
تعداد نشریات | 31 |
تعداد شمارهها | 800 |
تعداد مقالات | 7,666 |
تعداد مشاهده مقاله | 33,100,931 |
تعداد دریافت فایل اصل مقاله | 7,764,660 |
نقش پرایمینگ نانو ذرات اکسید روی در تنظیم همبستگی بین پاسخهای آنتی اکسیدانت، جوانه زنی، رشد و عملکرد فتوسنتزی در گیاهچه بادرنجبویه | ||
علوم و تحقیقات بذر ایران | ||
دوره 12، شماره 1، فروردین 1404، صفحه 45-64 اصل مقاله (2.46 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/jms.2025.8928 | ||
نویسنده | ||
قادر حبیبی* | ||
استاد، گروه زیست شناسی، دانشگاه پیام نور، تهران، ایران | ||
چکیده | ||
هدف این تحقیق، تعیین آستانه تحمل گیاهچههای بادرنجبویه (Melissa officinalis) به نانوذرات اکسید روی (ZnONPs) بود که در قالب طرح کامل تصادفی در کشت گلدانی با پایه خاک پرلیت اجرا شد و نمونه ها پس از 28 روز از اعمال تیمار جهت سنجش برداشت شدند. اعمال غلظت 2000 میلی گرم بر لیتر نانوذره باعث کاهش درصد جوانه زنی، طول ساقهچه و ریشهچه و افت وزن خشک اندام هوایی شد. اعمال غلظت های 100 و 1000 میلی گرم بر لیتر نانوذره باعث افزایش میزان انباشت کاروتنوئید در برگ ها شد. با افزایش غلظت پرایمینگ از 50 به 1000 میلی گرم بر لیتر، انباشت پراکسید هیدروژن (H2O2) در برگ ها همزمان با افزایش مقدار نیتریک اکسید (NO) و ارتقاء فعالیت آنزیم کاتالاز (CAT) افزایش یافت. نتایج حاصل از پارامترهای رشد و اندازه گیری مالون دی آلدئید (MDA) نشان دادند که غلظت 2000 میلی گرم بر لیتر سبب بروز سمیت در گیاه بادرنجبویه شده است. در این غلظت، شدت فلورسانس در فاز IP و همچنین بیشینه عملکرد کوانتومی فتوسیستم II (Fv/Fm) نسبت به شاهد کاهش معنیدار نشان دادند. آنالیز PCA وجود همبستگی بین درصد جوانه زنی با پارامترهای فلورسانس کلروفیل و همچنین بین درصد جوانه زنی با مقدار اکسیدانتها (H2O2 و MDA) را مشخص کرد. در بین پارامترهای فلورسانس کلروفیل، فعالیت کمپلکس فتولیز کننده آب در فتوسیستم II (Fv/Fo) و Fv/Fm بیشترین همبستگی را با درصد جوانه زنی داشتند و در نتیجه میتوان از این پارامترها برای تعیین دقیق سازوکارهای سمیت نانوذرات روی در گیاه بادرنجبویه بهره برد. | ||
کلیدواژهها | ||
بادرنجبویه؛ درصد جوانهزنی؛ فلورسانس کلروفیل؛ مالون دی آلدئید؛ نیتریک اکسید؛ نانوذرات اکسید روی؛ همبستگی | ||
مراجع | ||
Ali, S., Mehmood, A., Khan, N. 2021. Uptake, translocation, and consequences of nanomaterials on plan growth and stress adaptation. Journal of Nanomaterials, 20: 1-17. DOI. 10.1155/2021/6677616 (Journal)
Boominathan, R. and Doran, P. M. 2002. Ni induced oxidative stress in roots of the Ni hyperaccumlator, Alyssum bertoloni. New Phytologist, 156(2): 202-205. DOI: 10.1046/j.1469-8137.2002.00506x (Journal)
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72 (1-2): 248-54. DOI: 10.1016/0003-2697(76)90527-3 (Journal)
Brestic, M. and Zivcak, M. 2013. PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications. In Molecular stress physiology of plants (pp. 87-131). Springer India. DOI: 10.1007/978-81-322-0807-5 (Chapter)
Cazzonelli, C. I. and Pogson, B. J. 2010. Source to sink: regulation of carotenoid biosynthesis in plants. Trends in Plant Science, 15: 266-274. DOI: 10.1016/j.tplants.2010.02.003 (Journal)
Chun, S. C., Paramasivan, M. and Chandrasekaran, M. 2018. Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Journal of Frontiers in Microbiology, 9: 2525. https://doi.org/10.3389/fmicb.2018.02525 (Journal)
Dilnawaz, F., Misra, A. N., Apostolova, E. 2023. Involvement of nanoparticles in mitigating plant’s abiotic stress. Plant Stress, 100280. https://doi.org/10.1016/j.stress.2023.100280 (Journal)
Domingos, P., Prado, A. M., Wong, A., Gehring, C. and Feijo, J. A. 2015. Nitric oxide: a multitasked signaling gas in plants. Molecular Plant, 8(4): 506-520. DOI: 10.1016/j.molp.2014.12.010 (Journal)
Du, W., Tan, W., Peralta-Videa, J. R., Gardea-Torresdey, J. L., Ji, R., Yin, Y. and Guo, H. 2017. Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Journal of Plant Physiology and Biochemistry, 110: 210-225. https://doi.org/10.1016/j.plaphy.2016.04.024 (Journal)
El-Zohrim M., Al-Wadaani, N. A. and Bafeel, S.O. 2021. Foliar sprayed green zinc oxide nanoparticles mitigate drought-induced oxidative stress in tomato. Plants, 10(11): 2400. https://doi.org/10.3390/plants10112400 (Journal)
Estaji, A. and Niknam, F. 2020. Foliar salicylic acid spraying effect on growth, seed oil content, and physiology of drought-stressed Silybum marianum L. plant. Journal of Agricultural Water Management, 234: 106116. https://doi.org/10.1016/j.agwat.2020.106116 (Journal)
Faraz, A., Faizan, M., Sami, F., Siddiqui, H. and Hayat, S. 2020. Supplementation of salicylic acid and citric acid for alleviation of cadmium toxicity to Brassica juncea. Journal of Plant Growth Regulation, 39: 641-655. DOI: 10.1007/s00344-019-10007-0 (Journal)
Giannopolitis, C. N. and Ries, S. K. 1977. Superoxide dismutases: I. Occurrence in higher plants. Journal of Plant Physiology, 59(2): 309-314. DOI: 10.1104/pp.59.2.309 (Journal)
Habibi, G. 2020. Effects of altitudinal gradient on daily rhythm of antioxidant capacity and dynamic photoinhibition in Marrubium vulgare. Iranian Journal of Plant Biology, 12(3): 57-72. DOI: 10.22108/ijpb.2020.120483.1188 (In Persian)(Journal)
Habibi, G. and Ajory, N. 2015. The effect of drought on photosynthetic plasticity in Marrubium vulgare plants growing at low and high altitudes. Journal of Plant Research, 128: 987-994. DOI: 10.1007/s10265-015-0748-1 (Journal)
Habibi, G., Servataian, N. and Abedini, M. 2017. Photoprotection mechanisms in wheat plants under high light and cold temperature conditions. Iranian Journal of Plant Biology, 9(1): 59-72. DOI: 10.22108/ijpb.2017.21566 (In Persian)(Journal)
Kalaji, H. M., Bosa, K., Kościelniak, J. and Żuk-Gołaszewska, K. 2011. Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany (EBB). 73, 64-72. http://dx.doi.org/10.1007/978-3-642-32034-7-164 (Journal)
Khalid, M. F., Iqbal Khan, R., Jawaid, M. Z., Shafqat, W., Hussain, S., Ahmed, T., Alina, Marc, R. 2022. Nanoparticles: the plant savior under abiotic stresses. Nanomaterials, 12(21): 3915. https://doi.org/10.3390/nano12213915 (Journal)
Kohli, S. K., Handa, N., Bali, S., Arora, S., Sharma, A., Kaur, R. and Bhardwaj, R. 2018. Modulation of antioxidative defense expression and osmolyte content by co-application of 24-epibrassinolide and salicylic acid in Pb exposed Indian mustard plants. Ecotoxicology and Environmental Safety, 147: 382-393. DOI: 10.1016/j.ecoenv.2017.08.051 (Journal)
Landa, P., Prerostova, S., Petrova, S., Knirsch, V., Vankova, R. and Vanek, T. 2015. The transcriptomic response of Arabidopsis thaliana to zinc oxide: a comparison of the impact of nanoparticle, bulk, and ionic zinc. Journal of Environmental Science and Technology, 49(24): 14537-14545. DOI: 10.1021/acs.est.5b03330 (Journal)
Lee, S., Kim, S., Kim, S. and Lee, I. 2013. Assessment of phytotoxicity of ZnONPs on a medicinal plant, Fagopyrum esculentum. Environmental Science and Pollution Research, 20(2): 848-854. DOI: 10.1007/s11356-012-1069-8 (Journal)
Li, C. C., Dang, F., Li, M., Zhu, M., Zhong, H., Hintelmann, H. and Zhou, D. M. 2017. Effects of exposure pathwayson the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. Nanotoxicology, 11: 699-709. DOI: 10.1080/17435390.2017.1344740 (Journal)
Lichtenthaler, H. K. and Wellburn, A. R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11: 591-592. https://doi.org/10.1042/bst0110591 (Journal)
Lu, Q., Zhang, T., Zhang, W., Su, C., Yang, Y., Hu, D. and Xu, Q. 2018. Alleviation of cadmium toxicity in Lemna minor by exogenous salicylic acid. Journal of Ecotoxicology and Environmental Safety, 147: 500-508. DOI: 10.1016/j.ecoenv.2017.09.015 (Journal)
Mahawar, L., Živčák, M., Barboricova, M., Kovár, M., Filaček, A., Ferencova, J., Vysoká, D.M. and Brestič, M. 2024. Effect of copper oxide and zinc oxide nanoparticles on photosynthesis and physiology of Raphanus sativus L. under salinity stress. Plant Physiology and Biochemistry, 206: 108281. https://doi.org/10.1016/j.plaphy.2023.108281 (Journal)
Mahajan, P., Dhoke, S. K., Khanna, A. S. and Tarafdar, J. C. 2011. Effect of nano- ZnO on growth of mung bean (Vigna radiata) and chickpea (Cicer arietinum) seedlings using plant agar method. Applied Biological Research, 13(2): 54-61. (Journal)
Magne, C., Saladin, G. and Clement, C. 2006. Transient effect of the herbicide flazasulfuron on carbohydrate physiology in Vitis vinifera. Chemosphere, 62(4): 650-657. DOI: 10.1016/j.chemosphere.2005.04.119 (Journal)
Maqsood, M. F., Shahbaz, M., Khalid, F., Rasheed, Y., Asif, K., Naz, N., Zulfiqar, U., Zulfiqar, F., Moosa, A., Alamer, K., Attia, H. 2023. Biogenic nanoparticles application in agriculture for ROS mitigation and abiotic stress tolerance: A review. Plant Stress, 10: 100281. https://doi.org/10.1016/j.stress.2023.100281 (Journal)
Mazaheri Tirani, M., Madadkar-Haghjou, M., Sulieman, S. and Ismaili, A. 2018. Comparative evaluation of zinc oxide effects on tobacco (Nicotiana tabacum L.) grown in different media. Journal of Agricultural Science and Technology, 20(4): 787-802. (Journal)
Michalak, A. 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15(4). (Journal)
Molnár, Á., Papp, M., Kovács, D. Z., Bélteky, P., Oláh, D., Feigl, G. and Kolbert, Z. 2020. Nitro-oxidative signaling induced by chemically synthesized zinc oxide nanoparticles (ZnONPs) in Brassica species. Chemosphere, 251: 126419. DOI: 10.1016/j.chemosphere.2020.126419 (Journal)
Maqsood, M. F., Shahbaz, M., Khalid, F., Rasheed, Y., Asif, K., Naz, N. and Attia, H. 2023. Biogenic nanoparticles application in agriculture for ROS mitigation and abiotic stress tolerance: A review. Plant Stress, 10: 100281. https://doi.org/10.1016/j.stress.2023.100281 (Journal)
Mosquera-Sánchez, L. P., Arciniegas-Grijalba, P. A., Patiño-Portela, M. C., Guerra–Sierra, B. E., Muñoz-Florez, J. E. and Rodríguez-Páez, J. E. 2020. Antifungal effect of zinc oxide nanoparticles (ZnO-NPs) on Colletotrichum sp., causal agent of anthracnose in coffee crops. Biocatalysis and Agricultural Biotechnology, 25: 101579. https://doi.org/10.1016/j.bcab.2020.101579 (Journal)
Mostofa, M. G., Fujita, M. and Tran, L. S. P. 2015. Nitric oxide mediates hydrogen peroxide-and salicylic acid-induced salt tolerance in rice (Oryza sativa L.) seedlings. Journal of Plant Growth Regulation, 77(3): 265-277. DOI: 10.1007/s10725-015-0061-y (Journal)
Panda, K. K., Golari, D., Venugopal, A., Achary, M. M, Phaomei, G., Parinandi, N. L., Sahu, H. K. and Panda, B. B. 2017. Green synthesized zinc oxide (ZnO) nanoparticles induce oxidative stress and DNA damage in Lathyrus sativus L. root bioassay system. Antioxidants, 6(2): 35. https://doi.org/10.3390/antiox6020035 (Journal)
Perveen, S., Saeed, M., Parveen, A., Javed, M. T., Zafar, S. and Iqbal, N. 2020. Modulation of growth and key physiobiochemical attributes after foliar application of zinc sulphate (ZnSO4) on wheat (Triticum aestivum L.) under cadmium (Cd) stress. Physiology and Molecular Biology of Plants, 26(9): 1787-1797. DOI: 10.1007/s12298-020-00861-8 (Journal)
Rodríguez-Salinas, P. and García-López J. I. 2021. Zinc Oxide Nanoparticles and Zinc Sulfate Impact Physiological Parameters and Boosts Lipid Peroxidation in Soil Grown Coriander Plants (Coriandrum sativum). Molecules, 26:1998. https://doi.org/10.3390/molecules26071998 (Journal)
Rousseau, C., Belin, E., Bove, E., Rousseau, D., Fabre, F. and Berruyer, R. 2013. High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. Plant Methods, 9: 17. DOI: 10.1186/1746-4811-9-17 (Journal)
Roy, T. K., Islam, M. S., Mahiddin, N. A., Hossain, S. A., Biswas, T., Antu, U. B., Serity, S. A., Miti, J. F., Akter, S., Roy, S. and Biswas, A. 2025. Application of Nanoparticles (NPs) to Ameliorate Abiotic Stress in Economically Important Crop Species: a Potential Review. Journal of Crop Health, 77(1): 1-20. DOI: 10.1007/s10343-024-01069-6 (Journal)
Simon, L. M., Fatrai, Z., Jonas, D. E. and Matkovics, B. 1974. Study of peroxide metabolism enzymes during the development of Phaseolus vulgaris. Biochemie und Physiologie der Pflanzen, 166(5-6): 387-392. https://doi.org/10.1016/S0015-3796(17)30073-2 (Journal)
Strasser, R. J., Tsimilli-Michael, M. and Srivastava, A. 2004. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou, G.C., Govindjee (Eds.), Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer, Dordrecht, 321-362. DOI: 10.1007/978-1-4020-3218-9-12 (Chapter)
Velioglu, Y. S., Mazza, G., Gao, L. and Oomah, B. D. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46(10): 4113-4117. DOI: 10.1021/jf9801973 (Journal)
Wang, L. J., Fan, L., Loescher, W., Duan, W., Liu, G. J., Cheng, J. S. and Li, S. H. 2010. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biology, 10:1-10. DOI: 10.1186/1471-2229-10-34 (Journal)
Wang, J., Koo, Y., Alexander, A., Yang, Y., Westerhof, S., Zhang, Q., Schnoor, J. L., Colvin, V. L., Braam, J. and Alvarez, P. J. J. 2013. Phytostimulation of poplars and arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environmental Science and Technology, 47: 5442-5449. DOI: 10.1021/es4004334 (Journal)
Wang, S., Wu, B. D., Wei, M., Zhou, J. W., Jiang, K. and Wang, C. Y. 2020. Silver nanoparticles with different concentrations and particle sizes affect the functional traits of wheat. Biologia Plantarum, 64: 1-8. https://doi.org/10.32615/bp.2019.122 (Journal)
Wu, Q., Su N., Zhang, X., Liu, Y., Cui, J., Liang, Y. 2016. Hydrogen peroxide, nitric oxide and UV Resistance Locus and interact to mediate UV-B-induced anthocyanin biosynthesis in radish sprouts. Scintific Report, 6(1): 29164. DOI: 10.1038/srep29164 (Journal)
Zhou, L., Zhou, L., Wu, H., Jing, T., Li, T., Li, J., Kong, L. and Zhu, F. 2024. Application of chlorophyll fluorescence analysis technique in studying the response of lettuce (Lactuca sativa L.) to cadmium stress. Sensors, 24(5): 1501. https://doi.org/10.3390/s24051501 (Journal)
Zoufan, P., Baroonian, M. and Zargar, B. 2020. ZnO nanoparticles-induced oxidative stress in Chenopodium murale L, Zn uptake, and accumulation under hydroponic culture. Journal of Environmental Science and Pollution Research, 27(10): 11066-11078. DOI: 10.1007/s11356-020-07735-2 (Journal)
Zucker, M. 1965. Induction of phenylalanine Deaminase by light and its relation to Chlorogenic acid synthesis in potato tuber tissue. Plant Physiology, 40(5): 779-784. https://doi.org/10.1104/pp.40.5.779 (Journal) | ||
آمار تعداد مشاهده مقاله: 3 تعداد دریافت فایل اصل مقاله: 2 |