chemistry, 244: 3514–3520, DOI: 10.1016/S0021-9258(18)83402-0.
Corpas, FJ, González-Gordo, S & Palma, JM 2020, Plant peroxisomes: A factory of reactive species. Frontiers in Plant Science Volume 11, Available at: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2020.00853.
Corpas, FJ, González-Gordo, S & Palma, JM 2022a, NO source in higher plants: Present and future of an unresolved question. Trends in Plant Science, 27: 116–119, DOI: 10.1016/j.tplants.2021.11.016.
Corpas, FJ, González-Gordo, S & Palma, JM 2024, Ascorbate peroxidase in fruits and modulation of its activity by reactive species. Journal of Experimental Botany, 75: 2716–2732, DOI: 10.1093/jxb/erae092.
Corpas, FJ, González-Gordo, S, Rodríguez-Ruiz, M, Muñoz-Vargas, MA & Palma, JM 2022b, Thiol-based oxidative posttranslational modifications (OxiPTMs) of plant proteins. Plant and Cell Physiology, 63: 889–900, DOI: 10.1093/pcp/pcac036.
Curaba, J, Singh, MB & Bhalla, PL 2014, miRNAs in the crosstalk between phytohormone signalling pathways. Journal of Experimental Botany, 65: 1425–1438, DOI: 10.1093/jxb/eru002.
Dannfald, A, Carpentier, MC, Merret, R, Favory, JJ & Deragon, JM 2025, Plant response to intermittent heat stress involves modulation of mRNA translation efficiency. Plant Physiology, 197, kiae648, DOI: 10.1093/plphys/kiae648.
Danyluk, J, Rassart, E & Sarhan, F 1991, Gene expression during cold and heat shock in wheat. Biochemistry and Cell Biology, 69: 383–391, DOI: 10.1139/o91-058.
Dard, A, Weiss, A, Bariat, L, Auverlot, J, Fontaine, V, Picault, N et al. 2023, Glutathione-mediated thermomorphogenesis and heat stress responses in Arabidopsis thaliana. Journal of Experimental Botany, 74: 2707–2725, DOI: 10.1093/jxb/erad042.
Das, AK, Ghosh, PK, Nihad, SA, Sultana, S, Keya, SS, Rahman, Md A et al. 2024, Salicylic acid priming improves cotton seedling heat tolerance through photosynthetic pigment preservation, enhanced antioxidant activity, and osmoprotectant levels. Plants, 13, DOI: 10.3390/plants13121639.
Das, S, Shil, S, Rime, J, Alice, AK, Yumkhaibam, T, Mounika, V et al. 2025, Phytohormonal signaling in plant resilience: advances and strategies for enhancing abiotic stress tolerance. Plant Growth Regulation, 105: 329–360, DOI: 10.1007/s10725-025-01279-6.
del Río, LA 2015, ROS and RNS in plant physiology: An overview. Journal of Experimental Botany, 66: 2827–2837, DOI: 10.1093/jxb/erv099.
Dhaubhadel, S, Browning, KS, Gallie, DR & Krishna, P 2002, Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. The Plant Journal, 29: 681–691, DOI: 10.1046/j.1365-313X.2002.01257.x.
Di Meo, S & Venditti, P 2020, Evolution of the knowledge of free radicals and other oxidants. Oxidative Medicine and Cellular Longevity, 2020: 9829176, DOI: 10.1155/2020/9829176
DiCara, C & Gedan, K 2023, Distinguishing the effects of stress intensity and stress duration in plant responses to salinity. Plants, 12, DOI: 10.3390/plants12132522.
Ding, Y, Huang, L, Jiang, Q & Zhu, C 2020, MicroRNAs as important regulators of heat stress responses in plants. Journal of Agricultural and Food Chemistry, 68: 11320–11326, DOI: 10.1021/acs.jafc.0c03597.
Diogo-Jr, R, de Resende Von Pinho, EV, Pinto, RT, Zhang, L, Condori-Apfata, JA, Pereira, PA, et al. 2023, Maize heat shock proteins: prospection, validation, categorization and in silico analysis of the different ZmHSP families. Stress Biology, 3: 37, DOI: 10.1007/s44154-023-00104-2.
Djanaguiraman, M, Priyanka, AS, Vaishnavi, SJ, Perumal, R, Ciampitti, IA & Prasad, PVV 2024, “Impact of Drought and High-temperature Stresses on Growth and Development Stages, Physiological, Reproductive, and Yield Traits on Pearl Millet,” in Pearl Millet, 249–276, DOI: 10.1002/9780891184034.ch9.
Dmitrieva, VA, Tyutereva, EV & Voitsekhovskaja, OV 2020, Singlet oxygen in plants: Generation, detection, and signaling roles. International Journal of Molecular Sciences, 21, DOI: 10.3390/ijms21093237.
Dogra, V & Kim, C 2020, Singlet oxygen metabolism: From genesis to signaling. Frontiers in Plant Science Volume 10-2019, DOI: https://doi.org/10.3389/fpls.2019.01640.
Donat, MG, Sillmann, J & Fischer, EM 2020, “Changes in climate extremes in observations and climate model simulations. From the past to the future,” In: Climate Extremes and Their Implications for Impact and Risk Assessment, eds. J, Sillmann, S, Sippel, and S, Russo (Elsevier), Chapter 3, pp. 31–57, DOI: 10.1016/B978-0-12-814895-2.00003-3.
Dongsansuk, A, Paethaisong, W & Theerakulpisut, P 2021, Membrane stability and antioxidant enzyme activity of rice seedlings in response to short-term high temperature treatments. Chilean Journal of Agricultural Research, 81: 607–617, DOI: 10.4067/S0718-58392021000400607.
D’Oria, A, Jing, L, Arkoun, M, Pluchon, S, Pateyron, S, Trouverie, J et al. 2022, Transcriptomic, metabolomic and ionomic analyses reveal early modulation of leaf mineral content in brassica napus under mild or severe drought. International Journal of Molecular Sciences, 23, DOI: 10.3390/ijms23020781.
Du, H, Liu, H & Xiong, L 2013, Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Frontiers in Plant Science, Volume 4, DOI: 10.3389/fpls.2013.00397.
Dubois, M, Van den Broeck, L & Inzé, D 2018, The pivotal role of ethylene in plant growth. Trends in Plant Science, 23: 311–323, DOI: 10.1016/j.tplants.2018.01.003.
Duran-Romaña, R, Houben, B, Migens, PF, Zhang, Y, Rousseau, F & Schymkowitz, J 2025, Native fold delay and its implications for co-translational chaperone binding and protein aggregation. Nature Communications, 16: 1673, DOI: 10.1038/s41467-025-57033-z.
Engler, S & Buchner, J 2025, The evolution and diversification of the HSP90 co-chaperone system. Biological Chemistry, DOI: 10.1515/hsz-2025-0112.
Essemine, J, Li, J, Chen, G & Qu, M 2020, Analytical dataset of short-term heat stress induced reshuffling of metabolism and transcriptomes in maize grown under elevated CO2. Data in Brief, 28: 105004, DOI: 10.1016/j.dib.2019.105004.
Fan, Q & Jespersen, D 2025, Proteases and the ubiquitin-proteasome system: Understanding protein degradation under heat stress in plants. Environmental and Experimental Botany, 237: 106174, DOI: 10.1016/j.envexpbot.2025.106174.
Fardus, J, Matin, Md A, Hasanuzzaman, Md, Hossain, Md S, Nath, SD, Hossain, Md A et al. 2017, Exogenous salicylic acid-mediated physiological responses and improvement in yield by modulating antioxidant defense system of wheat under salinity. Notulae Scientia Biologicae, 9: 219–232, DOI: 10.15835/nsb929998.
Farhad, Md, Kumar, U, Tomar, V, Bhati, PK, Krishnan JN, Kishowar-E-Mustarin, et al. 2023, Heat stress in wheat: a global challenge to feed billions in the current era of the changing climate. Frontiers in Sustainable Food Systems, Volume 7, Available at: https://www.frontiersin.org/journals/sustainable-food-systems/ articles/10.3389/fsufs.2023.1203721.
Farvardin, A, González-Hernández, AI, Llorens, E, García-Agustín, P, Scalschi, L & Vicedo, B 2020, The apoplast: A key player in plant survival. Antioxidants, 9, DOI: 10.3390/antiox9070604.
Fedoreyeva, LI 2024, ROS as signaling molecules to initiate the process of plant acclimatization to abiotic stress. International Journal of Molecular Sciences, 25, DOI: 10.3390/ijms252111820.
Fernández-Crespo, E, Liu-Xu, L, Albert-Sidro, C, Scalschi, L, Llorens, E, González-Hernández, AI, et al. 2022, Exploiting tomato genotypes to understand heat stress tolerance. Plants, 11, DOI: 10.3390/plants11223170.
Fichman, Y, Zandalinas, SI, Peck, S, Luan, S & Mittler, R 2022, HPCA1 is required for systemic reactive oxygen species and calcium cell-to-cell signaling and plant acclimation to stress. The Plant Cell, 34: 4453–4471, DOI: 10.1093/plcell/koac241.
Filaček, A, Živčák, M, Ferroni, L, Barboričová, M, Gašparovič, K, Yang, X et al. 2022, Pre-acclimation to elevated temperature stabilizes the activity of photosystem i in wheat plants exposed to an episode of severe heat stress. Plants, 11, DOI: 10.3390/plants11050616.
Floris, M, Mahgoub, H, Lanet, E, Robaglia, C & Menand, B 2009, Post-transcriptional regulation of gene expression in plants during abiotic stress. International Journal of Molecular Sciences, 10: 3168–3185, DOI: 10.3390/ijms10073168.
Fortunato, S, Lasorella, C, Dipierro, N, Vita, F & de Pinto, MC 2023, Redox signaling in plant heat stress response. Antioxidants, 12, DOI: 10.3390/antiox12030605.
Foyer, CH & Kunert, K 2024, The ascorbate–glutathione cycle coming of age. Journal of Experimental Botany, 75: 2682–2699, DOI: 10.1093/jxb/erae023.
Fransen, M & Lismont, C 2024, Peroxisomal hydrogen peroxide signaling: A new chapter in intracellular communication research. Current Opinion in Chemical Biology, 78: 102426, DOI: 10.1016/j.cbpa.2024.102426.
Freschi, L 2013, Nitric oxide and phytohormone interactions: Current status and perspectives. Frontiers in Plant Science Volume 4, Available at: https://www.frontiersin.org/journals/plant-science/articles/10.3389/ fpls.2013.00398.
Friedrich, T, Oberkofler, V, Trindade, I, Altmann, S, Brzezinka, K, Lämke, J et al. 2021, Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nature Communications, 12: 3426, DOI: 10.1038/s41467-021-23786-6.
Fu, YF, Yang, XY, Zhang, ZW & Yuan, S 2022, Synergistic effects of nitrogen metabolites on auxin regulating plant growth and development. Frontiers in Plant Science, Volume 13, DOI: 10.3389/fpls.2022. 1098787
Fujiki, Y & Bassik, MC 2021, A new paradigm in catalase research. Trends in Cell Biology, 31: 148–151. DOI: 10.1016/j.tcb.2020.12.006.
Gaafar, AA, Ali, SI, El-Shawadfy, MA, Salama, ZA, Sękara, A, Ulrichs, C et al. 2020, Ascorbic acid induces the increase of secondary metabolites, antioxidant activity, growth, and productivity of the common bean under water stress conditions. Plants, 9, DOI: 10.3390/plants9050627.
Gai, WX, Ma, X, Qiao, YM, Shi, BH, ul Haq, S, Li, QH et al. 2020, Characterization of the bZIP transcription factor family in pepper (Capsicum annuum L.): CabZIP25 positively modulates the salt tolerance. Frontiers in Plant Science, Volume 11, Available at: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2020.0013.9
Galatro, A, Ramos-Artuso, F, Luquet, M, Buet, A & Simontacchi, M 2020, An update on nitric oxide production and role under phosphorus scarcity in plants. Frontiers in Plant Science, Volume 11, DOI: 10.3389/fpls.2020.00413.
Galicia-Juárez, M, Zavala-García, F, Sinagawa-García, SR, Gutiérrez-Diez, A, Williams-Alanís, H, Cisneros-López, ME et al. 2021, Identification of sorghum, Sorghum bicolor (L.) Moench genotypes with potential for hydric and heat stress tolerance in Northeastern Mexico. Plants, 10, DOI: 10.3390/plants10112265.
Gao, T, Tang, X, Wang, D, Yu, Y & Mao, Y 2025, Morpho-physiological and transcriptomic analyses reveal adaptive responses of Neopyropia yezoensis to long-term high temperature. Plant Stress, 15: 100778, DOI: 10.1016/j.stress.2025.100778.
Gao, X, Fu, Y, Sun, S, Gu, T, Li, Y, Sun, T et al. 2022, Cryptococcal Hsf3 controls intramitochondrial ROS homeostasis by regulating the respiratory process. Nature Communications, 13: 5407, DOI: 10.1038/s41467-022-33168-1.
Garcia-Molina, A, Kleine, T, Schneider, K, Mühlhaus, T, Lehmann, M & Leister, D 2020, Translational components contribute to acclimation responses to high light, heat, and cold in Arabidopsis. iScience, 23: 101331, DOI: 10.1016/j.isci.2020.101331.
Ghafoor, A, Karim, H, Asghar, MA, Javed, HH & Wu, Y 2021, Effect of high-temperature, drought and nutrients availability on morpho-physiological and molecular mechanisms of rapeseed: An overview. Pakistan Journal of Botany, 53: 2321–2330, DOI: 10.30848/PJB2021-6(32).
Ghorbel, M, Brini, F, Brestic, M & Landi, M 2023, Interplay between low light and hormone-mediated signaling pathways in shade avoidance regulation in plants. Plant Stress, 9, 100178, DOI: 10.1016/j.stress.2023.100178.
Gjindali, A, Herrmann, HA, Schwartz, JM, Johnson, GN & Calzadilla, PI 2021, A holistic approach to study photosynthetic acclimation responses of plants to fluctuating light. Frontiers in Plant Science, Volume 12, DOI: doi.org/10.3389/fpls.2021.668512.
Gjindali, A & Johnson, GN 2023, Photosynthetic acclimation to changing environments. Biochemical Society Transactions, 51: 473–486, DOI: 10.1042/BST20211245.
González-Mendoza, VM, Sánchez-Sandoval, ME, Castro-Concha, LA & Hernández-Sotomayor, SMT 2021, Phospholipases C and D and their role in biotic and abiotic stresses. Plants, 10, DOI: 10.3390/plants10050921.
Graci, S & Barone, A 2024, Tomato plant response to heat stress: A focus on candidate genes for yield-related traits. Frontiers in Plant Science, Volume 14-2023, DOI: https://doi.org/10.3389/fpls.2023.1245661.
Guo, X, Ullah, A, Siuta, D, Kukfisz, B & Iqbal, S 2022, Role of WRKY transcription factors in regulation of abiotic stress responses in cotton. Life, 12, DOI: 10.3390/life12091410.
Guo, Z, Dzinyela, R, Yang, L & Hwarari, D 2024, bZIP transcription factors: Structure, modification, abiotic stress responses and application in plant improvement. Plants, 13, DOI: 10.3390/plants13152058.
Habashy, WS, Milfort, MC, Rekaya, R & Aggrey, SE 2019, Cellular antioxidant enzyme activity and biomarkers for oxidative stress are affected by heat stress. International Journal of Biometeorology, 63: 1569–1584, DOI: 10.1007/s00484-019-01769-z.
Hahm, JY, Park, J, Jang, ES & Chi, SW 2022, 8-Oxoguanine: From oxidative damage to epigenetic and epitranscriptional modification. Experimental & Molecular Medicine, 54: 1626-1642, DOI: 10.1038/s12276-022-00822-z.
Han, SH, Kim, JY, Lee, JH & Park, CM 2021, Safeguarding genome integrity under heat stress in plants. Journal of Experimental Botany, 72: 7421-7435, DOI: 10.1093/jxb/erab355.
Hancock, JT 2020, Nitric oxide signaling in plants. Plants, 9, DOI: 10.3390/plants9111550.
Hancock, JT & Veal, D 2021, Nitric oxide, other reactive signalling compounds, redox, and reductive stress. Journal of Experimental Botany, 72: 819-829, DOI: 10.1093/jxb/eraa331.
Hanjagi, PS, Awaji, SM, Singh, AK & Gurumurthy, S 2025, “Adaptive morpho-physiological mechanisms conferring resilience to abiotic stresses in pulses: An update,” In: Breeding Climate Resilient and Future Ready Pulse Crops, eds. MK, Pandey, MG, Mallikarjuna, HC, Lohithaswa, MS, Aski, and S, Gupta (Singapore: Springer Nature Singapore), pp. 7-40, DOI: 10.1007/978-981-96-0483-8_2.
Hasanuzzaman, M, Bhuyan, MHMB, Zulfiqar, F, Raza, A, Mohsin, SM, Mahmud, JA et al. 2020, Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9, DOI: 10.3390/antiox9080681.
Hassan, AHA, Ahmed, ES, Sheteiwy, MS, Alhaj Hamoud, Y, Okla, MK, AlGarawi, AM et al. 2024, Inoculation with Micromonospora sp. enhances carbohydrate and amino acid production, strengthening antioxidant metabolism to mitigate heat stress in wheat cultivars. Frontiers in Plant Science, Volume 15, DOI: 10.3389/fpls.2024.1500894.
Havko, NE, Das, MR, McClain, AM, Kapali, G, Sharkey, TD & Howe, GA 2020, Insect herbivory antagonizes leaf cooling responses to elevated temperature in tomato. Proceedings of the National Academy of Sciences, 117: 2211-2217, DOI: 10.1073/pnas.1913885117.
He, A, Dean, JM & Lodhi, IJ 2021, Peroxisomes as cellular adaptors to metabolic and environmental stress. Trends in Cell Biology, 31: 656-670, DOI: 10.1016/j.tcb.2021.02.005.
He, M, He, CQ & Ding, NZ 2018, Abiotic stresses: General defenses of land plants and chances for engineering multistress tolerance. Frontiers in Plant Science, Volume 9, Available at: https://doi.org/10.3389/fpls. 2018.01771.
Hemme, D, Veyel, D, Mühlhaus, T, Sommer, F, Jüppner, J, Unger, A-K et al. 2014, Systems-wide analysis of acclimation responses to long-term heat stress and recovery in the photosynthetic model organism chlamydomonas reinhardtii. The Plant Cell, 26: 4270-4297, DOI: 10.1105/tpc.114.130997.
Hendrix, S, Dard, A, Meyer, AJ & Reichheld, JP 2023, Redox-mediated responses to high temperature in plants. Journal of Experimental Botany, 74: 2489–2507, DOI: 10.1093/jxb/erad053.
Hernandez, Y, Goswami, K & Sanan-Mishra, N 2020, Stress induced dynamic adjustment of conserved miR164:NAC module. Plant-Environment Interactions, 1: 134-151, DOI: 10.1002/pei3.10027.
Hill, CB & Li, C 2022, Genetic improvement of heat stress tolerance in cereal crops. Agronomy, 12, DOI: 10.3390/agronomy12051205.
Hou, Y, Zhang, L, Dong, RY, Liang, MY, Lu, Y, Sun, XQ, et al. 2021, Comparing responses of dairy cows to short-term and long-term heat stress in climate-controlled chambers. Journal of Dairy Science, 104: 2346-2356, DOI: 10.3168/jds.2020-18946.
Hu, CH, Wang, PQ, Zhang, PP, Nie, XM, Li, BB, Tai, L, et al. 2020, NADPH oxidases: The vital performers and center hubs during plant growth and signaling. Cells, 9, DOI: 10.3390/cells9020437.
Huang, H, Ullah, F, Zhou, DX, Yi, M & Zhao, Y 2019, Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science, Volume 10, DOI: 10.3389/fpls.2019.00800.
Huang, YC, Niu, CY, Yang, CR & Jinn, TL 2016, The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiology, 172: 1182-1199, DOI: 10.1104/pp.16.00860.
Hunt, E, Femia, F, Werrell, C, Christian, JI, Otkin, JA, Basara, J et al. 2021, Agricultural and food security impacts from the 2010 Russia flash drought. Weather and Climate Extremes, 34: 100383, DOI: 10.1016/ j.wace.2021.100383.
Hurst, M, McGarry, DJ & Olson, MF 2022, Rho GTPases: Non-canonical regulation by cysteine oxidation. BioEssays, 44: 2100152, DOI: 10.1002/bies.202100152.
Hussain, A, Shah, F, Ali, F & Yun, BW 2022, Role of nitric oxide in plant senescence. Frontiers in Plant Science, Volume 13, Available at: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022. 851631.
Iglesias, MJ, Terrile, MC, Windels, D, Lombardo, MC, Bartoli, CG, Vazquez, F et al. 2014, MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in arabidopsis. PLOS ONE, 9: e107678, DOI: 10.1371/journal.pone.0107678.
Irshad, A, Ahmad, H, Muhammad, I, Khan, SU & Raza, S 2024, Editorial: The role of water stress and soil texture on plant roots anatomy, architecture, and senescence. Frontiers in Plant Science, Volume 15, Available at: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1490001.
Islam, W, Adnan, M, Alomran, MM, Qasim, M, Waheed, A, Alshaharni, MO et al. 2024, Plant responses to temperature stress modulated by microRNAs. Physiologia Plantarum, 176: e14126, DOI: 10.1111/ppl.14126.
Janda, T, Prerostová, S, Vanková, R & Darkó, É 2021, Crosstalk between light- and temperature-mediated processes under cold and heat stress conditions in plants. International Journal of Molecular Sciences, 22, DOI: 10.3390/ijms22168602.
Jardim-Messeder, D, de Souza-Vieira, Y, Lavaquial, LC, Cassol, D, Galhego, V, Bastos, GA et al. 2023, Ascorbate-glutathione cycle genes families in euphorbiaceae: Characterization and evolutionary analysis. Biology, 12, DOI: 10.3390/biology12010019.
Jeandroz, S, Lamotte, O, Astier, J, Rasul, S, Trapet, P, Besson-Bard, A et al. 2013, There’s more to the picture than meets the eye: Nitric oxide cross talk with Ca2+ signaling. Plant Physiology, 163: 459-470, DOI: 10.1104/pp.113.220624.
Jiang, L, Hu, W, Qian, Y, Ren, Q & Zhang, J 2021, Genome-wide identification, classification and expression analysis of the HSF and HSP70 gene families in maize. Gene, 770: 145348, DOI: 10.1016/j.gene.2020. 145348.
Jiang, Z, van Zanten, M & Sasidharan, R 2025, Mechanisms of plant acclimation to multiple abiotic stresses. Communications Biology, 8: 655, DOI: 10.1038/s42003-025-08077-w.
Jiang, Z, Verhoeven, A, Li, Y, Geertsma, R, Sasidharan, R & van Zanten, M 2024, Deciphering acclimation to sublethal combined and sequential abiotic stresses in Arabidopsis thaliana. Plant Physiology, kiae581, DOI: 10.1093/plphys/kiae581.
Jin, Q, Chachar, M, Ali, A, Chachar, Z, Zhang, P, Riaz, A et al. 2024, Epigenetic regulation for heat stress adaptation in plants: new horizons for crop improvement under climate change. Agronomy, 14, DOI: 10.3390/agronomy14092105.
Jomova, K, Alomar, SY, Alwasel, SH, Nepovimova, E, Kuca, K & Valko, M 2024, Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Archives of Toxicology, 98: 1323-1367, DOI: 10.1007/s00204-024-03696-4.
Jomova, K, Raptova, R, Alomar, SY, Alwasel, SH, Nepovimova, E, Kuca, K et al. 2023, Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Archives of Toxicology, 97: 2499-2574, DOI: 10.1007/s00204-023-03562-9.
Juan, CA, Pérez de la Lastra, J M, Plou, FJ & Pérez-Lebeña, E 2021, The chemistry of reactive oxygen species (ros) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22, DOI: 10.3390/ijms22094642.
Kadyrbaev, MK, Golovatskaya, IF & Satkanov, MZh 2021, Features of regenerants morphogenesis and metabolism in vitro, obtained from different fragments of potato shoots. Tomsk State University Journal of Biology, 114, DOI: 10.17223/19988591/55/7.
Kamatchi, KAM, Anitha, K, Kumar, KA, Senthil, A, Kalarani, MK & Djanaguiraman, M 2024, Impacts of combined drought and high-temperature stress on growth, physiology, and yield of crops. Plant Physiology Reports 29, 28–36. DOI: 10.1007/s40502-023-00754-4.
Kang, X, Zhao, L & Liu, X 2024, Calcium signaling and the response to heat shock in crop plants. International Journal of Molecular Sciences 25. DOI: 10.3390/ijms25010324.
Karatayev, M, Clarke, M, Salnikov, V, Bekseitova, R & Nizamova, M 2022, Monitoring climate change, drought conditions and wheat production in Eurasia: the case study of Kazakhstan. Heliyon 8, e08660. DOI: 10.1016/j.heliyon.2021.e08660.
Kazan, K 2015, Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science 20, 219–229, DOI: 10.1016/j.tplants.2015.02.001.
Kessler, A, Hedberg, J, Blomberg, E & Odnevall, I 2022, Reactive oxygen species formed by metal and metal oxide nanoparticles in physiological media—A review of reactions of importance to nanotoxicity and proposal for categorization. Nanomaterials, 12, DOI: 10.3390/nano12111922.
Keyantash, J & Dracup, J A 2002, The quantification of drought: An evaluation of drought indices. Bulletin of the American Meteorological Society, 83: 1167-1180, DOI: 10.1175/1520-0477-83.8.1167.
Khan, A, Ahmad, M, Ahmed, M & Iftikhar Hussain, M 2021, Rising Atmospheric Temperature Impact on Wheat and Thermotolerance Strategies. Plants, 10, DOI: 10.3390/plants10010043.
Khan, K, Tran, H C, Mansuroglu, B, Önsell, P, Buratti, S, Schwarzländer, M et al. 2024, Mitochondria-derived reactive oxygen species are the likely primary trigger of mitochondrial retrograde signaling in Arabidopsis. Current Biology, 34: 327-342.e4, DOI: 10.1016/j.cub.2023.12.005.
Khan, M, Al Azzawi, TN, Ali, S, Yun, B-W & Mun, B-G 2023a, Nitric oxide, a key modulator in the alleviation of environmental stress-mediated damage in crop plants: A meta-analysis. Plants, 12, DOI: 10.3390/plants12112121.
Khan, M, Ali, S, Al Azzawi, T N, Saqib, S, Ullah, F, Ayaz, A et al. 2023b, The key roles of ROS and rns as a signaling molecule in plant–microbe interactions. Antioxidants, 12, DOI: 10.3390/antiox12020268.
Khan, M, Ali, S, Al Azzawi, TN & Yun, B-W 2023c, Nitric Oxide Acts as a Key Signaling Molecule in Plant Development under Stressful Conditions. International Journal of Molecular Sciences, 24, DOI: 10.3390/ijms24054782.
Khandelwal, A, Elvitigala, T, Ghosh, B & Quatrano, RS 2008, Arabidopsis transcriptome reveals control circuits regulating redox homeostasis and the role of an AP2 transcription factor. Plant Physiology, 148: 2050–2058. DOI: 10.1104/pp.108.128488.
Khorobrykh, S, Havurinne, V, Mattila, H & Tyystjärvi, E 2020, Oxygen and ROS in photosynthesis. Plants, 9, DOI: 10.3390/plants9010091.
Kim, C 2020, ROS-Driven Oxidative Modification: Its Impact on Chloroplasts-Nucleus Communication. Frontiers in Plant Science, Volume 10-2019, Available at: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2019.01729.
Kim, J, Chang, C & Tucker, L 2015, To grow old: regulatory role of ethylene and jasmonic acid in senescence. Frontiers in Plant Science, Volume 6, DOI: 10.3389/fpls.2015.00020.
Knaus, U G 2021, “Oxidants in Physiological Processes,” in Reactive Oxygen Species: Network Pharmacology and Therapeutic Applications, eds. H H H W, Schmidt, P, Ghezzi & A, Cuadrado (Cham: Springer International Publishing), pp. 27-47, DOI: 10.1007/164_2020_380.
Knoke, LR, Zimmermann, J, Lupilov, N, Schneider, JF, Celebi, B, Morgan, B et al. 2023, The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli. Redox Biology, 64: 102800. DOI: 10.1016/j.redox.2023.102800.
Koh, YS, Wong, SK, Ismail, NH, Zengin, G, Duangjai, A, Saokaew, S et al. 2021, Mitigation of Environmental Stress-Impacts in Plants: Role of Sole and Combinatory Exogenous Application of Glutathione. Frontiers in Plant Science, Volume 12, DOI: 10.3389/fpls.2021.791205.
Kong, L, Ma, X, Zhang, C, Kim, S-I, Li, B, Xie, Y et al. 2024, Dual phosphorylation of DGK5-mediated PA burst regulates ROS in plant immunity. Cell, 187: 609-623.e21, DOI: 10.1016/j.cell.2023.12.030.
Konno, T, Melo, EP, Chambers, JE & Avezov, E 2021, Intracellular sources of ROS/H2O2 in health and neurodegeneration: Spotlight on endoplasmic reticulum. Cells, 10, DOI: 10.3390/cells10020233.
Körner, C 2016, Plant adaptation to cold climates. F1000Research, 5, 2769. DOI: https://doi.org/10.12688/ f1000research.9107.1.
Kornhuber, K, Bartusek, S, Seager, R, Schellnhuber, HJ & Ting, M 2024, Global emergence of regional heatwave hotspots outpaces climate model simulations. Proceedings of the National Academy of Sciences 121: e2411258121. DOI: 10.1073/pnas.2411258121.
Kourani, M, Anastasiadi, M, Hammond, JP & Mohareb, F 2025, Prolonged heat stress in Brassica napus during flowering negatively impacts yield and alters glucosinolate and sugars metabolism. Frontiers in Plant Science, Volume 16, Available at: https://www.frontiersin.org/journals/plant-science/articles/10.3389/ fpls.2025.1507338.
Kourani, M, Mohareb, F, Rezwan, FI, Anastasiadi, M & Hammond, J P 2022, Genetic and Physiological Responses to Heat Stress in Brassica napus. Frontiers in Plant Science, Volume 13, DOI: 10.3389/fpls. 2022.832147.
Kozlov, AV, Javadov, S & Sommer, N 2024, Cellular ROS and antioxidants: Physiological and pathological role. Antioxidants, 13, DOI: 10.3390/antiox13050602.
Kozuleva, MA, Ivanov, BN, Vetoshkina, DV & Borisova-Mubarakshina, M M 2020, Minimizing an electron flow to molecular oxygen in photosynthetic electron transfer chain: An evolutionary view. Frontiers in Plant Science, Volume 11, DOI: https://doi.org/10.3389/fpls.2020.00211.
Krieger-Liszkay, A & Shimakawa, G 2022, Regulation of the generation of reactive oxygen species during photosynthetic electron transport. Biochemical Society Transactions, 50: 1025–1034. DOI: 10.1042/BST 20211246.
Kubienova, L, Sedlarova, M, Viteckova-Wunschova, A, Piterkova, J, LUHOVA, L, Mieslerova, B et al. 2013, Effect of extreme temperatures on powdery mildew development and HSP70 induction in tomato and wild Solanum spp. Plant Protection Science, 49: S41–S54.
Kucukoglu Topcu, M & Bhalerao, RP 2023, Growth’s secret maestros: LBD11–ROS harmony drives vascular cambium activity in Arabidopsis. Molecular Plant, 16: 1246-1248, DOI: 10.1016/j.molp.2023.07.012.
Kumar, A, Prasad, A & Pospíšil, P 2020a, Formation of α-tocopherol hydroperoxide and α-tocopheroxyl radical: relevance for photooxidative stress in Arabidopsis. Scientific Reports, 10: 19646, DOI: 10.1038/s41598-020-75634-0.
Kumar, H, Chugh, V, Kumar, M, Gupta, V, Prasad, S, Kumar, S et al. 2023, Investigating the impact of terminal heat stress on contrasting wheat cultivars: a comprehensive analysis of phenological, physiological, and biochemical traits. Frontiers in Plant Science, Volume 14, DOI: 10.3389/fpls.2023.1189005.
Kumar, R 2009, Role of naturally occurring osmolytes in protein folding and stability. Archives of Biochemistry and Biophysics, 491: 1-6, DOI: 10.1016/j.abb.2009.09.007.
Kumar, RR, Arora, K, Goswami, S, Sakhare, A, Singh, B, Chinnusamy, V et al. 2020b, MAPK enzymes: A ROS activated signaling sensors involved in modulating heat stress response, tolerance and grain stability of wheat under heat stress. 3 Biotech 10, 380. DOI: 10.1007/s13205-020-02377-0.
Kumar, RR, Goswami, S, Gupta, R, Verma, P, Singh, K, Singh, J P, et al. 2016, The Stress of Suicide: Temporal and Spatial Expression of Putative Heat Shock Protein 70 Protect the Cells from Heat Injury in Wheat (Triticum aestivum). Journal of Plant Growth Regulation, 35: 65-82, DOI: 10.1007/s00344-015-9508-7.
Kumar, RR, Goswami, S, Sharma, SK, Gadpayle, KA, Singh, K, Kumar, N et al. 2013a, Heat stress associated antioxidant isoenzymes in wheat: expression and proteomics. Indian Journal of Agricultural Research 47, 280–287.
Kumar, RR, Goswami, S, Sharma, SK, Singh, K, Gadpayle, KA, Singh, S D, et al. 2013b, Differential expression of heat shock protein and alteration in osmolyte accumulation under heat stress in wheat. Journal of Plant Biochemistry and Biotechnology, 22: 16-26, DOI: 10.1007/s13562-012-0106-5.
Kumar, S, Gupta, D & Nayyar, H 2012, Comparative response of maize and rice genotypes to heat stress: status of oxidative stress and antioxidants. Acta Physiologiae Plantarum, 34: 75-86, DOI: 10.1007/s11738-011-0806-9.
Kumar, V, Wegener, M, Knieper, M, Kaya, A, Viehhauser, A & Dietz, K-J 2024, Strategies of molecular signal integration for optimized plant acclimation to stress combinations. In: Plant Stress Tolerance: Methods and Protocols, ed. R, Sunkar (New York, NY: Springer US), pp. 3-29, DOI: 10.1007/978-1-0716-3973-3_1.
Kuznetsova, AA, Senchurova, SI, Ishchenko, AA, Saparbaev, M, Fedorova, OS & Kuznetsov, N A 2021, Common kinetic mechanism of a basic site recognition by structurally different apurinic/apyrimidinic endonucleases. International Journal of Molecular Sciences, 22, DOI: 10.3390/ijms 22168874.
Lacoul, P & Freedman, B 2006, Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews, 14: 89-136. DOI: 10.1139/a06-001.
Lahlali, R, Laasli, S-E & Ait Barka, E 2025, Plant responses to biotic and abiotic stresses: From cellular to morphological changes—Series II. Agronomy, 15, DOI: 10.3390/agronomy15010229.
Lasorella, C, Fortunato, S, Dipierro, N, Jeran, N, Tadini, L, Vita, F et al. 2022, Chloroplast-localized GUN1 contributes to the acquisition of basal thermotolerance in Arabidopsis thaliana. Frontiers in Plant Science Volume 13, DOI: 10.3389/fpls.2022.1058831.
Lee, H, Yoo, S J, Lee, J H, Kim, W, Yoo, SK, Fitzgerald, H et al. 2010, Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucleic Acids Research 38: 3081–3093. DOI: 10.1093/nar/gkp1240.
Lee, K, Rajametov, SN, Jeong, H-B, Cho, M-C, Lee, O-J, Kim, S-G, et al. 2022, Comprehensive understanding of selecting traits for heat tolerance during vegetative and reproductive growth stages in tomato. Agronomy, 12, DOI: 10.3390/agronomy12040834.
Lennicke, C & Cochemé, H M 2021, Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Molecular Cell, 81: 3691-3707, DOI: 10.1016/j.molcel.2021.08.018.
León, J 2022, Protein tyrosine nitration in plant nitric oxide signaling. Frontiers in Plant Science Volume 13-2022. Available at: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022. 859374.
León, J, Castillo, MC, Coego, A, Lozano-Juste, J & Mir, R 2014, Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. Journal of Experimental Botany 65: 907-921, DOI: 10.1093/jxb/ert454.
Leyva-González, MA, Ibarra-Laclette, E, Cruz-Ramírez, A & Herrera-Estrella, L 2012, Functional and Transcriptome Analysis Reveals an Acclimatization Strategy for Abiotic Stress Tolerance Mediated by Arabidopsis NF-YA Family Members. PLoS ONE, 7: e48138, DOI: 10.1371/journal.pone.0048138.
Li, B, Ming, H, Qin, S, Nice, EC, Dong, J, Du, Z et al. 2025a, Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduction and Targeted Therapy, 10: 72, DOI: 10.1038/s41392-024-02095-6.
Li, B, Wang, P, Zhao, S, Dong, J, Mao, S, Zhu, X et al. 2025b, Sly-miR398 participates in heat stress tolerance in tomato by modulating ROS accumulation and hsp response. Agronomy, 15, DOI: 10.3390/agronomy15020294.
Li, H, Guo, X, Wang, D & Li, G 2010, Responses of HSP70 gene expression to temperature stresses in maize (Zea mays L.). Agricultural University of Hebei, 33: 12-15.
Li, J, Guo, G, Guo, W, Guo, G, Tong, D, Ni, Z et al. 2012, miRNA164-directed cleavage of ZmNAC1 confers lateral root development in maize (Zea mays L.). BMC Plant Biology, 12: 220, DOI: 10.1186/1471-2229-12-220.
Li, J, Song, Q, Zuo, Z-F & Liu, L 2022a, MicroRNA398: A Master Regulator of Plant Development and Stress Responses. International Journal of Molecular Sciences, 23, DOI: 10.3390/ijms231810803.
Li, N, Euring, D, Cha, JY, Lin, Z, Lu, M, Huang, L-J et al. 2021, Plant Hormone-Mediated Regulation of Heat Tolerance in Response to Global Climate Change. Frontiers in Plant Science, Volume 11-2020, DOI: 10.3389/fpls.2020.627969.
Li, S 2023, Novel insight into functions of ascorbate peroxidase in higher plants: More than a simple antioxidant enzyme. Redox Biology, 64: 102789, DOI: 10.1016/j.redox.2023.102789.
Li, S, Han, X, Lu, Z, Qiu, W, Yu, M, Li, H et al. 2022b, MAPK cascades and transcriptional factors: Regulation of Heavy Metal Tolerance in Plants. International Journal of Molecular Sciences, 23, DOI: 10.3390/ijms23084463.
Li, S-B, OuYang, W-Z, Hou, X-J, Xie, L-L, Hu, C-G & Zhang, J-Z 2015, Genome-wide identification, isolation and expression analysis of auxin response factor (ARF) gene family in sweet orange (Citrus sinensis). Frontiers in Plant Science, Volume 6, Available at: https://www.frontiersin.org/journals/plant-science/articles/ 10.3389/fpls.2015.00119.
Li, S-B, Xie, Z-Z, Hu, C-G & Zhang, J-Z 2016, A Review of auxin response factors (ARFs) in plants. Frontiers in Plant Science, Volume 7, DOI: 10.3389/fpls.2016.00047.
Li, W, Pang, S, Lu, Z & Jin, B 2020a, Function and Mechanism of WRKY Transcription factors in abiotic stress responses of plants. Plants, 9, DOI: 10.3390/plants9111515.
Li, X, Liao, M, Huang, J, Chen, L, Huang, H, Wu, K et al. 2022c, Dynamic and fluctuating generation of hydrogen peroxide via photorespiratory metabolic channeling in plants. The Plant Journal, 112: 1429–1446, DOI: 10.1111/tpj.16022.
Li, X, Zhuge, S, Du, J, Zhang, P, Wang, X, Liu, T et al. 2025c, The molecular mechanism by which heat stress during the grain filling period inhibits maize grain filling and reduces yield. Frontiers in Plant Science Volume 15-2024. DOI: https://doi.org/10.3389/fpls.2024.1533527.
Li, Z & Howell, S H 2021, Heat Stress Responses and Thermotolerance in Maize. International Journal of Molecular Sciences 22. DOI: 10.3390/ijms22020948.
Li, Z Q, Xing, W, Luo, P, Zhang, F J, Jin, X L & Zhang, M H 2019, Comparative transcriptome analysis of Rosa chinensis ‘Slater’s crimson China’ provides insights into the crucial factors and signaling pathways in heat stress response. Plant Physiology and Biochemistry, 142: 312–331, DOI: 10.1016/j.plaphy.2019.07.002.
Li, Z, Tang, J, Srivastava, R, Bassham, DC & Howell, S H 2020b, The Transcription Factor bZIP60 Links the Unfolded Protein Response to the Heat Stress Response in Maize. The Plant Cell, 32: 3559-3575, DOI: 10.1105/tpc.20.00260.
Lindberg, S & Premkumar, A 2024, Ion Changes and signaling under salt stress in wheat and other important crops. Plants, 13, DOI: 10.3390/plants13010046.
Liu, C, Liu, K, Zhang, D, Liu, Y, Yu, Y, Kang, H, et al. 2025, Dual-layer microneedles with NO/O2 releasing for diabetic wound healing via neurogenesis, angiogenesis, and immune modulation. Bioactive Materials, 46: 213-228, DOI: 10.1016/j.bioactmat.2024.12.012.
Liu, H, & Charng, Y 2013, Common and distinct functions of Arabidopsis Class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiology 163, 276–290. DOI: 10.1104/pp.113.221168
Liu, H, Mu, Y, Xuan, Y, Wu, X, Wang, W & Zhang, H 2024, Hydrogen Peroxide Signaling in the Maintenance of Plant Root Apical Meristem Activity. Antioxidants, 13, DOI: 10.3390/antiox13050554
Liu, J, Fu, C, Li, G, Khan, M N, & Wu, H 2021a, ROS Homeostasis and plant salt tolerance: Plant Nanobiotechnology updates. Sustainability, 13, DOI: 10.3390/su13063552.
Liu, L, Huang, L, Sun, C, Wang, L, Jin, C & Lin, X 2021b, Cross-talk between hydrogen peroxide and nitric oxide during plant development and responses to stress. Journal of Agricultural and Food Chemistry, 69: 9485-9497, DOI: 10.1021/acs.jafc.1c01605.
Liu, Q, Hu, H, Zhu, L, Li, R, Feng, Y, Zhang, L, et al. 2015, Involvement of miR528 in the regulation of arsenite tolerance in rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry, 63: 8849-8861, DOI: 10.1021/acs.jafc.5b04191.
Liu, Y, Wang, J, Liu, B, & Xu, Z-Y 2022, Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. Journal of Integrative Plant Biology, 64: 2252-2274, DOI: 10.1111/jipb.13368.
Liu, Y, Yu, Y, Fei, S, Chen, Y, Xu, Y, Zhu, Z, et al. 2023, Overexpression of Sly-miR398b compromises disease resistance against Botrytis cinerea through Regulating ROS homeostasis and JA-related defense genes in tomato. Plants, 12, DOI: 10.3390/plants12132572.
Lohani, N, Singh, M B, & Bhalla, P L 2022, Short-term heat stress during flowering results in a decline in Canola seed productivity. Journal of Agronomy and Crop Science, 208: 486–496. DOI: 10.1111/jac.12534.
López-Huertas, E, & Palma, J M 2020, Changes in Glutathione, Ascorbate, and Antioxidant Enzymes during Olive Fruit Ripening. Journal of Integrative Plant Biology, 68: 12221-12228, DOI: 10.1021/acs.jafc. 0c04789.
Loscos, J, Matamoros, M A, & Becana, M 2008, Ascorbate and Homoglutathione Metabolism in Common Bean Nodules under Stress Conditions and during Natural Senescence. Plant Physiology, 146: 1282-1292, DOI: 10.1104/pp.107.114066.
Luan, M, Xu, M, Lu, Y, Zhang, L, Fan, Y, & Wang, L 2015, Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves. Gene, 555: 178-185, DOI: 10.1016/j.gene.2014.11.001.
Luan, M, Xu, M, Lu, Y, Zhang, Q, Zhang, L, Zhang, C., et al. 2014, Family-wide survey of miR169s and NF-YAs and Their expression profiles response to abiotic stress in maize roots. PLoS ONE, 9: e91369. DOI: 10.1371/journal.pone.0091369.
Lubovská, Z, Dobrá, J, Štorchová, H, Wilhelmová, N, & Vanková, R 2014, Cytokinin oxidase/dehydrogenase overexpression modifies antioxidant defense against heat, drought and their combination in Nicotiana tabacum plants. Journal of Plant Physiology, 171: 1625-1633, DOI: 10.1016/j.jplph.2014.06.021.
Luo, N, Mueller, N, Zhang, Y, Feng, P, Huang, S, Liu, D L, et al. 2023, Short-term extreme heat at flowering amplifies the impacts of climate change on maize production. Environmental Research Letters, 18: 084021. DOI: 10.1088/1748-9326/ace7e3.
Luqman, T, Hussain, M, & Khan, M K R 2025, Harnessing multivariate insights coupled with susceptibility indices to reveal morpho-physiological and biochemical traits in heat tolerance of cotton. BMC Plant Biology, 25: 126, DOI: 10.1186/s12870-025-06141-5.
Lushchak, V I, & Lushchak, O 2021, Interplay between reactive oxygen and nitrogen species in living organisms Chemico-Biological Interactions, 349: 109680, DOI: 101016/jcbi2021109680.
Ma, J, Zhao, P, Liu, S, Yang, Q, & Guo, H 2020, The control of developmental phase transitions by microRNAs and their targets in seed plants. International Journal of Molecular Sciences, 21: DOI: 10.3390/ijms 21061971.
Maia, L. B. 2023, Bringing nitric oxide to the molybdenum world—A personal perspective. Molecules, 28, DOI: 10.3390/molecules28155819.
Mansoor, S, Ali Wani, O, Lone, J K, Manhas, S, Kour, N, Alam, P, et al. 2022, Reactive Oxygen Species in Plants: From Source to Sink. Antioxidants, 11, DOI: 10.3390/antiox11020225.
Mareri, L, Parrotta, L, & Cai, G 2022, Environmental Stress and Plants. International Journal of Molecular Sciences, 23, DOI: 10.3390/ijms23105416.
Marutani, Y, Yamauchi, Y, Kimura, Y, Mizutani, M, & Sugimoto, Y 2012, Damage to photosystem II due to heat stress without light-driven electron flow: involvement of enhanced introduction of reducing power into thylakoid membranes. Planta, 236: 753-761, DOI: 10.1007/s00425-012-1647-5.
Mathur, S, Agnihotri, R, Sharma, M P, Reddy, V R & Jajoo, A 2021, Effect of high-temperature stress on plant physiological traits and mycorrhizal symbiosis in maize plants. Journal of Fungi, 7, DOI: 10.3390/jof7100867.
Matthews, C, Arshad, M, & Hannoufa, A 2019, Alfalfa response to heat stress is modulated by microRNA156. Physiologia Plantarum, 165: 830-842, DOI: 10.1111/ppl.12787.
Maurya, A K, Agarwal, R, & Gupta, R 2025, Unraveling the crosstalk among ethylene, nitric oxide, and polyamines in tailoring the abiotic stress resilience in plants. Stress Biology, 5: 20, DOI: 10.1007/s44154-024-00198-2.
McLoughlin, F, Kim, M, Marshall, R S, Vierstra, R D, & Vierling, E 2019, HSP101 Interacts with the proteasome and promotes the clearance of ubiquitylated protein aggregates. Plant Physiology, 180: 1829-1847, DOI: 10.1104/pp.19.00263.
Medina, E, Kim, S-H, Yun, M, & Choi, W-G 2021, Recapitulation of the function and role of ROS generated in response to heat stress in plants. Plants, 10, DOI: 10.3390/plants10020371.
Meehl, G A, & Tebaldi, C 2004, More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305: 994-997, DOI: 10.1126/science.1098704.
Mendel, R R 2022, The history of the molybdenum cofactor: A personal view. Molecules, 27, DOI: 10.3390/molecules27154934.
Mendoza-Soto, A B, Sanchez, F, & Hernandez, G 2012, MicroRNAs as regulators in plant metal toxicity response. Frontiers in Plant Science, Volume 3, DOI: 10.3389/fpls.2012.00105.
Meraj, T A, Fu, J, Raza, M A, Zhu, C, Shen, Q, Xu, D, et al. 2020, Transcriptional factors regulate plant stress responses through mediating secondary metabolism. Genes, 11, DOI: 10.3390/genes11040346.
Mesa, T, & Munné-Bosch, S 2023, α-Tocopherol in chloroplasts: Nothing more than an antioxidant? Current Opinion in Plant Biology, 74: 102400. DOI: 10.1016/j.pbi.2023.102400.
Mesa, T, Polo, J, Arabia, A, Caselles, V, & Munné-Bosch, S 2022, Differential physiological response to heat and cold stress of tomato plants and its implication on fruit quality. Journal of Plant Physiology 268: 153581, DOI: 10.1016/j.jplph.2021.153581.
Mielecki, J, Gawroński, P, & Karpiński, S 2020, Retrograde signaling: Understanding the communication between organelles. International Journal of Molecular Sciences, 21, DOI: 10.3390/ijms21176173.
Miller, S, Chua, K, Coggins, J, & Mohtadi, H 2021, Heat Waves, Climate Change, and Economic Output. Journal of the European Economic Association, 19: 2658-2694, DOI: 10.1093/jeea/jvab009.
Minari, K, Balasco Serrão, V H, & Borges, J C 2024, New insights into Hsp90 structural plasticity revealed by cryoEM. BioChem, 4: 62-89, DOI: 10.3390/biochem4020004.
Miryeganeh, M 2021, Plants’ epigenetic mechanisms and abiotic stress. Genes, 12, DOI: 10.3390/genes 12081106.
Mishra, N, Jiang, C, Chen, L, Paul, A, Chatterjee, A, & Shen, G 2023, Achieving abiotic stress tolerance in plants through antioxidative defense mechanisms. Frontiers in Plant Science, Volume 14, DOI: https:// DOI.org/10.3389/fpls.2023.1110622.
Mittler, R, Zandalinas, S I, Fichman, Y, & Van Breusegem, F 2022, Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 23: 663-679, DOI: 10.1038/s41580-022-00499-2.
Mizoi, J, Kanazawa, N, Kidokoro, S, Takahashi, F, Qin, F, Morimoto, K, et al. 2019, Heat-induced inhibition of phosphorylation of the stress-protective transcription factor DREB2A promotes thermotolerance of Arabidopsis thaliana. Journal of Biological Chemistry, 294: 902-917, DOI: 10.1074/jbc.RA118.002662.
Mohi-Ud-Din, M, Siddiqui, N, Rohman, M, Jagadish, S V K, Ahmed, J U, Hassan, M M, et al. 2021, Physiological and Biochemical Dissection Reveals a Trade-Off between Antioxidant Capacity and Heat Tolerance in Bread Wheat (Triticum aestivum L.). Antioxidants, 10, DOI: 10.3390/antiox10030351.
Moldogazieva, N T, Mokhosoev ,I M, Feldman, N B & & Lutsenko, S V 2018, ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radical Research, 52: 507-543, DOI: 10.1080/10715762.2018.1457217.
Mukherjee, S, Roy, S, & Corpas, F J 2024, Aquaporins: a vital nexus in H2O2-gasotransmitter signaling. Trends in Plant Science, 29: 681-693, DOI: 10.1016/j.tplants.2023.11.021.
Mushtaq, N U, Saleem, S, Rasool, A, Shah, W H, Tahir, I, Seth, C S, et al. 2025, Proline Tagging for Stress Tolerance in Plants. International Journal of Genomics, 2025, 9348557. DOI: 10.1155/ijog/9348557.
Mýtinová, Z, Motyka, V, Haisel, D, Gaudinová, A, Lubovská, Z, & Wilhelmová, N 2010, Effect of abiotic stresses on the activity of antioxidative enzymes and contents of phytohormones in wild type and AtCKX2 transgenic tobacco plants. Biologia Plantarum, 54: 461-470, DOI: 10.1007/s10535-010-0082-3.
Naaz, S, Pande, A, and Laxmi, A 2025, Nitric oxide-mediated thermomemory: a new perspective on plant heat stress resilience. Frontiers in Plant Science, Volume 16, DOI: 10.3389/fpls.2025.1525336.
Nahar, K., Kyndt, T., De Vleesschauwer, D., Höfte, M., & Gheysen, G. 2011, The Jasmonate Pathway Is a Key Player in Systemically Induced Defense against Root Knot Nematodes in Rice. Plant Physiology, 157: 305-316, DOI: 10.1104/pp.111.177576.
Nanda, A K, Andrio, E, Marino, D, Pauly, N, & Dunand, C 2010, Reactive Oxygen Species during Plant-microorganism Early Interactions. Journal of Integrative Plant Biology, 52: 195-204, DOI: 10.1111/j.1744-7909.2010.00933.x.
Nasong, D, Zhou, S, Kornhuber, K, & Yu, B 2025, Concurrent heat extremes in relation to global warming, high atmospheric pressure and low soil moisture in the Northern Hemisphere. Earth’s Future, 13: e2024EF005256. DOI: 10.1029/2024EF005256.
Nath, I. 2025, Climate change, the food problem, and the challenge of adaptation through sectoral reallocation. Journal of Political Economy, 000–000. DOI: 10.1086/734725.
Nazir, F, Fariduddin, Q, & Khan, T A 2020, Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere, 252: 126486, DOI: 10.1016/j.chemosphere.2020.126486.
Nes, K, Schaefer, K A, Gammans, M, & Scheitrum, D P 2025, Extreme weather events, climate expectations, and agricultural export dynamics. American Journal of Agricultural Economics, 107: 826-845, DOI: 10.1111/ajae.12505.
Nguyen, D, Rieu, I, Mariani, C, & van Dam, N M 2016, How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Molecular Biology, 91: 727-740, DOI: 10.1007/s11103-016-0481-8.
Nievola, C C, Carvalho ,Camila P, Carvalho ,Victória & Rodrigues, E 2017, Rapid responses of plants to temperature changes. Temperature, 4: 371-405, DOI: 10.1080/23328940.2017.1377812.
Noctor, G, Veljovic‐Jovanovic, S, Driscoll, S, Novitskaya, L, & Foyer, C H 2002, Drought and oxidative load in the leaves of C3 plants: A predominant role for photorespiration? Annals of Botany, 89: 841-850, DOI: 10.1093/aob/mcf096.
Nurbekova, Z, Satkanov, M, Beisekova, M, Akbassova, A, Ualiyeva, R, Cui, J, et al. 2024, Strategies for achieving high and sustainable plant productivity in saline soil conditions. Horticulturae, 10, DOI: 10.3390/ horticulturae10080878.
Obuchowski, I, Karaś, P, & Liberek, K 2021, The small ones matter—sHsps in the bacterial chaperone network. Frontiers in Molecular Biosciences Volume 8-2021. DOI: 10.3389/fmolb.2021.666893.
Oestreicher, J, & Morgan, B 2019, Glutathione: Subcellular distribution and membrane transport. Biochemistry and Cell Biology, 97: 270-289, DOI: 10.1139/bcb-2018-0189.
Ó’Maoiléidigh, D S, van Driel, A D, Singh, A, Sang, Q, Le Bec, N, Vincent, C, et al. 2021, Systematic analyses of the MIR172 family members of Arabidopsis define their distinct roles in regulation of APETALA2 during floral transition. PLOS Biology, 19: e3001043, DOI: 10.1371/journal.pbio.3001043.
Pan, J, Peng, F, Tedeschi, A, Xue, X, Wang, T, Liao, J, et al. 2020, Do halophytes and glycophytes differ in their interactions with arbuscular mycorrhizal fungi under salt stress? A meta-analysis. Botanical Studies, 61, 13, DOI: 10.1186/s40529-020-00290-6.
Pareek, A, Mishra, D, Rathi, D, Verma, J K, Chakraborty, S, and Chakraborty, N 2021, The small heat shock proteins, chaperonin 10, in plants: An evolutionary view and emerging functional diversity. Environmental and Experimental Botany, 182: 104323, DOI: 10.1016/j.envexpbot.2020.104323.
Parmar, P, Kaur, K, & Kaur, G 2021, Combined action of salicylic acid and thiourea alleviated heat stress in maize by stimulating varied antioxidant response in tissues. Russian Journal of Plant Physiology, 68: 463-473, DOI: 10.1134/S1021443721030158.
Paul, P, Mesihovic, A, Chaturvedi, P, Ghatak, A, Weckwerth, W, Böhmer, M, et al. 2020, Structural and functional heat stress responses of chloroplasts of Arabidopsis thaliana. Genes, 11, DOI: 10.3390/genes 11060650.
Pereira, A 2016, Plant Abiotic Stress Challenges from the Changing Environment. Frontiers in Plant Science, Volume 7, DOI: https://doi.org/10.3389/fpls.2016.01123.
Pereira, S L S, Martins, C P S, Sousa, A O, Camillo, L R, Araújo, C P, Alcantara, G M, et al. 2018, Genome-wide characterization and expression analysis of citrus Nuclear Factor-Y (NF-Y) transcription factors identified a novel NF-YA gene involved in drought-stress response and tolerance. PLOS ONE, 13, e0199187. DOI: 10.1371/journal.pone.0199187.
Phua, S Y, De Smet, B, Remacle, C, Chan, K X, & Van Breusegem, F 2021, Reactive oxygen species and organellar signaling. Journal of Experimental Botany, 72: 5807–5824, DOI: 10.1093/jxb/erab218.
Podgórska, A, Burian, M, & Szal, B 2017, Extra-cellular but extra-ordinarily important for cells: Apoplastic reactive oxygen species metabolism. Frontiers in Plant Science, Volume 8, Available at: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2017.01353.
Poór, P, Nawaz, K, Gupta, R, Ashfaque, F, & Khan, M I R 2022, Ethylene involvement in the regulation of heat stress tolerance in plants. Plant Cell Reports, 41: 675-698, DOI: 10.1007/s00299-021-02675-8.
Prerostova, S, Jarosova, J, Dobrev, P I, Hluskova, L, Motyka, V, Filepova, R, et al. 2022, Heat stress targeting individual organs reveals the central role of roots and crowns in rice stress responses. Frontiers in Plant Science, Volume 12, DOI: 10.3389/fpls.2021.799249.
Prokić, M D, Gavrić, J P, Petrović, T G, Despotović, S G, Gavrilović, B R, Radovanović, T B, et al. 2019, Oxidative stress in Pelophylax esculentus complex frogs in the wild during transition from aquatic to terrestrial life. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 234: 98-105, DOI: 10.1016/j.cbpa.2019.05.004.
Qin, F, Sakuma, Y, Tran, L-S P, Maruyama, K, Kidokoro, S, Fujita, Y, et al. 2008, Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress–Responsive gene expression. The Plant Cell, 20: 1693-1707, DOI: 10.1105/tpc.107.057380.
Qiu, Y, Pasoreck, E K, Yoo, C Y, He, J, Wang, H, Bajracharya, A, et al. 2021, RCB initiates Arabidopsis thermomorphogenesis by stabilizing the thermoregulator PIF4 in the daytime. Nature Communications, 12: 2042, DOI: 10.1038/s41467-021-22313-x.
Quan, P-Q, Guo, P-L, He, J, & Liu, X-D 2024, Heat-stress memory enhances the acclimation of a migratory insect pest to global warming. Molecular Ecology, 33: e17493, DOI: 10.1111/mec.17493.
Rabeh, K, Hnini, M, & Oubohssaine, M 2025, A comprehensive review of transcription factor-mediated regulation of secondary metabolites in plants under environmental stress. Stress Biology, 5: 15, DOI: 10.1007/s44154-024-00201-w.
Radani, Y, Li, R, Korboe, H M, Ma, H, & Yang, L 2023, Transcriptional and post-translational regulation of plant bHLH transcription factors during the response to environmental stresses. Plants, 12, DOI: 10.3390/plants12112113.
Rai, G K, Kumar, P, Choudhary, S M, Singh, H, Adab, K, Kosser, R, et al. 2023, Antioxidant potential of glutathione and crosstalk with phytohormones in enhancing abiotic stress tolerance in crop plants. Plants, 12: DOI: 10.3390/plants12051133.
Rai, G K, Magotra, I, Khanday, D M, Choudhary, S M, Bhatt, A, Gupta, V, et al. 2024, Boosting drought tolerance in tomatoes through stimulatory action of salicylic acid imparted antioxidant defense mechanisms. Agronomy, 14, DOI: 10.3390/agronomy14061227.
Rai, K K, & Kaushik, P 2023, Free radicals mediated redox signaling in plant stress tolerance. Life, 13, DOI: 10.3390/life13010204.
Rajewska, I, Talarek, M, & Bajguz, A 2016, Brassinosteroids and response of plants to heavy metals action. Frontiers in Plant Science, Volume 7, DOI: 10.3389/fpls.2016.00629.
Rajput, V D, Harish, Singh, R K, Verma, K K, Sharma, L, Quiroz-Figueroa, F R, et al. 2021, Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology, 10, DOI: 10.3390/biology10040267.
Ramakrishnan, M, Zhang, Z, Mullasseri, S, Kalendar, R, Ahmad, Z, Sharma, A, et al. 2022, Epigenetic stress memory: A new approach to study cold and heat stress responses in plants. Frontiers in Plant Science Volume 13, DOI: 10.3389/fpls.2022.1075279.
Ransdell-Green, E C, Baranowska-Kortylewicz, J, & Wang, D 2025, Advances in fluorescence techniques for the detection of hydroxyl radicals near DNA and within organelles and membranes. Antioxidants, 14, DOI: 10.3390/antiox14010079.
Rao, M J, Duan, M, Zhou, C, Jiao, J, Cheng, P, Yang, L, et al. 2025, Antioxidant defense system in plants: Reactive oxygen species production, signaling, and scavenging during abiotic stress-induced oxidative damage. Horticulturae, 11, DOI: 10.3390/horticulturae11050477.
Rao, M J, & Zheng, B 2025, The role of polyphenols in abiotic stress tolerance and their antioxidant properties to scavenge reactive oxygen species and free radicals. Antioxidants, 14, DOI: 10.3390/antiox14010074.
Read, A D, Bentley, R ET, Archer, S L, & Dunham-Snary, K J 2021, Mitochondrial iron–sulfur clusters: Structure, function, and an emerging role in vascular biology. Redox Biology, 47: 102164. DOI: 10.1016/j.redox.2021.102164.
Rehman, A, Khan, I, & Farooq, M 2024, Secondary metabolites mediated reproductive tolerance under heat stress in plants. Journal of Plant Growth Regulation, 43: 2993-3011, DOI: 10.1007/s00344-023-11161-2.
Ren, H, Bao, J, Gao, Z, Sun, D, Zheng, S, & Bai, J 2023, How rice adapts to high temperatures. Frontiers in Plant Science, Volume 14, Available at: https://www.frontiersin.org/journals/plant-science/articles/10.3389/ fpls.2023.1137923.
Renard, D, Mahaut, L, & Noack, F 2023, Crop diversity buffers the impact of droughts and high temperatures on food production. Environmental Research Letters, 18: 045002, DOI: 10.1088/1748-9326/acc2d6.
Renzetti, M, Funck, D, & Trovato, M 2025, Proline and ROS: A unified mechanism in plant development and stress response? Plants, 14, DOI: 10.3390/plants14010002.
Rivas, F J M, Fernie, A R, & Aarabi, F 2024, Roles and regulation of the RBOHD enzyme in initiating ROS-mediated systemic signaling during biotic and abiotic stress. Plant Stress, 11: 100327, DOI: 10.1016/j.stress.2023.100327.
Robert-Seilaniantz, A, Grant, M, & Jones, J D G 2011, Hormone crosstalk in plant disease and defense: more than just Jasmonate-Salicylate antagonism. Annual Review of Phytopathology, 49: 317-343, DOI: https://doi.org/10.1146/annurev-phyto-073009-114447.
Rodrigues, O, & Shan, L 2022, Stomata in a state of emergency: H2O2 is the target locked. Trends in Plant Science, 27: 274-286, DOI: 10.1016/j.tplants.2021.10.002.
Rodriguez, R E, Mecchia, M A, Debernardi, J M, Schommer, C, Weigel, D, & Palatnik, J F 2010, Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development, 137: 103-112, DOI: 10.1242/dev.043067.
Ru, P, Xu, L, Ma, H, & Huang, H 2006, Plant fertility defects induced by the enhanced expression of microRNA167. Cell Research, 16: 457-465, DOI: 10.1038/sj.cr.7310057.
Rudenko, N N, Vetoshkina, D V, Marenkova, T V, & Borisova-Mubarakshina, M M 2023, Antioxidants of non-enzymatic nature: Their function in higher plant cells and the ways of boosting their biosynthesis. Antioxidants, 12, DOI: 10.3390/antiox12112014.
Sah, S K, Reddy, K R, & Li, J 2016, Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Frontiers in Plant Science, Volume 7, Available at: https://www.frontiersin.org/journals/plant-science/articles/10.3389/ fpls.2016.00571.
Saleem, A, Aper, J, Muylle, H, Borra-Serrano, I, Quataert, P, Lootens, P, et al. 2022, Response of a diverse European soybean collection to “Short duration” and “Long duration” drought stress. Frontiers in Plant Science Volume 13-2022. DOI: DOI.org/10.3389/fpls.2022.818766.
Sallam, M, Al-Ashkar, I, Al-Doss, A, Al-Gaadi, K A, Zeyada, A M, & Ghazy, A 2024, Assessing heat stress tolerance of wheat genotypes through integrated molecular and physio-biochemical analyses. Agronomy, 14, DOI: 10.3390/agronomy14091999.
Samanta, I, Chaturvedi, S, Chanda Roy, P, & Chowdhary, G 2023, Molecular cloning, subcellular localization, and abiotic stress induction analysis of a polyamine oxidase gene from Oryza sativa. International Journal of Agronomy, 2023: 5686484, DOI: 10.1155/2023/5686484.
Sampath, V, Shalakhti, O, Veidis, E, Efobi, J A I, Shamji, M H, Agache, I, et al. 2023, Acute and chronic impacts of heat stress on planetary health. Allergy, 78: 2109-2120, DOI: 10.1111/all.15702.
Sandalio, L M, Espinosa, J, Shabala, S, León, J, & Romero-Puertas, M C 2023, Reactive oxygen species- and nitric oxide-dependent regulation of ion and metal homeostasis in plants. Journal of Experimental Botany, 74: 5970-5988, DOI: 10.1093/jxb/erad349.
Satbhai, R D, Kale, A A, & Naik, R M 2015, Protective role of osmolytes and antioxidants during high temperature stress in wheat. IJBSM, 6: 220-229.
Satkanov, M, Nurbekova, Z, Bilyalov, A, Tazhibay, D, Zhaksylyk, M, Kulatayeva, M, et al. 2025, Biochemical properties of molybdenum cofactor isolated from fish liver. Fish Physiology and Biochemistry, 51: 62, DOI: 10.1007/s10695-025-01473-3.
Satkanov, M, Tazhibay, D, Zhumabekova, B, Assylbekova, G, Abdukarimov, N, Nurbekova, Z, et al. 2024, Method for assessing the content of molybdenum enzymes in the internal organs of fish. MethodsX 12, 102576. DOI: 10.1016/j.mex.2024.102576.
Schierhorn, F, Hofmann, M, Adrian, I, Bobojonov, I, & Müller, D 2020, Spatially varying impacts of climate change on wheat and barley yields in Kazakhstan. Journal of Arid Environments, 178: 104164, DOI: 10.1016/j.jaridenv.2020.104164.
Schmauder, L, Sima, S, Hadj, A B, Cesar, R, & Richter, K 2022, Binding of the HSF-1 DNA-binding domain to multimeric C. elegans consensus HSEs is guided by cooperative interactions. Scientific Reports, 12: 8984, DOI: 10.1038/s41598-022-12736-x.
Schopfer, P 2001, Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. The Plant Journal, 28: 679-688, DOI: 10.1046/j.1365-313x.2001.01187.x.
Secomandi, E, De Gregorio, M A, Castro-Cegrí, A, & Lucini, L 2025, Biochemical, photosynthetic and metabolomics insights of single and combined effects of salinity, heat, cold and drought in Arabidopsis. Physiologia Plantarum, 177: e70062, DOI: 10.1111/ppl.70062.
Sedaghatmehr, M, Mueller-Roeber, B, & Balazadeh, S 2016, The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis. Nature Communications, 7: 12439, DOI: 10.1038/ncomms12439.
Seleiman, M F, Al-Suhaibani, N, Ali, N, Akmal, M, Alotaibi, M, Refay, Y, et al. 2021, Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10, DOI: 10.3390/plants10020259.
Selinga, T I, Maseko, S T, Gabier, H, Rafudeen, M S, Muasya, A M, Crespo, O, et al. 2022, Regulation and physiological function of proteins for heat tolerance in cowpea (Vigna unguiculata) genotypes under controlled and field conditions. Frontiers in Plant Science, Volume 13, DOI: 10.3389/fpls.2022.954527.
Sgobba, A, Paradiso, A, Dipierro, S, De Gara, L, & de Pinto, M C 2015, Changes in antioxidants are critical in determining cell responses to short- and long-term heat stress. Physiologia Plantarum, 153: 68-78, DOI: 10.1111/ppl.12220.
Shabbir, R, Javed, T, Hussain, S, Ahmar, S, Naz, M, Zafar, H, et al. 2022, Calcium homeostasis and potential roles in combatting environmental stresses in plants. South African Journal of Botany, 148: 683-693, DOI: 10.1016/j.sajb.2022.05.038.
Shah, A, & Smith, D L 2020, Flavonoids in agriculture: Chemistry and roles in, biotic and abiotic stress responses, and microbial associations. Agronomy, 10, DOI: 10.3390/agronomy10081209.
Shamloo, M, Babawale, E A, Furtado, A, Henry, R J, Eck, P K, & Jones, P J H 2017, Effects of genotype and temperature on accumulation of plant secondary metabolites in Canadian and Australian wheat grown under controlled environments. Scientific Reports, 7: 9133, DOI: 10.1038/s41598-017-09681-5.
Sharma, A, Shahzad, B, Kumar, V, Kohli, S K, Sidhu, G P, Bali, A S, et al. 2019, Phytohormones Regulate Accumulation of Osmolytes Under Abiotic Stress. Biomolecules 9. DOI: 10.3390/biom9070285.
Sharma, N, Thakur, M, Suryakumar, P, Mukherjee, P, Raza, A, Prakash, C S, et al. 2022, ‘Breathing out’ under heat stress—Respiratory control of crop yield under high temperature. Agronomy, 12, DOI: 10.3390/agronomy12040806.
Sharma, V, Singh, C M, Chugh, V, Kamaluddin, Prajapati, P K, Mishra, A, et al. 2023, Morpho-Physiological and biochemical responses of field pea genotypes under terminal heat stress. Plants, 12, DOI: 10.3390/plants12020256.
Siebers, M H, Slattery, R A, Yendrek, C R, Locke, A M, Drag, D, Ainsworth, E A, et al. 2017, Simulated heat waves during maize reproductive stages alter reproductive growth but have no lasting effect when applied during vegetative stages. Agriculture, Ecosystems & Environment, 240: 162-170, DOI: 10.1016/j.agee. 2016.11.008.
Sies, H 2020, Oxidative stress: Concept and some practical aspects. Antioxidants, 9, DOI: 10.3390/antiox9090852
Simkin, A J, Kapoor, L, Doss, C G P, Hofmann, T A, Lawson, T, & Ramamoorthy, S 2022, The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynthesis Research, 152: 23-42, DOI: 10.1007/s11120-021-00892-6.
Simoncik, O, Tichy, V, Durech, M, Hernychova, L, Trcka, F, Uhrik, L, et al. 2024, Direct activation of HSF1 by macromolecular crowding and misfolded proteins. PLOS ONE, 19: e0312524. DOI: 10.1371/journal. pone.0312524.
Singh, A 2022, Soil salinity: A global threat to sustainable development. Soil Use and Management, 38: 39-67, DOI: 10.1111/sum.12772.
Singh, A, Mehta, S, Yadav, S, Nagar, G, Ghosh, R, Roy, A, et al. 2022, How to cope with the challenges of environmental stresses in the era of global climate change: An update on ROS stave off in plants. International Journal of Molecular Sciences, 23, DOI: 10.3390/ijms23041995.
Singh, K, Gupta, R, Shokat, S, Iqbal, N, Kocsy, G, Pérez-Pérez, J M, et al. 2024a, Ascorbate, plant hormones and their interactions during plant responses to biotic stress. Physiologia Plantarum, 176: e14388, DOI: 10.1111/ppl.14388.
Singh, M K, Shin, Y, Han, S, Ha, J, Tiwari, P K, Kim, S S, et al. 2024b, Molecular chaperonin HSP60: current understanding and future prospects. International Journal of Molecular Sciences, 25, DOI: 10.3390/ijms25105483.
Slama, I, Abdelly, C, Bouchereau, A, Flowers, T, & Savouré, A 2015, Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115: 433-447, DOI: 10.1093/aob/mcu239.
Smolko, A, Bauer, N, Pavlović, I, Pěnčík, A, Novák, O, & Salopek-Sondi, B 2021, Altered root growth, auxin metabolism and distribution in Arabidopsis thaliana exposed to salt and osmotic stress. International Journal of Molecular Sciences 22. DOI: 10.3390/ijms22157993.
Snider, J L, Oosterhuis, D M, & Kawakami, E M 2011, Mechanisms of reproductive thermotolerance in Gossypium hirsutum: The effect of genotype and exogenous calcium application. Journal of Agronomy and Crop Science, 197: 228-236, DOI: 10.1111/j.1439-037X.2010.00457.x.
Sofo, A, Scopa, A, Nuzzaci, M, & Vitti, A 2015, Ascorbate Peroxidase and Catalase Activities and Their Genetic Regulation in Plants Subjected to Drought and Salinity Stresses. International Journal of Molecular Sciences 16, 13561–13578. DOI: 10.3390/ijms160613561.
Soltabayeva, A, Bekturova, A, Kurmanbayeva, A, Oshanova, D, Nurbekova, Z, Srivastava, S, et al. 2022, Ureides are accumulated similarly in response to UV-C irradiation and wounding in Arabidopsis leaves but are remobilized differently during recovery. Journal of Experimental Botany, 73: 1016-1032, DOI: 10.1093/jxb/ erab441.
Song, P, Jia, Q, Chen, L, Jin, X, Xiao, X, Li, L, et al. 2020, Involvement of Arabidopsis phospholipase D δ in regulation of ROS-mediated microtubule organization and stomatal movement upon heat shock. Journal of Experimental Botany, 71: 6555-6570, DOI: 10.1093/jxb/eraa359.
Suganuma, T 2022, Beyond Moco biosynthesis―Moonlighting roles of MoaE and MOCS2. Molecules, 27, DOI: 10.3390/molecules27123733.
Sun, J, Wang, H, Ren, H, Zhao, B, Zhang, J, Ren, B, et al. 2023, Maize (Zea mays L.) responses to heat stress: Mechanisms that disrupt the development and hormone balance of tassels and pollen. Journal of Agronomy and Crop Science, 209: 502-516, DOI: 10.1111/jac.12644.
Sun, T, Rao, S, Zhou, X, & Li, L 2022, Plant carotenoids: Recent advances and future perspectives. Molecular Horticulture, 2: 3, DOI: 10.1186/s43897-022-00023-2.
Sun, Z, Shu, L, Zhang, W, & Wang, Z 2020, Cca-miR398 increases copper sulfate stress sensitivity via the regulation of CSD mRNA transcription levels in transgenic Arabidopsis thaliana. PeerJ, 8: e9105. DOI: 10.7717/peerj.9105.
Sung, D Y, Vierling, E, & Guy, C L 2001, Comprehensive Expression Profile Analysis of the Arabidopsis Hsp70 Gene Family. Plant Physiology, 126: 789-800, DOI: 10.1104/pp.126.2.789.
Suraweera, D D, Groom, T, & Nicolas, M E 2020, Exposure to heat stress during flowering period reduces flower yield and pyrethrins in Pyrethrum (Tanacetum cinerariifolium). Journal of Agronomy and Crop Science, 206: 565-578, DOI: 10.1111/jac.12405.
Suzuki, N, Bassil, E, Hamilton, J S, Inupakutika, M A, Zandalinas, S I, Tripathy, D, et al. 2016, ABA is required for plant acclimation to a combination of salt and heat stress. PLOS ONE, 11: e0147625, DOI: 10.1371/journal.pone.0147625.
Suzuki, N, Miller, G, Sejima, H, Harper, J, & Mittler, R 2013, Enhanced seed production under prolonged heat stress conditions in Arabidopsis thaliana plants deficient in cytosolic ascorbate peroxidase 2. Journal of Experimental Botany, 64: 253-263, DOI: 10.1093/jxb/ers335.
Suzuki, T, & Kamiya, H 2016, Mutations induced by 8-hydroxyguanine (8-oxo-7,8-dihydroguanine), a representative oxidized base, in mammalian cells. Genes and Environment, 39: 2, DOI: 10.1186/s41021-016-0051-y.
Swindell, W R, Huebner, M, & Weber, A P 2007, Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics, 8: 125, DOI: 10.1186/1471-2164-8-125.
Szarka, A, Tomasskovics, B, & Bánhegyi, G 2012, The Ascorbate-glutathione-α-tocopherol Triad in Abiotic Stress Response. International Journal of Molecular Sciences, 13: 4458–4483, DOI: 10.3390/ijms 13044458
Szira, F, Bálint, A F, Börner, A, & Galiba, G 2008, Evaluation of drought-related traits and screening methods at different developmental stages in spring barley. Journal of Agronomy and Crop Science, 194: 334-342, DOI: 10.1111/j.1439-037X.2008.00330.x.
Szrok-Jurga, S, Czumaj, A, Turyn, J, Hebanowska, A, Swierczynski, J, Sledzinski, T, et al. 2023, The Physiological and Pathological Role of Acyl-CoA Oxidation. International Journal of Molecular Sciences, 24, DOI: 10.3390/ijms241914857.
Tan, W, Meng, Q wei, Brestic, M, Olsovska, K, & Yang, X 2011, Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. Journal of Plant Physiology, 168: 2063-2071, DOI: 10.1016/j.jplph. 2011.06.009.
Tano, D W, & Woodson, J D 2022, Putting the brakes on chloroplast stress signaling. Molecular Plant, 15: 388-390, DOI: 10.1016/j.molp.2022.02.009.
Tas, T., & Mutlu, A. 2021, Morpho-physiological effects of environmental stress on yield and quality of sweet corn varieties (Zea mays L.). PeerJ, 9: e12613, DOI: doi.org/10.7717/peerj.12613.
Templ, B, & Calanca, P 2020, Critical increase in the occurrence of heat stress during reproductive growth in Russian wheat beyond 1.5 C global warming. Weather and Climate Extremes, 30: 100281, DOI: 10.1016/ j.wace.2020.100281.
Timm, S, & Hagemann, M 2020, Photorespiration: How is it regulated and how does it regulate overall plant metabolism? Journal of Experimental Botany, 71: 3955-3965, DOI: 10.1093/jxb/eraa183.
Tiwari, Y K, & Yadav, S K 2020, Effect of High-temperature stress on ascorbate–glutathione cycle in maize. Agricultural Research, 9: 179-187, DOI: 10.1007/s40003-019-00421-x.
Toh, S, Imamura, A, Watanabe, A, Nakabayashi, K, Okamoto, M, Jikumaru, Y, et al. 2008, High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiology 146, 1368–1385. DOI: 10.1104/pp.107.113738.
Tokić, M, Leljak Levanić, D, Ludwig-Müller, J, & Bauer, N 2023, Growth and molecular responses of tomato to prolonged and short-term heat exposure. International Journal of Molecular Sciences, 24, DOI: 10.3390/ijms24054456.
Tóth, S Z, Nagy, V, Puthur, J T, Kovács, L, & Garab, G 2011, The physiological role of ascorbate as photosystem ii electron donor: Protection against photoinactivation in heat-stressed leaves. Plant Physiology, 156: 382-392, DOI: 10.1104/pp.110.171918.
van Es, S W 2020, Too hot to handle, the adverse effect of heat stress on crop yield. Physiologia Plantarum, 169: 499-500, DOI: 10.1111/ppl.13165.
Veldhuis, E R, Schrama, M, Staal, M, & Elzenga, J T M 2019, Plant Stress-Tolerance Traits Predict Salt Marsh Vegetation Patterning. Frontiers in Marine Science, Volume 5-2018, DOI: https://doi.org/10.3389/fmars. 2018.00501.
Venios, X, Korkas, E, Nisiotou, A, & Banilas, G 2020, Grapevine responses to heat stress and global warming. Plants, 9, DOI: 10.3390/plants9121754.
Vogel, E, Donat, M G, Alexander, L V, Meinshausen, M, Ray, D K, Karoly, D, et al. 2019, The effects of climate extremes on global agricultural yields. Environmental Research Letters, 14: 054010, DOI: 10.1088/1748-9326/ab154b.
Wagner, J, Carvajal, A I, Bracher, A, Beck, F, Wan, W, Bohn, S, et al. 2024, Visualizing chaperonin function in situ by cryo-electron tomography. Nature, 633: 459-464, DOI: 10.1038/s41586-024-07843-w.
Wahid, A, Gelani, S, Ashraf, M, & Foolad, M R 2007, Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61: 199-223, DOI: 10.1016/j.envexpbot.2007.05.011.
Walker, B R, & Moraes, C T 2022, Nuclear-Mitochondrial Interactions. Biomolecules, 12, DOI: 10.3390/ biom12030427.
Wang, D, Gao, G, Li, R, Toktarbek, S, Jiakula, N, & Feng, Y 2022, Limiting factors and environmental adaptability for staple crops in Kazakhstan. Sustainability, 14, DOI: 10.3390/su14169980.
Wang, F, Liu, Y, Shi, Y, Han, D, Wu, Y, Ye, W, et al. 2020, SUMOylation Stabilizes the Transcription Factor DREB2A to Improve Plant Thermotolerance1. Plant Physiology, 183: 41-50, DOI: 10.1104/pp.20.00080.
Wang, J, Wu, B, Yin, H, Fan, Z, Li, X, Ni, S, et al. 2017, Overexpression of CaAPX induces orchestrated reactive oxygen scavenging and enhances cold and heat tolerances in tobacco. BioMed Research International, 4049534. DOI: 10.1155/2017/4049534.
Wang, J-Q, Xiang, R-H, & Li, Z-G 2023a, The essential role of H2S-ABA crosstalk in maize thermotolerance through the ROS-scavenging system. International Journal of Molecular Sciences, 24, DOI: 10.3390/ijms241512264.
Wang, P, Liu, W-C, Han, C, Wang, S, Bai, M-Y, & Song, C-P 2024, Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. Journal of Integrative Plant Biology, 66: 330-367, DOI: 10.1111/jipb.13601.
Wang, R, Fan, X, Liu, Y, Zhao, X, Wang, R, & Liu, Y 2025a, Divergent impacts of soil desiccation on atmospheric water vapor–temperature responses regulated by evapotranspiration. Environmental Research Letters, 20: 024019, DOI: 10.1088/1748-9326/ada6df.
Wang, W, Wang, X, Flannigan, M D, Guindon, L, Swystun, T, Castellanos-Acuna, D, et al. 2025b, Canadian forests are more conducive to high-severity fires in recent decades. Science, 387: 91-97, DOI: 10.1126/science.ado1006.
Wang, W, Zhang, J, Ai, L, Wu, D, Li, B, Zhang, L, et al. 2021, Cyclic nucleotide-gated ion channel 6 mediates thermotolerance in Arabidopsis seedlings by regulating hydrogen peroxide production via cytosolic calcium ions. Frontiers in Plant Science, Volume 12, Available at: https://www.frontiersin.org/journals/ plant-science/articles/10.3389/fpls.2021.708672.
Wang, X, Li, Y, Chen, Y, Li, Y, Wang, C, Kaldybayev, A, et al. 2023b, Intensification of heatwaves in Central Asia from 1981 to 2020: Role of soil moisture reduction. Journal of Hydrology, 627: 130395, DOI: 10.1016/j.jhydrol.2023.130395.
Wang, Y, Li, K, Chen, L, Zou, Y, Liu, H, Tian, Y, et al. 2015, MicroRNA167-directed regulation of the auxin response factors GmARF8a and GmARF8b is required for soybean nodulation and lateral root development. Plant Physiology, 168: 984-999, DOI: 10.1104/pp.15.00265.
Wang, Y-X, Yu, T-F, Wang, C-X, Wei, J-T, Zhang, S-X, Liu, Y-W, et al. 2023c, Heat shock protein TaHSP17.4, a TaHOP interactor in wheat, improves plant stress tolerance. International Journal of Biological Macromolecules, 246: 125694. DOI: 10.1016/j.ijbiomac.2023.125694.
Wang, Z, Zhang, Y, Govers, G, Tang, G, Quine, T A, Qiu, J, et al. 2023d, Temperature effect on erosion-induced disturbances to soil organic carbon cycling. Nature Climate Change 13: 174-181, DOI: 10.1038/s41558-022-01562-8.
Weibezahn, J, Tessarz, P, Schlieker, C, Zahn, R, Maglica, Z, Lee, S, et al. 2004, Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell, 119: 653-665. DOI: 10.1016/j.cell.2004.11.027.
Wen, Y, Shao, B, Hao, Z, Wang, C, Sun, T, Han, Y, et al. 2024, Preliminary study on programmed cell death during calyx abscission of Korla fragrant pear. Horticulturae, 10, DOI: 10.3390/horticulturae10060637.
White, R H, Anderson, S, Booth, J F, Braich, G, Draeger, C, Fei, C, et al. 2023, The unprecedented Pacific Northwest heatwave of June 2021. Nature Communications, 14: 727, DOI: 10.1038/s41467-023-36289-3.
Wu, B, Qi, F, & Liang, Y 2023, Fuels for ROS signaling in plant immunity. Trends in Plant Science 28, 1124-1131, DOI: 10.1016/j.tplants.2023.04.007
Wu, B, Qiao, J, Wang, X, Liu, M, Xu, S, & Sun, D 2021a, Factors affecting the rapid changes of protein under short-term heat stress. BMC Genomics, 22: 263, DOI: 10.1186/s12864-021-07560-y.
Wu, C, Cui, K, Wang, W, Li, Q, Fahad, S, Hu, Q, et al. 2016, Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice. Scientific Reports, 6: 34978. DOI: 10.1038/srep34978.
Wu, G, Park, M Y, Conway, S R, Wang, J-W, Weigel, D, & Poethig, R S 2009, The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell, 138, 750–759. DOI: 10.1016/j.cell.2009.06.031.
Wu, W, Duncan, R W, & Ma, B 2021b, The stage sensitivity of short-term heat stress to lodging-resistant traits and yield determination in canola (Brassica napus L.). Journal of Agronomy and Crop Science, 207: 74-87, DOI: 10.1111/jac.12464.
Xi, Y, Ling, Q, Zhou, Y, Liu, X, & Qian, Y 2022, ZmNAC074, a maize stress-responsive NAC transcription factor, confers heat stress tolerance in transgenic Arabidopsis. Frontiers in Plant Science, Volume 13, DOI: 10.3389/fpls.2022.986628.
Xiang, N, Li, C, Li, G, Yu, Y, Hu, J, & Guo, X 2019, Comparative evaluation on vitamin E and carotenoid accumulation in sweet corn (Zea mays L.) seedlings under temperature stress. Journal of Agricultural and Food Chemistry, 67: 9772-9781, DOI: 10.1021/acs.jafc.9b04452.
Xiong, H, He, H, Chang, Y, Miao, B, Liu, Z, Wang, Q, et al. 2025, Multiple roles of NAC transcription factors in plant development and stress responses. Journal of Integrative Plant Biology, 67: 510-538, DOI: 10.1111/jipb.13854.
Yan, G, Hua, Y, Jin, H, Huang, Q, Zhou, G, Xu, Y, et al. 2023, Sly-miR398 participates in cadmium stress acclimation by regulating antioxidant system and cadmium transport in tomato (Solanum lycopersicum). International Journal of Molecular Sciences, 24, DOI: 10.3390/ijms24031953.
Yang, C, Liu, J, Dong, X, Cai, Z, Tian, W, & Wang, X 2014, Short-term and continuing stresses differentially interplay with multiple hormones to regulate plant survival and growth. Molecular Plant, 7: 841-855, DOI: 10.1093/mp/ssu013.
Yao, F, Livneh, B, Rajagopalan, B, Wang, J, Crétaux, J-F, Wada, Y, et al. 2023, Satellites reveal widespread decline in global lake water storage. Science, 380: 743–749, DOI: 10.1126/science.abo2812.
Yaqoob, U, Jan, N, Raman, P V, Siddique, K H M, & John, R 2022, Crosstalk between brassinosteroid signaling, ROS signaling and phenylpropanoid pathway during abiotic stress in plants: Does it exist? Plant Stress, 4: 100075. DOI: 10.1016/j.stress.2022.100075.
Ye, C, Zheng, S, Jiang, D, Lu, J, Huang, Z, Liu, Z, et al. 2021, Initiation and execution of programmed cell death and regulation of reactive oxygen species in plants. International Journal of Molecular Sciences 22. DOI: 10.3390/ijms222312942.
Yoshimura, K, & Ishikawa, T 2024, Physiological function and regulation of ascorbate peroxidase isoforms. Journal of Experimental Botany 75, 2700–2715. DOI: 10.1093/jxb/erae061.
Yu, Y, Qian, Y, Jiang, M, Xu, J, Yang, J, Zhang, T, et al. 2020, Regulation Mechanisms of Plant Basic Leucine Zippers to Various Abiotic Stresses. Frontiers in Plant Science, Volume 11, DOI: 10.3389/fpls. 2020.01258.
Zandalinas, S I, Fichman, Y, Devireddy, A R, Sengupta, S, Azad, R K, & Mittler, R 2020, Systemic signaling during abiotic stress combination in plants. Proceedings of the National Academy of Sciences, 117: 13810-13820, DOI: 10.1073/pnas.2005077117.
Zechmann, B 2017, Diurnal changes of subcellular glutathione content in Arabidopsis thaliana. Biologia Plantarum, 61: 791-796, DOI: 10.1007/s10535-017-0729-4.
Zelinová, V, Mistrík, I, Pavlovkin, J, & Tamás, L 2013, Glutathione peroxidase expression and activity in barley root tip after short-term treatment with cadmium, hydrogen peroxide and t-butyl hydroperoxide. Protoplasma, 250: 1057-1065, DOI: 10.1007/s00709-013-0481-3.
Zhakypbek, Y, Belkozhayev, A M, Kerimkulova, A, Kossalbayev, B D, Murat, T, Tursbekov, S, et al. 2025, MicroRNAs in plant genetic regulation of drought tolerance and their function in enhancing stress adaptation. Plants, 14, DOI: 10.3390/plants14030410.
Zhanassova, K, Kurmanbayeva, A, Gadilgereyeva, B, Yermukhambetova, R, Iksat, N, Amanbayeva, U et al. 2021, ROS status and antioxidant enzyme activities in response to combined temperature and drought stresses in barley. Acta Physiologiae Plantarum, 43: 114, DOI: 10.1007/s11738-021-03281-7.
Zhang, C X, Feng, B H, Chen, T T, Zhang, X F, Tao, L X, & Fu, G F 2017, Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress. Plant Growth Regulation, 83: 313-323, DOI: 10.1007/s10725-017-0296-x.
Zhang, L, Yao, L, Zhang, N, Yang, J, Zhu, X, Tang, X, et al. 2018, Lateral Root Development in Potato Is Mediated by Stu-mi164 Regulation of NAC Transcription Factor. Frontiers in Plant Science, Volume 9, DOI: 10.3389/fpls.2018.00383.
Zhang, X, Zhang, D, Zhong, C, Li, W, Dinesh-Kumar, S P, & Zhang, Y 2025, Orchestrating ROS regulation: Coordinated post-translational modification switches in NADPH oxidases. New Phytologist, 245: 510–522, DOI: 10.1111/nph.20231.
Zhang, Y, Park, J, Han, S-J, Yang, S Y, Yoon, H J, Park, I, et al. 2020, Redox regulation of tumor suppressor PTEN in cell signaling. Redox Biology, 34: 101553, DOI: 10.1016/j.redox.2020.101553.
Zhao, Z, Zhang, Y, Liu, X, Zhang, X, Liu, S, Yu, X, et al. 2013, A Role for a Dioxygenase in Auxin Metabolism and Reproductive Development in Rice. Developmental Cell, 27: 113-122, DOI: 10.1016/j.devcel.2013.09.005.
Zheng, C, Chen, J-P, Wang, X-W, & Li, P 2025, Reactive Oxygen Species in plants: Metabolism, signaling, and oxidative modifications. Antioxidants, 14, DOI: 10.3390/antiox14060617.
Zhou, R, Yu, X, Ottosen, C-O, Zhang, T, Wu, Z, & Zhao, T 2020, Unique miRNAs and their targets in tomato leaf responding to combined drought and heat stress. BMC Plant Biology, 20: 107, DOI: 10.1186/s12870-020-2313-x.
Zhu, J-K 2016, Abiotic stress signaling and responses in plants. Cell, 167: 313-324, DOI: 10.1016/j.cell. 2016.08.029.
Zhu, Q-H, & Helliwell, C A 2011, Regulation of flowering time and floral patterning by miR172. Journal of Experimental Botany, 62: 487-495, DOI: 10.1093/jxb/erq295.
Zhu, T, Li, W, Xue, H, Dong, S, Wang, J, Shang, S, et al. 2023, Selection, identification, and transcript expression analysis of antioxidant enzyme genes in Neoseiulus barkeri after short-term heat stress. Antioxidants, 12, DOI: 10.3390/antiox12111998.
Zimmermann, J, Oestreicher, J, Geissel, F, Deponte, M, & Morgan, B 2021, An intracellular assay for activity screening and characterization of glutathione-dependent oxidoreductases. Free Radical Biology and Medicine, 172: 340-349, DOI: 10.1016/j.freeradbiomed.2021.06.016. | ||
آمار تعداد مشاهده مقاله: 4 تعداد دریافت فایل اصل مقاله: 5 |