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 This study addresses the critical challenge of optimizing rebar delivery 

in heavy logistics industries by proposing an integrated multi-objective 

mixed-integer linear programming (MILP) model for simultaneous 

delivery scheduling and vehicle routing. The model aims to minimize 

three conflicting objectives: the overall makespan of deliveries, the 

weighted customer dissatisfaction from delivery time windows based on 

customer priority, and the total transportation costs. A fuzzy multi-

objective optimization approach, based on the principles of Bellman and 

Zadeh and Zimmermann’s method, is employed to transform this 

complex problem into a single-objective maximization problem of an 

overall satisfaction level. The efficacy and practical applicability of the 

proposed model are validated through a real-world case study from Amir 

Kabir Khazar Steel Company in Gilan province, Iran. The case study 

involves 51 customer orders to be delivered over a three-day planning 

horizon, incorporating realistic constraints such as specific time 

windows and customer priority levels. Computational results, obtained 

using GAMS with the CPLEX solver, demonstrate that the model 

successfully achieves a high overall satisfaction level of λ =0.841. The 

findings offer significant managerial insights for balancing operational 

efficiency, cost reduction, and customer satisfaction in rebar supply 

chains. 
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1. Introduction  

In today's competitive and customer-driven markets, effective delivery scheduling and vehicle 

routing are essential components of supply chain management, especially in industries with heavy 

logistics operations such as steel manufacturing. Timely delivery of customer orders, efficient fleet 
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utilization, and cost minimization are no longer operational luxuries but strategic necessities. The 

rebar supply chain, due to the bulky and high-volume nature of its products, faces critical challenges 

in planning optimal deliveries while respecting time windows and ensuring customer satisfaction. 

In particular, the transportation of rebar products from manufacturing plants to dispersed customer 

locations involves complex decisions related to scheduling, routing, and resource allocation. These 

decisions must consider various constraints such as vehicle capacity, customer priority, 

loading/unloading time, fixed and variable transportation costs, and service time windows. Failure 

to address these dimensions can lead to increased costs, reduced service quality, and loss of market 

competitiveness. 

This study addresses these challenges by formulating an integrated multi-objective mixed-integer 

linear programming (MILP) model that jointly optimizes delivery scheduling, vehicle routing, and 

cost-performance trade-offs in the rebar supply chain. The model aims to simultaneously minimize 

(1) the overall makespan of deliveries, (2) the weighted customer dissatisfaction from delivery time 

window based on customer priority, and (3) the total transportation costs, including both fixed and 

distance-based variable costs. 

The novelty of this research lies in its integrated perspective, which combines delivery scheduling 

with real-world constraints such as customer priority levels, and vehicle return policies. 

Additionally, the model is customized for application in a real industrial setting—the rebar supply 

chain of Amir Kabir Khazar Steel Company in Gilan province, Iran—providing a unique practical 

contribution that bridges the gap between theory and practice in the field of computational supply 

chain optimization. This practical application, utilizing specific operational data (e.g., customer 

orders, time windows, and priority information), provides robust insights into the model's 

effectiveness in a real-world scenario. 

The main contributions of this paper are summarized as follows: 

• A comprehensive MILP formulation that integrates delivery scheduling and vehicle routing 

with time windows. 

• Consideration of realistic and industry-specific constraints, including customer priorities 

for time windows, and mixed cost structures. 

• Application of the model to a real-world case study in the Iranian steel industry (Amir 

Kabir Khazar Steel Company), demonstrating its practical feasibility and effectiveness. 

• Insights into the trade-offs between delivery performance (makespan and customer 

satisfaction) and cost optimization under multi-objective planning. 

The remainder of the paper is organized as follows: Section 2 presents a detailed literature review 

on delivery scheduling and vehicle routing models in manufacturing logistics. Section 3 introduces 

the problem description, mathematical formulation, and model assumptions. Section 4 presents the 

case study data and computational results. Section 5 discusses managerial implications. Finally, 

Section 6 concludes the paper and outlines directions for future research. 
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2. Literature Review  

The optimization of delivery scheduling and vehicle routing problems (VRPs) has been a 

cornerstone of logistics and supply chain management research for decades, driven by its significant 

impact on operational efficiency, cost reduction, and customer satisfaction [1]. This section provides 

a comprehensive review of the relevant literature, emphasizing recent advancements and identifying 

the gaps that this study aims to address, particularly within the context of heavy industries like steel 

manufacturing and rebar supply chains. 

2.1. Evolution of Vehicle Routing Problems (VRPs) 

The classic VRP, introduced by Dantzig and Ramser in 1959, seeks to minimize the total travel 

distance for a fleet of vehicles serving a set of customers from a central depot [2]. Over time, 

numerous variants have emerged to capture real-world complexities. The Capacitated Vehicle 

Routing Problem (CVRP) considers vehicle capacity limitations [3], while the Vehicle Routing 

Problem with Time Windows (VRPTW) incorporates customer-specific delivery or service time 

windows, a highly relevant constraint in time-sensitive industries [4]. More recently, research has 

branched into dynamic VRPs, stochastic VRPs, and green VRPs, reflecting the increasing need for 

adaptability, uncertainty management, and environmental considerations [5, 6]. These 

advancements highlight the continuous effort to model and solve more realistic and complex 

distribution challenges. 

2.2. Integrated Scheduling and Routing Approaches 

Traditionally, delivery scheduling and vehicle routing have often been treated as separate problems. 

However, the interdependent nature of these decisions in real-world supply chains has led to a 

growing interest in integrated approaches. Such integration can lead to substantial improvements in 

overall supply chain performance by eliminating sub-optimality that arises from sequential decision-

making [7]. Recent works have explored various integration levels, from simultaneous scheduling 

and routing to more complex models that link these decisions with inventory management or even 

production planning [8]. For instance, a multi-objective MILP model was proposed for dynamic 

fleet scheduling and multi-modal transport optimization, demonstrating significant reductions in 

costs, delays, and emissions [9]. Similarly, studies have integrated order consolidation with vehicle 

routing, showing the benefits of time-based and quantity-based models under different demand 

scenarios [10]. These integrated approaches are particularly relevant in environments where 

resource utilization across different operational facets is critical. 

2.3. Multi-Objective Optimization in Logistics 

Many real-world logistics problems involve multiple, often conflicting, objectives. Common 

objectives include minimizing total cost (transportation, fixed, operational), minimizing travel time 

or makespan, maximizing customer satisfaction (e.g., minimizing tardiness, maximizing service 

quality), and reducing environmental impact (e.g., CO2 emissions) [11]. Multi-objective 

optimization techniques, ranging from exact methods for smaller instances to heuristic and meta-

heuristic approaches for larger, more complex problems, have been widely employed. Recent 

research has focused on multi-objective vehicle routing and loading with time window constraints, 
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aiming to minimize travel distance, number of routes, and mixed orders, often transforming 

conflicting objectives into a single objective function for optimization or using Pareto optimization 

techniques [12]. The increasing complexity of supply chains necessitates models that can effectively 

balance multiple performance indicators. 

2.4. Applications in Heavy Industries and Steel Supply Chains 

The specific characteristics of heavy industries, such as steel manufacturing, present unique 

challenges for logistics optimization. These include large product volumes, high transportation 

costs, specific loading/unloading requirements, and often tight delivery schedules driven by 

construction project timelines. While general VRP literature is vast, studies specifically addressing 

steel supply chain logistics, particularly rebar, are relatively limited compared to other sectors.  

Early works in steel logistics focused on basic transportation problems. More recent research has 

begun to integrate aspects like production scheduling with distribution [13]. For example, studies 

have addressed optimizing rebar processing and supply chain management using advanced 

techniques like Building Information Modeling (BIM) and data-driven approaches, though these 

often focus on cutting optimization and material management rather than integrated delivery 

scheduling and routing [14, 15]. Some papers have investigated vehicle routing problems with time 

windows in the distribution of steel products, aiming to improve efficiency and customer 

satisfaction [16]. Furthermore, green vehicle routing and scheduling models have been developed 

for ship steel distribution centers, considering carbon emissions alongside traditional cost metrics 

[17]. However, a comprehensive integrated MILP model that simultaneously addresses makespan, 

weighted customer dissatisfaction based on customer priority and time window preferences, and 

total transportation costs within a rebar supply chain, particularly with the specific real-world 

constraints of customer priority levels and detailed time window management, remains an 

underexplored area. 

2.5. Research Gaps and Contributions 

Despite the extensive research in VRPs and supply chain optimization, several gaps persist that this 

study aims to fill, especially within the context of the rebar supply chain:  

• Integrated Multi-Objective Optimization for Rebar: While some studies address multi-

objective VRPs, few specifically formulate an integrated MILP model that simultaneously 

considers makespan, weighted customer dissatisfaction (with specific time window 

priorities), and total transportation costs for the unique demands of a rebar supply chain.  

• Realistic Constraints in Rebar Logistics: Existing models often overlook critical practical 

constraints found in rebar delivery, such as varying customer priority levels for delivery 

time windows. This study explicitly incorporates these nuanced constraints, which are 

based on real-world business practices (e.g., customer purchase history and need).  

• Bridging Theory and Practice: A significant gap remains in the application of sophisticated 

optimization models to real-world industrial settings, particularly in the Iranian steel 

industry. This research contributes by applying the developed MILP model to a detailed 

case study, utilizing specific operational data (e.g., customer orders, time windows, and 
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priority information), demonstrating its practical feasibility and providing valuable 

managerial insights.  

• Trade-off Analysis for Rebar Distribution: The explicit analysis of trade-offs between 

delivery performance (makespan and customer satisfaction derived from time window 

adherence) and cost optimization within a multi-objective framework, tailored for the rebar 

supply chain, is also a less explored area.  

By addressing these gaps, this paper provides a novel and practically relevant contribution to the 

literature on logistics and supply chain optimization in heavy industries. 

3. Problem Description, Mathematical Formulation, and Model Assumptions 

This section provides a detailed description of the integrated multi-objective delivery scheduling 

and vehicle routing problem. We first define the problem scope and key elements, followed by a 

clear exposition of the underlying assumptions. Subsequently, we introduce the notation used in the 

mathematical formulation and present the complete mixed-integer linear programming (MILP) 

model, including its objective functions and constraints. 

3.1. Problem Definition 

The core problem addressed in this study is the integrated optimization of delivery scheduling and 

vehicle routing for rebar products from a central manufacturing plant (depot) to multiple 

geographically dispersed customer locations. The objective is to efficiently manage the distribution 

of rebar, which is characterized by its bulky nature, high volume, and specific handling 

requirements. 

The problem considers a planning horizon during which a fleet of heterogeneous vehicles, 

originating from and returning to a single depot, is tasked with fulfilling customer orders. Each 

customer has a specific demand for rebar and a predefined time window for delivery. Importantly, 

customers also have priority levels assigned to their orders based on factors such as their past 

purchase history and current need. These priorities influence the penalty incurred for any deviation 

from preferred delivery time windows. Real-world constraints such as vehicle capacity limitations 

and specific service times at customer locations are explicitly incorporated. 

The overarching goal is to achieve a balance between operational efficiency and customer 

satisfaction by simultaneously minimizing three conflicting objectives: 

1. Overall makespan of deliveries (Cmax): This refers to the total time elapsed from the start of 

the first delivery to the completion of the last delivery across the entire planning horizon. 

Minimizing makespan ensures efficient utilization of the planning period and potentially 

reduces lead times. 

2. Weighted customer dissatisfaction from delivery time window (f2): This objective aims to 

minimize a weighted sum of dissatisfaction, where the weights are based on the priority of 

each time window for a specific customer order. This directly reflects customer satisfaction 

and adherence to service level agreements. 
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3. Total transportation costs (f3): This includes both fixed costs associated with activating a 

vehicle route, variable costs proportional to the distance traveled, and waiting costs for the 

vehicle at customer locations. Minimizing these costs ensures economic viability of the 

logistics operations. 

The integration of scheduling and routing decisions means that the model simultaneously 

determines which customers are served, by which vehicle, the sequence in which customers are 

visited on each route, and the specific departure and arrival times, all while respecting vehicle 

capacities, time windows, and customer priorities. 

3.2 Model Assumptions 

To simplify the complexity of the real-world problem while retaining its critical characteristics, the 

following assumptions are made for the MILP model: 

• Single Depot: All vehicles originate from and return to a single manufacturing plant (depot). 

• Known Demand: All customer demands for rebar are known and deterministic at the 

beginning of the planning horizon. 

• Homogeneous Product: All rebar products are considered homogeneous in terms of 

handling and loading characteristics, though their weight and volume contribute to vehicle 

capacity. 

• Heterogeneous Fleet: The fleet consists of a limited number of vehicles, which may differ 

in fixed costs (𝐹𝐶𝑘) and variable costs ( 𝑉𝐶𝑘). 

• Fixed Travel Times/Distances: Travel times (𝑑𝑗) and distances (𝐷𝑗) between any two 

locations (depot and customers, or between customers) are known, deterministic, and 

constant. 

• Predefined Time Windows: Each customer has specific time windows ( 𝐸𝑡,  𝐿𝑡) for delivery. 

• Customer Priority Levels: Each customer order is associated with a priority weight ( 𝑃𝑗,𝑡) 

for a given time window 𝑡, which is determined based on customer's previous purchase 

history and need. 

• Single Delivery Per Customer Per Day: Implicit in the formulation that each order 𝑗 is served 

exactly once across all vehicles and all time windows. 

• No Intermediate Depots: There are no intermediate transfer points or cross-docking 

facilities between the plant and customers. 

• No Backhauls: Vehicles are only used for outbound deliveries and do not pick up goods for 

return to the depot or other customers. 

• Constant Loading/Unloading Times: Service time (𝑠𝑗) at each customer location is known 

and constant. 
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• Waiting Cost for Vehicle: A waiting cost (𝑊𝐶𝑘) for vehicles at customer locations is 

considered. 

3.3 Notation 

This section introduces the sets, parameters, and decision variables used in the mathematical 

formulation of the integrated multi-objective MILP model. 

Indices and sets: 

𝑖 , 𝑗 : Index of orders. 

𝑘 : Index of vehicles. 

𝑡 : Index of time windows. 

𝑧 : Index of objectives. 

𝐽 : Set of all orders. 

𝐾 : Set of all available vehicles. 

𝑇 : Set of all time windows. 

 

Parameters: 

𝐷𝑗  : Travel distance for delivering order 𝑗.  

𝑑𝑗  : Travel time for customer order delivery 𝑗.  

𝑠𝑗  : Service time for customer order 𝑗.  

𝜆𝑗  : Weight of customer order 𝑗.  

𝑃𝑗,𝑡 : Priority of time window 𝑡 for customer order 𝑗. This parameter indicates the preference of delivering order 

𝑗 within time window 𝑡. A lower value of  𝑃𝑗,𝑡 implies higher satisfaction or lower dissatisfaction for being 

served in time window 𝑡.  
𝐸𝑡 : Lower bound of time window 𝑡.  

𝐿𝑡 : Upper bound of time window 𝑡.  

𝐹𝐶𝑘 : Fixed cost of using vehicle 𝑘.  

𝑉𝐶𝑘 : Variable cost of vehicle 𝑘 per unit of time.  

𝑊𝐶𝑘 : Waiting cost of vehicle 𝑘 per unit of time.  

𝑏𝑖𝑔𝑀 : A large positive number.  

 

Decision Variables: 

𝐶𝑚𝑎𝑥  : Continuous variable, completion time of the last order. 

𝑎𝑗  : Continuous variable, arrival time of order 𝑗 at the customer location. 

𝑤𝑗  : Continuous variable, waiting time for order 𝑗 at the customer location. 

𝑥𝑗,𝑘 : Binary variable, 1 if order 𝑗 is delivered by vehicle 𝑘; 0 otherwise. 

𝑦𝑖,𝑗,𝑘 : Binary variable, 1 if order 𝑖 is delivered before order 𝑗 by vehicle 𝑘; 0 otherwise. 

𝑧𝑗,𝑡  : Binary variable, 1 if order 𝑗 is delivered to the customer within time window 𝑡; 0 otherwise. 

𝑢𝑘  : Binary variable, 1 if vehicle 𝑘 is used; 0 otherwise. 

𝑣𝑗,𝑘 : Auxiliary continuous variable for linearization. 

 

3.4 Mathematical Formulation 

The multi-objective integrated delivery scheduling and vehicle routing problem is formulated as a 

Mixed-Integer Linear Programming (MILP) model. The formulation includes three objective 
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functions that are minimized simultaneously and a set of constraints that define the feasible region 

of the solution space. 

𝑚𝑖𝑛 𝑓1 = 𝐶𝑚𝑎𝑥  (1) 

 

𝑚𝑖𝑛 𝑓2 =∑∑𝜆𝑗 ∙ 𝑃𝑗,𝑡 ∙ 𝑧𝑗,𝑡 
𝑡∈𝑇𝑗∈𝐽

 (2) 

 

𝑚𝑖𝑛 𝑓3 = ∑  𝐹𝐶𝑘 ∙ 𝑢𝑘 
𝑘∈𝐾

+∑∑  𝑉𝐶𝑘 ∙

𝑘∈𝐾𝑗∈𝐽

𝑑𝑗 ∙ 𝑥𝑗,𝑘 +∑∑  𝑊𝐶𝑘 ∙

𝑘∈𝐾𝑗∈𝐽

𝑤𝑗 ∙ 𝑥𝑗,𝑘 (3) 

subject to:  

∑𝑥𝑗,𝑘
𝑘∈𝐾

= 1 ,   ∀𝑗 ∈ 𝐽 (4) 

 

∑𝑧𝑗,𝑡 
𝑡∈𝑇

= 1 ,   ∀𝑗 ∈ 𝐽   (5) 

 

𝑎𝑗 ≥ 𝑎𝑖 +𝑤𝑖 + 𝑠𝑖 + 𝑑𝑖 + 𝑑𝑗 − 𝑏𝑖𝑔𝑀 ∙ (3 − 𝑥𝑗,𝑘 − 𝑥𝑖,𝑘 − 𝑦𝑖,𝑗,𝑘) ,   ∀𝑖 ∈ 𝐽 , 𝑗 ∈ 𝐽 , 𝑖 ≠ 𝑗 , 𝑘 ∈ 𝐾 (6) 

 

𝑎𝑖 ≥ 𝑎𝑗 + 𝑤𝑗 + 𝑠𝑗 + 𝑑𝑗 + 𝑑𝑖 − 𝑏𝑖𝑔𝑀 ∙ (2 − 𝑥𝑗,𝑘 − 𝑥𝑖,𝑘 + 𝑦𝑖,𝑗,𝑘) ,   ∀𝑖 ∈ 𝐽 , 𝑗 ∈ 𝐽 , 𝑖 ≠ 𝑗 , 𝑘 ∈ 𝐾 (7) 

 

∑𝐸𝑡 ∙ 𝑧𝑗,𝑡 
𝑡∈𝑇

≤ 𝑎𝑗 +𝑤𝑗  ,   ∀𝑗 ∈ 𝐽 (8) 

 

∑𝐿𝑡 ∙ 𝑧𝑗,𝑡 
𝑡∈𝑇

≥ 𝑎𝑗 + 𝑤𝑗  ,   ∀𝑗 ∈ 𝐽 (9) 

 

𝑐𝑚𝑎𝑥  ≥  𝑎𝑗 + 𝑤𝑗 + 𝑠𝑗 + 𝑑𝑗  ,   ∀𝑗 ∈ 𝐽 (10) 

 

𝑎𝑗  ≥  𝑑𝑗  ,   ∀𝑗 ∈ 𝐽 (11) 

 

𝑦𝑖,𝑗,𝑘 + 𝑦𝑗,𝑖,𝑘 + 1 ≥  𝑥𝑖,𝑘 + 𝑥𝑗,𝑘 ,   ∀𝑖 ∈ 𝐽 , 𝑗 ∈ 𝐽 , 𝑖 ≠ 𝑗 , 𝑘 ∈ 𝐾 (12) 

 

𝑦𝑖,𝑗,𝑘 ≤ 𝑥𝑖,𝑘,   ∀𝑖 ∈ 𝐽 , 𝑗 ∈ 𝐽 , 𝑖 ≠ 𝑗 , 𝑘 ∈ 𝐾 (13) 

 

𝑦𝑖,𝑗,𝑘 ≤ 𝑥𝑗,𝑘 ,   ∀𝑖 ∈ 𝐽 , 𝑗 ∈ 𝐽 , 𝑖 ≠ 𝑗 , 𝑘 ∈ 𝐾 (14) 

 

∑𝑥𝑗,𝑘 
𝑗∈𝐽

≥ 𝑢𝑘 ,   ∀𝑘 ∈ 𝐾 (15) 

 

∑𝑥𝑗,𝑘 
𝑗∈𝐽

≤  𝑏𝑖𝑔𝑀 ∙ 𝑢𝑘 ,   ∀𝑘 ∈ 𝐾 (16) 
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𝐶𝑚𝑎𝑥 ≥ 0 (17) 

 

𝑎𝑗 ≥ 0,   ∀𝑗 ∈ 𝐽 (18) 

 

𝑤𝑗 ≥ 0,   ∀𝑗 ∈ 𝐽 (19) 

 

𝑥𝑗,𝑘 ∈ {0,1} ,   ∀𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾 (20) 

 

𝑦𝑖,𝑗,𝑘 ∈ {0,1} ,   ∀𝑖 ∈ 𝐽 , 𝑗 ∈ 𝐽 , 𝑖 ≠ 𝑗 , 𝑘 ∈ 𝐾 (21) 

 

𝑧𝑗,𝑡 ∈ {0,1} ,   ∀ 𝑗 ∈ 𝐽 , 𝑡 ∈ 𝑇 (22) 

 

𝑢𝑘 ∈ {0,1} ,   ∀𝑘 ∈ 𝐾 (23) 
 

Eq. (1) represents the first objective function (𝑓1), which aims to minimize 𝐶𝑚𝑎𝑥 . This variable 

signifies the completion time of the last order, ensuring that the overall delivery process is finalized 

as quickly as possible within the planning horizon. Eq. (2) represents the second objective function 

(𝑓2), which aims to minimize the weighted sum of customer dissatisfaction related to delivery time 

windows. The term 𝜆𝑗 ∙ 𝑃𝑗,𝑡 quantifies the dissatisfaction incurred if order 𝑗 is delivered within time 

window 𝑡. Here, 𝑃𝑗,𝑡 values, derived from customer preference, reflect the desirability of a specific 

time window for order 𝑗. By minimizing this sum, the model seeks to assign orders to time windows 

that result in the lowest overall customer dissatisfaction. Eq. (3) represents the third objective 

function (𝑓3), which aims to minimize the total transportation costs. This cost is composed of three 

elements: the fixed cost associated with utilizing each vehicle (∑  𝐹𝐶𝑘 ∙ 𝑢𝑘 𝑘∈𝐾 ), the variable cost 

proportional to the travel time for delivering each order (∑ ∑  𝑉𝐶𝑘 ∙𝑘∈𝐾𝑗∈𝐽 𝑑𝑗 ∙ 𝑥𝑗,𝑘), and the cost 

incurred due to waiting time at customer locations (∑ ∑  𝑊𝐶𝑘 ∙𝑘∈𝐾𝑗∈𝐽 𝑤𝑗 ∙ 𝑥𝑗,𝑘).  

Eq. (4) ensures that each order 𝑗 is assigned to exactly one vehicle 𝑘 for delivery. Eq. (5) guarantees 

that each order 𝑗 is delivered within exactly one designated time window 𝑡. Eq. (6) is a sequencing 

constraint that defines the arrival times. It enforces that if order 𝑖 precedes order 𝑗 on vehicle 𝑘, the 

arrival time at customer 𝑗 (𝑎𝑗) must be greater than or equal to the completion time of service at 

customer 𝑖 (𝑎𝑖 + 𝑤𝑖 + 𝑠𝑖) plus the travel time from 𝑖 to 𝑗 (𝑑𝑖 + 𝑑𝑗). Eq. (7) is also a sequencing 

constraint, similar to Eq. (6), but it applies if order 𝑗 precedes order 𝑖 on vehicle 𝑘. It ensures that 

the arrival time at customer 𝑖 (𝑎𝑖) is greater than or equal to the completion time of service at 

customer 𝑗 (𝑎𝑗 + 𝑤𝑗 + 𝑠𝑗) plus the travel time from 𝑗 to 𝑖 (𝑑𝑗 + 𝑑𝑖).  

Eq. (8) enforces the earliest service time window. It ensures that the actual service start time at 

customer 𝑗 (arrival time 𝑎𝑗 plus waiting time 𝑤𝑗 ) is not earlier than the earliest allowable time 𝐸𝑡 of 

the assigned time window 𝑡. Eq. (9) enforces the latest service time window. It ensures that the actual 

service start time at customer 𝑗 (arrival time 𝑎𝑗 plus waiting time 𝑤𝑗 ) is not later than the latest 

allowable time 𝐿𝑡 of the assigned time window 𝑡. Eq. (10) links the overall makespan 𝐶𝑚𝑎𝑥  to the 

completion times of individual orders. It ensures that 𝐶𝑚𝑎𝑥  is greater than or equal to the completion 



226 S.A. Badri, M. Yaghoobi/ Computational Sciences and Engineering 4(2) (2024) 217-236  

 

time of the last order delivered, calculated as arrival time 𝑎𝑗 plus waiting time 𝑤𝑗 , service time 𝑠𝑗, 

and travel time 𝑑𝑗. Eq. (11) ensures that the arrival time at any customer 𝑗 (𝑎𝑗) is at least the travel 

time from the depot to customer 𝑗 (𝑑𝑗).  

Eq. (12) is critical for defining routes and ensuring logical sequencing. It ensures that if two orders 

𝑖 and 𝑗 are assigned to the same vehicle 𝑘, then one must logically precede the other on that vehicle's 

route. Eq. (13) ensures that if order 𝑖 precedes order 𝑗 by vehicle 𝑘 (𝑦𝑖,𝑗,𝑘 = 1), then order 𝑖 must 

indeed be assigned to vehicle 𝑘 (𝑥𝑖,𝑘 = 1). Eq. (14) ensures that if order i precedes order j by vehicle 

k (𝑦𝑖,𝑗,𝑘 = 1), then order j must indeed be assigned to vehicle k (𝑥𝑗,𝑘 = 1). Eq. (15) is a vehicle usage 

constraint. It ensures that if no order is assigned to vehicle 𝑘 (∑ 𝑥𝑗,𝑘 𝑗∈𝐽 = 0), then the binary variable 

𝑢𝑘  is set to zero, indicating that vehicle 𝑘 is not used. Eq. (16) also relates to vehicle usage. It ensures 

that if vehicle 𝑘 is not used (𝑢𝑘 = 0), then no orders can be assigned to it (∑ 𝑥𝑗,𝑘 𝑗∈𝐽 = 0). If 𝑢𝑘 = 1, 

the constraint becomes non-binding. Eqs. (17) – (22) indicate the type of decision variables. 

3.5 Linearization of Objective Function 𝒇𝟑 

The objective function 𝑓3 in Eq. (3) contains a non-linear term, 𝑊𝐶𝑘 ∙ 𝑤𝑗 ∙ 𝑥𝑗,𝑘, which is a product of 

two decision variables (𝑤𝑗  and 𝑥𝑗,𝑘). To transform this into a linear programming model, a common 

technique is used by introducing an auxiliary continuous variable 𝑣𝑗,𝑘. The term 𝑤𝑗 ∙ 𝑥𝑗,𝑘 is replaced 

by 𝑣𝑗,𝑘 in the objective function, and a set of additional linear constraints are added to ensure that 𝑣𝑗,𝑘 

correctly reflects the product of 𝑤𝑗  and 𝑥𝑗,𝑘. 

The linearized objective function 𝑓3 is given by: 

𝑓3 = ∑  𝐹𝐶𝑘 ∙ 𝑢𝑘 
𝑘∈𝐾

+∑∑  𝑉𝐶𝑘 ∙

𝑘∈𝐾𝑗∈𝐽

𝑑𝑗 ∙ 𝑥𝑗,𝑘 +∑∑  𝑊𝐶𝑘 ∙

𝑘∈𝐾𝑗∈𝐽

𝑣𝑗,𝑘 (24) 

 

And the following constraints ensure the correct behavior of 𝑣𝑗,𝑘: 

𝑣𝑗,𝑘 ≤ 𝑏𝑖𝑔𝑀 ∙ 𝑥𝑗,𝑘 ,   ∀𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾 (25) 

 

𝑣𝑗,𝑘 ≤ 𝑤𝑗  ,   ∀𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾 (26) 

 

𝑣𝑗,𝑘 ≥ 𝑤𝑗 − (1 − 𝑥𝑗,𝑘) ∙ 𝑏𝑖𝑔𝑀 ,   ∀𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾 (27) 

 

𝑣𝑗,𝑘 ≥ 0,   ∀𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾 (28) 

 

Eq. (24) represents the revised objective function for total cost (𝑓3), where the non-linear term 𝑤𝑗 ∙

𝑥𝑗,𝑘 has been replaced by the auxiliary variable 𝑣𝑗,𝑘. Eqs. (25) – (28) work together to correctly define 

𝑣𝑗,𝑘as the product of 𝑤𝑗  and 𝑥𝑗,𝑘. 

3.6 Multi-Objective Solution Approach 

To address the multi-objective nature of the problem, the proposed three-objective MILP model is 

transformed into a single-objective problem using concepts derived from Bellman and Zadeh's fuzzy 
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decision-making principle [18] and Zimmermann's method [19]. This approach allows for the 

simultaneous optimization of conflicting objectives by converting them into a single objective 

function that maximizes a satisfaction level across all objectives. The transformation of this three-

objective problem into a single-objective one is specifically inspired by the research of Badri et al. 

[20]. The steps of this method are as follows: 

Step 1. Determine Positive and Negative Ideal Solutions (PIS and NIS): For each objective function, 

the best possible solution (Positive Ideal Solution, PIS) and the worst possible solution (Negative 

Ideal Solution, NIS) are determined. This is achieved by solving each of the three objective 

functions (𝑓1, 𝑓2, 𝑓3) independently as a single-objective MILP model. When one objective function 

is optimized, the values of the other two objective functions are also recorded. For each objective 

function, among the three calculated values (when each objective is optimized separately), the 

minimum value obtained is considered the PIS (𝑓𝑧
𝑃𝐼𝑆) and the maximum value obtained is 

considered the NIS (𝑓𝑧
𝑁𝐼𝑆). It is important to note that all three objective functions in the proposed 

model are of minimization type.  

Step 2. Define Linear Membership Functions: For each objective function 𝑓𝑧, a linear 

membership function 𝜇𝑧(𝑓𝑧) is defined. This function quantifies the degree of satisfaction for a 

given objective value, ranging from 0 (completely unsatisfied) to 1 (fully satisfied). The 

membership function is defined as follows: 

𝜇𝑧(𝑓𝑧) =

{
 
 

 
 1,                        𝑖𝑓 𝑓𝑧 ≤ 𝑓𝑧

𝑃𝐼𝑆               

𝑓𝑧
𝑁𝐼𝑆 − 𝑓𝑧

𝑓𝑧
𝑁𝐼𝑆 − 𝑓𝑧

𝑃𝐼𝑆
,    𝑖𝑓 𝑓𝑧

𝑃𝐼𝑆 ≤ 𝑓𝑧 ≤ 𝑓𝑧
𝑁𝐼𝑆 

0,                        𝑖𝑓 𝑓𝑧 ≥ 𝑓𝑧
𝑁𝐼𝑆               

 ∀𝑧 ∈ {1,2,3} (29) 

 

This function reflects that satisfaction is 1 when the objective value is at its best (PIS), decreases 

linearly as it moves towards the worst (NIS), and becomes 0 when it reaches or exceeds the worst 

(NIS).  

Step 3. Formulate the Equivalent Single-Objective Problem: Using the linear membership 

functions and following the fuzzy decision-making principle of Bellman and Zadeh, the multi-

objective linear programming problem is converted into an equivalent single-objective problem. 

This principle suggests maximizing the minimum degree of satisfaction across all objectives. This 

leads to the following formulation: 

𝑚𝑎𝑥 [𝑚𝑖𝑛 {
𝑓1
𝑁𝐼𝑆 − 𝑓1

𝑓1
𝑁𝐼𝑆 − 𝑓1

𝑃𝐼𝑆 ,
𝑓2
𝑁𝐼𝑆 − 𝑓2

𝑓2
𝑁𝐼𝑆 − 𝑓2

𝑃𝐼𝑆 ,
𝑓3
𝑁𝐼𝑆 − 𝑓3

𝑓3
𝑁𝐼𝑆 − 𝑓3

𝑃𝐼𝑆}] 

 

subject to: (4) − (28) 

(30) 

 

All original constraints of the MILP model (Eqs. 4-28) apply as constraints for this problem.  

Step 4 Transform to a Single-Objective Linear Programming Problem: Based on 

Zimmermann's method and considering 0 ≤ 𝜆 ≤ 1, the multi-objective linear programming 

problem is finally formulated as a single-objective linear programming problem. Here, 𝜆 represents 

the satisfaction level of objective functions, where a high value of 𝜆 indicates that all objectives are 

optimized with a high degree of satisfaction.  
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The final single-objective MILP model to be solved is:  

𝑚𝑎𝑥 𝜆 

 

subject to: (4) − (28) and 

𝜆 ≤
𝑓1
𝑁𝐼𝑆 − 𝑓1

𝑓1
𝑁𝐼𝑆 − 𝑓1

𝑃𝐼𝑆 

𝜆 ≤
𝑓2
𝑁𝐼𝑆 − 𝑓2

𝑓2
𝑁𝐼𝑆 − 𝑓2

𝑃𝐼𝑆 

𝜆 ≤
𝑓3
𝑁𝐼𝑆 − 𝑓3

𝑓3
𝑁𝐼𝑆 − 𝑓3

𝑃𝐼𝑆 

𝜆 ∈ [0,1] 

(31) 

 

This transformation allows the complex multi-objective problem to be solved using standard linear 

programming solvers, yielding a solution that balances the trade-offs between makespan, customer 

satisfaction, and total transportation costs according to the defined satisfaction levels. 

4. Case Study Data and Computational Results 

This section presents the real-world case study data from Amir Kabir Khazar Steel Company, 

located in Gilan province, Iran. It details the customer information, time windows, and priority 

levels, which are essential inputs for the proposed multi-objective MILP model. Subsequently, the 

computational environment and the results obtained from solving the model are presented and 

analyzed. 

4.1. Case Study Data 

Amir Kabir Khazar Steel Company, established in 2003 and expanded its production capacity to 

750,000 tons per year by 2013, is a prominent producer of high-strength deformed rebar (Grades 

500 and 520) in Gilan province. The company prioritizes customer satisfaction, aiming for timely 

delivery of high-quality products. Amir Kabir Khazar Steel Company has received ISO 9001:2008 

for quality management, ISO 14001:2004 for environmental management, and OHSAS 18001:2007 

for health and safety. The company has also been selected as the exemplary quality unit of Gilan 

province for five consecutive years. The quality of rebar is critical, with testing for chemical analysis 

(quantometry) and tensile/bending tests being performed, and results provided to customers with 

each shipment. High-strength rebar (Grades 500 and 520) offers benefits such as reduced 

construction costs (18% to 25%) and increased resistance to earthquakes due to its minimum yield 

stress of 520 MPa and elongation of at least 16%. The specific features of the rebar produced, such 

as spindle-shaped ribs, are preferred due to reduced stress concentration. The case study focuses on 

the delivery of rebar products to various iron supply businesses within Gilan province. 

The problem involves the delivery of 51 customer orders which need to be fulfilled over a three-day 

planning horizon. The operational hours for loading and unloading products are restricted; no 

operations occur from 8 PM to 8 AM the next day, and these hours are excluded from the time 

windows. 

The specific data inputs for the model are detailed as follows: 
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Customer Information: Table 1 provides detailed information for each of the 51 customer orders, 

including their location (city), customer name, number of units, travel time from the depot (𝑑𝑗), 

weight of the customer order (𝜆𝑗), and customer order service time (𝑠𝑗). 

Time Windows: The 51 orders must be delivered within a three-day period. Delivery operations 

(loading and unloading) are not allowed from 8 PM to 8 AM the next day. These hours are explicitly 

excluded from the time windows. As shown in Figure 1, this defines specific allowable time 

windows for service, spanning across 9 distinct time intervals (𝑡 ∈ {1, … ,9}) over the three days. 

𝐸𝑡 ∈ {480,720,960,1920,2160,2400,3360,3600,3840} 

𝐿𝑡 ∈ {719,959,1200,2159,2399,2640,3599,3839,4080} 

 

Time Window Priorities: Table 2 provides the priority values (𝑃𝑗,𝑡) for each order 𝑗 across the time 

windows 𝑡. These priorities are determined based on the customer's previous purchase history and 

their current needs. A value of '1' indicates the highest priority (greatest satisfaction) for that time 

window, while 'M' (a large number) signifies that delivery is not possible in that specific time 

window. 

Vehicle Information: A maximum of 10 vehicles (trailers) are available for rebar transportation. The 

fixed cost of using each vehicle (𝐹𝐶𝑘) is 50,000 monetary units. The variable cost per vehicle per 

unit of time (𝑉𝐶𝑘) is 480 monetary units, and the waiting cost (𝑊𝐶𝑘) is 6000 monetary units per unit 

of time.  

Table 1. Information of iron supply businesses in Gilan province 

Row Customer name City Weight 
Number of 

orders 

Travel time 

(min) 

Service time 

(min) 

1 Shayan Rasht 0.16 8 25 30 

2 Khani Rasht 0.10 5 43 35 

3 Omid Rasht 0.08 4 43 35 

4 Gaskari Rasht 0.08 4 56 30 

5 Hafazi Rasht 0.06 3 43 45 

6 Alijani Langarud 0.06 3 130 60 

7 Ramzani Rasht 0.04 2 38 60 

8 Omarani Rasht 0.04 2 27 60 

9  Mellat Langarud 0.04 2 126 75 

10 Ramzani Masal 0.04 2 146 75 

11 Raghebi Astaneh-ye Ashrafiyeh 0.02 1 72 80 

12 Ahmadi Talesh 0.02 1 171 75 

13 Aslani Rasht 0.02 1 45 60 

14 Ahan 110 Rasht 0.02 1 52 60 

15 Kolina Rasht 0.02 1 40 55 

16 Hagh Panah Rasht 0.02 1 54 60 

17 Monzovi Rudsar 0.02 1 146 55 

18 Ali Doost Someh Sara 0.02 1 67 60 

19 Riahini Lahijan 0.02 1 94 55 

20 Mohammadi Langarud 0.02 1 126 60 

21 Vahdat Langarud 0.02 1 126 60 

22 Samen Langarud 0.02 1 128 70 

23 Ghasemi Langarud 0.02 1 130 65 

24 Mehrabian Langarud 0.02 1 133 65 

25 Fateh Langarud 0.02 1 130 65 

26 Molaei Langarud 0.02 1 130 60 
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Table 2. Priority of time window 𝑡 for order 𝑗 

Order 

(𝒋) 

Time Windows 

𝒕 = 𝟏 𝒕 = 𝟐 𝒕 = 𝟑 𝒕 = 𝟒 𝒕 = 𝟓 𝒕 = 𝟔 𝒕 = 𝟕 𝒕 = 𝟖 𝒕 = 𝟗 

1 1 2 3 5 6 7 M M M 

2 1 2 3 5 6 7 M M M 

3 1 2 3 5 6 7 M M M 

4 2 5 6 1 2 3 M M M 

5 2 5 6 1 2 3 M M M 

6 2 5 6 1 2 3 M M M 

7 M M M 2 2 3 1 2 3 

8 M M M 2 2 3 1 2 3 

9 2 1 3 4 6 6 M M M 

10 2 1 3 4 6 6 M M M 

11 2 1 3 4 6 6 M M M 

12 2 5 6 2 1 3 4 5 M 

13 2 5 6 2 1 3 4 5 M 

14 2 2 1 3 3 3 3 M M 

15 2 2 1 3 3 3 3 M M 

16 2 2 1 3 3 3 3 M M 

17 2 2 2 1 2 2 3 3 3 

18 3 2 1 2 2 2 M M M 

19 3 2 1 2 2 2 M M M 

20 3 2 1 2 2 2 M M M 

21 M M M 3 2 1 2 2 2 

22 2 1 3 2 2 2 3 M M 

23 2 2 2 1 3 3 4 M M 

24 M 4 4 3 1 3 2 2 M 

25 2 1 3 2 2 2 3 M M 

26 2 2 2 1 3 3 4 M M 

27 M 4 4 3 1 3 2 2 M 

28 2 2 2 1 3 3 4 M M 

29 M 4 4 3 1 3 2 2 M 

30 1 2 3 5 6 7 M M M 

31 2 5 6 1 2 3 M M M 

32 M 4 4 3 1 3 2 2 M 

33 2 5 6 1 2 3 M M M 

34 M 4 4 3 1 3 2 2 M 

35 M M M 3 2 1 2 2 2 

36 M M M 3 2 1 2 2 2 

37 M M M 3 2 1 2 2 2 

38 2 2 2 1 3 3 4 M M 

39 2 2 2 1 3 3 4 M M 

40 2 2 2 1 3 3 4 M M 

41 2 2 2 1 3 3 4 M M 

42 M 4 4 3 1 3 2 2 M 

43 M 4 4 3 1 3 2 2 M 

44 M 4 4 3 1 3 2 2 M 

45 M M M 3 2 1 2 2 2 

46 M M M 3 2 1 2 2 2 

47 M M M 3 2 1 2 2 2 

48 M M M 3 2 1 2 2 2 

49 M M M 3 2 1 2 2 2 

50 M M M 3 2 1 2 2 2 

51 M M M 3 2 1 2 2 2 
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Figure 1. Time windows for service, spanning across 9 distinct time intervals over the three days 

 

 

4.2. Computational Results 

The mathematical model formulated in Section 3 was coded and solved using the GAMS (General 

Algebraic Modeling System) optimization software. The CPLEX solver was employed to find the 

optimal solutions. All computational experiments were performed on a computer equipped with an 

Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz and 16 GB of RAM.  

The multi-objective MILP model was solved using the fuzzy optimization approach described in 

Section 3.6. This involved four distinct optimization runs: three runs to determine the Positive Ideal 

Solutions (PIS) and Negative Ideal Solutions (NIS) for each objective independently, and a final 

run to solve the single-objective model maximizing the overall satisfaction level (λ). 

The calculated PIS and NIS values for each objective are presented in Table 3. 

Table 3. PIS and NIS Values for Objective Functions 

Objective PIS (𝒇𝒛
𝑷𝑰𝑺) NIS (𝒇𝒛

𝑵𝑰𝑺) 

𝑓1 (Makespan) 2214 4326 

𝑓2 (Customer Dissatisfaction) 3.42 9.3 

𝑓3 (Total Cost) 2151040 14401040 

 

When 𝑓1 (Makespan) was minimized, 𝑓1 = 2214, 𝑓2 = 8.62, and 𝑓3 = 14401040. When 𝑓2 

(Customer Dissatisfaction) was minimized, 𝑓1 = 3654, 𝑓2 = 3.42, and 𝑓3 = 2251040. When 𝑓3 

(Total Cost) was minimized, 𝑓1 = 4326, 𝑓2 = 9.3, and 𝑓3 = 2151040. 

Based on these individual runs, the PIS for 𝑓1 is 2214 (from minimizing 𝑓1), and its NIS is 4326 

(from minimizing 𝑓3). Similarly, for 𝑓2, PIS is 3.42 (from minimizing 𝑓2) and NIS is 9.3 (from 

minimizing 𝑓3). For f3, PIS is 2151040 (from minimizing 𝑓3) and NIS is 14401040 (from 

minimizing 𝑓1). 
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Upon solving the single-objective model maximizing λ, an optimal λ value of 0.841 was achieved. 

This indicates a high overall satisfaction level across all objectives, signifying a well-balanced 

compromise solution. The corresponding objective values for this compromise solution are: 

• 𝑓1 (Makespan) = 2550 

• 𝑓2 (Customer Dissatisfaction) = 4.340 

• 𝑓3 (Total Cost) = 4099903.636 

The GAMS output provides detailed assignments for arrival times (𝑎𝑗 ), waiting times (𝑤𝑗 ), vehicle 

assignments (𝑥𝑗,𝑘), sequencing (𝑦𝑖,𝑗,𝑘), and time window assignments (𝑧𝑗,𝑡 ) for the compromise 

solution. Key observations from the detailed output include: 

• Arrival Times (𝒂𝒋 ): The model effectively schedules arrival times across the three-day 

horizon. For instance, some orders (e.g., Orders 1, 2, 3) are scheduled for early arrivals at 

480 minutes, indicating prioritization or efficient initial routing. Other orders are scheduled 

much later (e.g., Order 4 at 2057 min, Order 5 at 2137 min) to optimize overall resource 

utilization and time window adherence. 

• Waiting Times (𝒘𝒋 ): A key finding for operational efficiency is that the waiting time (𝑤𝑗 ) 

for most orders is zero. This indicates that the model successfully minimized unproductive 

idle time for vehicles at customer locations. Notably, only for Order 39, a waiting time of 

308 minutes is observed, suggesting that this specific wait was strategically accepted to 

achieve overall better performance across the multi-objective functions, possibly due to its 

priority, location, or time window constraints. 

• Sequencing (𝒚𝒊,𝒋,𝒌): The 𝑦𝑖,𝑗,𝑘 variable outputs define the precise order of visits for customers 

on each vehicle's route, ensuring logical and feasible travel paths. 

• Time Window Assignments (𝒛𝒋,𝒕 ): The 𝑧𝑗,𝑡  outputs confirm that each order is assigned to 

exactly one of the nine defined time windows. The low 𝑓2  value in the compromise solution 

demonstrates the model’s ability to prioritize deliveries into preferred time windows, 

thereby enhancing customer satisfaction. For example, many orders (e.g., 1, 2, 3) are 

assigned to time window 1, which likely has a high satisfaction priority. 

This comprehensive analysis demonstrates that the integrated multi-objective MILP model provides 

a highly effective and practical solution for rebar delivery scheduling and vehicle routing, 

successfully balancing the often-conflicting objectives of makespan, customer satisfaction, and total 

transportation cost within a real-world industrial setting. 

5. Managerial Insights 

The results of this study provide several significant managerial insights for Amir Kabir Khazar Steel 

Company and other organizations operating in heavy logistics sectors. The application of the 

integrated multi-objective MILP model offers a robust framework for improving operational 

efficiency, enhancing customer satisfaction, and achieving substantial cost savings. 

• Achieving Optimal Balance in Conflicting Objectives: The most significant insight is the 

ability to find a well-balanced compromise solution for inherently conflicting objectives. 
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In logistics, optimizing for one factor (e.g., minimum cost) often leads to sub-optimal 

performance in others (e.g., long delivery times or low customer satisfaction). The fuzzy 

multi-objective approach provides a quantifiable satisfaction level (λ=0.841) that allows 

management to understand the simultaneous improvements across makespan, customer 

satisfaction, and total cost, moving beyond a single-minded optimization approach. This 

supports a more sustainable and holistic business strategy. 

• Strategic Cost Reduction and Efficiency: The model clearly demonstrates a significant 

potential for reducing operational costs. By minimizing fixed vehicle costs, variable travel 

costs, and crucially, waiting times at customer locations (as evidenced by almost zero 𝑤𝑗  

values for most orders), the company can achieve substantial savings. The compromise 

total cost (𝑓3=4,099,903.636) is far superior to the high cost incurred when makespan is 

prioritized (14,401,040). This allows managers to optimize their budget allocation for 

logistics and improve profitability. 

• Customer-Centric Delivery Planning: The explicit inclusion of customer priorities for time 

windows (𝑃𝑗,𝑡) directly impacts scheduling decisions. This ensures that the most critical or 

highest-priority orders are delivered within their preferred timeframes, leading to improved 

service quality and higher customer satisfaction (𝑓2=4.34). This capability is vital for 

maintaining strong customer relationships and a competitive edge in the market. 

• Optimized Resource Allocation and Fleet Management: The detailed routing and scheduling 

plan provides precise guidance on how to best utilize the available fleet of 10 trailers. 

Managers can determine the optimal number of vehicles required, their specific routes, and 

the sequence of deliveries. This information is invaluable for efficient resource allocation, 

driver scheduling, vehicle maintenance planning, and potentially reducing the overall 

active fleet size if underutilized. The minimization of waiting times directly translates to 

higher productivity per vehicle. 

• Proactive Decision Support: The model serves as a robust decision support tool for both 

tactical and operational planning. It enables “what-if” analyses to evaluate the impact of 

various scenarios, such as changes in customer demand, opening new customer locations, 

or adjusting time window policies. This proactive capability allows management to 

anticipate challenges, develop contingency plans, and make data-driven decisions that 

enhance the resilience of their supply chain. 

• Performance Benchmarking and Goal Setting: The calculated PIS and NIS values for each 

objective serve as clear benchmarks for logistics performance. Managers can use these 

ideal and worst-case scenarios to set realistic and achievable performance targets for their 

teams, track progress, and identify areas for continuous improvement in their rebar delivery 

operations. 

In essence, this integrated multi-objective MILP model provides Amir Kabir Khazar Steel Company 

with a sophisticated yet practical framework to optimize its rebar delivery operations, fostering a 

balance between economic efficiency and customer-centric service. 
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6. Conclusion and Future Research Directions 

This paper presented an integrated multi-objective mixed-integer linear programming (MILP) 

model for delivery scheduling and vehicle routing in a rebar supply chain. The research aimed to 

simultaneously minimize the overall makespan of deliveries, the weighted customer dissatisfaction 

from time windows based on customer priority, and the total transportation costs. A real-world case 

study from Amir Kabir Khazar Steel Company in Iran, involving 51 customer orders over a three-

day planning horizon, was used to validate the model. The fuzzy multi-objective optimization 

approach, based on Bellman and Zadeh’s principle and Zimmermann’s method, was employed to 

transform the three conflicting objectives into a single-objective problem, maximizing an overall 

satisfaction level (λ). Computational results, obtained using GAMS with the CPLEX solver, 

demonstrated the model’s effectiveness in providing a balanced and practical solution. An optimal 

λ value of 0.841 was achieved, yielding a makespan of 2550 minutes, a customer dissatisfaction 

score of 4.34, and a total transportation cost of 4,099,903.636 monetary units. These results 

highlight the significant improvements possible by integrating scheduling and routing decisions and 

considering multiple objectives simultaneously, showcasing a strong balance between operational 

efficiency and customer service. 

Despite its contributions, this study has certain limitations: 

• Deterministic Assumptions: The model assumes all input parameters, such as travel times, 

service times, and costs, are known and deterministic. In practical scenarios, these 

parameters can be subject to uncertainty and variability. 

• Simplified Fleet Characteristics: While vehicle costs are differentiated, the model does not 

explicitly incorporate detailed vehicle characteristics like varying capacities for a 

heterogeneous fleet, which is a common aspect in real-world logistics. 

• Fixed Planning Horizon: The model is developed for a fixed three-day planning horizon 

without considering dynamic events or real-time adjustments that might be necessary in a 

continuously evolving supply chain environment. 

• Lack of Comparison with Heuristics: For very large-scale problems, solving MILP models 

to optimality can become computationally prohibitive. This study did not explore heuristic 

or meta-heuristic solution approaches, which might be necessary for broader applicability. 

Building upon the foundations laid by this research, several avenues for future investigation can be 

pursued: 

• Stochastic and Robust Optimization: Extend the model to incorporate uncertainty in key 

parameters, such as customer demand, travel times (due to traffic congestion or unforeseen 

events), and vehicle availability. This could involve developing stochastic programming or 

robust optimization models to provide more resilient solutions. 

• Dynamic Routing and Scheduling: Develop a dynamic model that allows for real-time 

updates and re-optimization of routes and schedules in response to new orders, 

cancellations, or unexpected events. This would enhance the model’s practical applicability 

in highly volatile environments. 
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• Integration with Inventory and Production: Explore a deeper integration of the logistics 

model with inventory management and production scheduling decisions within the steel 

manufacturing plant. This would enable a more holistic optimization of the entire supply 

chain, from raw material procurement to final customer delivery. 

• Heuristic and Meta-heuristic Approaches: For larger instances of the problem that may be 

computationally challenging for exact MILP solvers, develop and evaluate various 

heuristic or meta-heuristic algorithms (e.g., Genetic Algorithms, Ant Colony Optimization, 

Simulated Annealing, or Tabu Search) to find high-quality, near-optimal solutions within 

reasonable computational times. 

• Consideration of Additional Constraints: Incorporate further realistic constraints such as 

driver working hours regulations, multiple depots, heterogeneous product types with 

different handling requirements, and the possibility of backhauling. 

• Green Logistics Objectives: Add environmental objectives, such as minimizing carbon 

emissions or fuel consumption, to align with sustainability goals in the heavy industry 

sector. This could involve modeling different vehicle types with varying emission profiles. 

• Multi-Modal Transportation: Extend the model to consider multi-modal transportation 

options (e.g., rail, sea) for long-distance deliveries of rebar, which could offer cost or 

environmental benefits compared to road transport alone. 

• Comparative Studies: Conduct comparative studies with other multi-objective decision-

making techniques (e.g., Epsilon-constraint method, goal programming, NSGA-II) to 

evaluate the performance and trade-offs of different solution approaches for this specific 

problem context. 

These future research directions will contribute to developing more sophisticated, practical, and 

comprehensive decision-making tools for optimizing rebar supply chains and similar heavy logistics 

operations. 
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