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Abstract. Consider a study program which offers a number of specializations, and requires all students
to be enrolled in exactly one specialization at any given time. We construct a continuous mathematical
model governing the time evolution of the number of students enrolled in each of the program’s spe-
cializations. Using the model, we further construct an optimization problem describing the search of
an intervention strategy which maximizes the program’s total number of graduates, along with a frame-
work for sensitivity analysis. We discretize the constructs accordingly, and employ a coordinate-descent
method to solve the optimization problem numerically in two simulated scenarios involving two and four
specializations, respectively, describing the results’ practical implications.

Keywords: Specialization, optimization, sensitivity analysis, discretization, coordinate descent.
AMS Subject Classification 2010: 34C60, 92D25.

1 Introduction

Studies have acknowledged the benefits of offering specialization choices in higher education [13,21,22,
32]. On the students’ side, the decision of choosing a specialization is known to be influenced by a range
of factors, including expected future earnings [4–6,24], gender and family background [7,15,25,41,42],
and most notably, peer influence [2, 14, 29, 30, 34]. The unfortunate prevalence of the latter could be
associated with a broad academic concern: low graduation rates [10, 12, 26, 36–38]. Accordingly, on the
institutions’ side, a problem of interest is to determine what forms of intervention could be implemented
in multi-specialization study programs in order to secure the largest possible number of graduates. In
this paper, we aim to address this problem from a mathematical perspective. While many existing stud-
ies implemented linear programming approaches for such an intention [3, 11, 35], we implement a novel
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approach. Specifically, we draw insight from mathematical epidemiology and construct a model gov-
erning the time evolution of the number of students enrolled in each of the specializations offered in a
study program, resembling those that describe disease spread. Using the model, we formulate and solve
a suitable optimization problem, and analyze the sensitivity of the optimal solution with respect to the
model’s parameters, with the aim of identifying the appropriate forms of intervention.

We organize our work as follows. In Section 2, we begin by assuming that a study program offers
a number of specializations, and requires all students to be enrolled in exactly one specialization at any
given time during their studies. Assuming that each specialization has a constant registration rate, a
linear drop-out rate, and a linear graduation rate, and that transitions from one specialization to another
occur at bilinear rates (i.e., rates proportional to the number of students registered in both the source and
target specializations), we construct a system of differential equations governing the time evolution of
the number of students enrolled in each specialization, and establish the non-negativity and boundedness
of the model’s solutions (Theorem 1). Subsequently, specializing to the case of zero registration rates
and finitely many equilibria, we show that the origin is the model’s unique equilibrium (Lemmas 1–
2 and Theorem 2) and establish its local asymptotic stability (Theorem 3). At the end of the section,
we accordingly describe our desired optimization problem (Problem 1) and framework for sensitivity
analysis.

In Section 3, to establish a basis for numerical analysis, we formulate a discretized version of the
constructed model, using Euler’s method [16, sec. 22.3] with an arbitrary step size. We show that, in the
case of zero registration rates and finitely many equilibria, the origin is also the unique equilibrium of the
discretized model (Theorem 4), which is also locally asymptotically stable provided a sufficiently small
step size (Theorem 5). Using numerical methods for differentiation and integration [16, Chap. 20–21],
we state a discrete analogue of our optimization problem (Problem 2) and explain how our sensitivity
analysis will be carried out in a discrete setting in the subsequent section.

In Section 4, we use our discretized model to study numerically our main problem —determining
the appropriate forms of intervention— with simulated values of parameters, in the cases of two and
four specializations. In each case, fixing the values of all other parameters, we use a coordinate-descent
method [20, sec. 8.9] to determine the values of the coefficients of the graduation rates of the existing
specializations for which the total number of graduates achieves a maximum. At the maximum state, we
visualize the time evolution of the number of students in each specialization, assess the sensitivity of the
total number of graduates with respect to small value changes of each of the specializations’ graduation
rate coefficients, and discuss the practical implications accordingly. In the final Section 5, we present our
conclusions and outline avenues for future research.

2 Model construction and analysis

In this section, we first construct a system of differential equations which model the time evolution of
the number of students enrolled in each of the specializations offered in a study program. We then
analyze the model from the viewpoint of dynamical systems theory (see [33,39] for background), before
describing our optimization problem and framework for sensitivity analysis.
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2.1 Model construction

To begin our model’s construction, let n be a natural number. Consider a study program which offers n
different specializations, say 1, . . . , n, and requires all students to be registered in exactly one special-
ization at any given time during their studies. For every i ∈ {1, . . . ,n}, let Si = Si(t) ⩾ 0 be the number
of students enrolled in specialization i at time t ⩾ 0. For every i ∈ {1, . . . ,n}, let Si = Si(t) ⩾ 0 be the
number of students already graduated with specialization i at time t ⩾ 0. We assume that the following
hold at any given time:

(i) each specialization i has a constant registration rate of λi ⩾ 0 students per time unit;

(ii) each specialization i has a linear drop-out rate of µiSi students per time unit, where µi > 0;

(iii) each specialization i has a linear graduation rate of γiSi students per time unit, where γi > 0;

(iv) students change specialization, say from specialization i to specialization j, at the bilinear rate of
β jSiS j, where β j ⩾ 0.

The symbols λi and µi are borrowed from standard symbols in mathematical epidemiology denoting,
respectively, the birth and death rates of an indexed subpopulation i. The final assumption models the
idealized situation where the students’ changes of specialization are driven only by peer influence.

Accordingly, we construct as our model a system of 2n differential equations, consisting of the n
equations

dSi

dt
= λi − (µi + γi)Si +Si

n

∑
j=1

(βi −β j)S j, i ∈ {1, . . . ,n}, (1)

accompanied by the n equations

dSi

dt
= γiSi, i ∈ {1, . . . ,n}. (2)

2.2 Non-negativity and boundedness of solutions

Let us now establish the non-negativity and boundedness of the solutions of model (1). Consider a
solution (S1, . . . ,Sn) = (S1(t), . . . ,Sn(t)) associated to an initial condition (S1(0), . . . ,Sn(0))∈Rn

+, where
R+ := [0,∞). For every i ∈ {1, . . . ,n}, we have that at every time t ⩾ 0 satisfying Si(t) = 0,

dSi

dt
= λi − (µi + γi)0+0

n

∑
j=1

(βi −β j)S j = λi ⩾ 0,

which means that the function Si is non-decreasing at t. Since Si(0) ⩾ 0, this implies that Si(t) ⩾ 0 at
every time t ⩾ 0.

Next, letting

N = N(t) =
n

∑
i=1

Si(t)
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and adding (1) for i ∈ {1, . . . ,n}, one obtains that

dN
dt

=
n

∑
i=1

λi −
n

∑
i=1

(µi + γi)Si ⩽ λ −
n

∑
i=1

κSi = λ −κN,

where
λ := λ1 + · · ·+λn ⩾ 0 and κ := min{µ1 + γ1, . . . ,µn + γn}> 0.

Therefore, we have
dN
dt

+κN ⩽ λ ,

which is equivalent to
d
dt

[
eκtN(t)

]
⩽

d
dt

[
λ

κ
eκt − λ

κ
+N(0)

]
.

This means that, at any given time t ⩾ 0, the slope of the function eκtN(t) is bounded above by that of
the function (λ/κ)eκt −λ/κ +N(0). Since both functions evaluate to N(0) at t = 0, it follows that at
any given time t ⩾ 0 we have

eκtN(t)⩽
λ

κ
eκt − λ

κ
+N(0),

i.e.,

N(t)⩽
λ

κ
+

[
N(0)− λ

κ

]
e−κt t→∞−−→ λ

κ
.

Consequently, if N(0)⩽ λ/κ , then at any given time t ⩾ 0 we have that N(t)⩽ λ/κ . Therefore, we have
proved the following theorem.

Theorem 1. The sets Rn
+ and{

(S1, . . . ,Sn) ∈ Rn
+ : S1 + · · ·+Sn ⩽

λ1 + · · ·+λn

min{µ1 + γ1, . . . ,µn + γn}

}
are both positively invariant under model (1). Moreover, every solution of model (1) associated to a
non-negative initial condition is bounded.

2.3 Dynamical analysis

Let us now analyze model (1) dynamically. For simplicity, we shall only work on the case where every
specialization has a zero registration rate, i.e., λi = 0 for every i ∈ {1, . . . ,n}. In this case, we can rewrite
(1) as

dSi

dt
= Si

[
−µi − γi +

n

∑
j=1

(βi −β j)S j

]
, i ∈ {1, . . . ,n}. (3)

We shall study this zero-registration model in the positively invariant domain Rn
+.

First, we shall determine the equilibria of model (3). For this purpose, we use the following two
lemmas.
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Lemma 1. Consider the system of n equations

−µi − γi +
n

∑
j=1

(βi −β j)S j = 0, i ∈ {1, . . . ,n} (4)

in S1, . . . ,Sn ∈ R+. For n = 2, the system has a unique solution if and only if β1 ̸= β2. For n ⩾ 3, the
system has either no solution or infinitely many solutions.

Proof. The system’s n×n coefficient matrix
0 β1 −β2 β1 −β3 · · · β1 −βn

β2 −β1 0 β2 −β3 · · · β2 −βn

β3 −β1 β3 −β2 0 · · · β3 −βn
...

...
...

. . .
...

βn −β1 βn −β2 βn −β3 · · · 0


has determinant (β1 −β2)

2 if n = 2, and 0 if n ⩾ 3. The lemma follows.

Lemma 2. Let i, j ∈ {1, . . . ,n}, where i ̸= j. The system of two equations{
0 = Si

[
−µi − γi +(βi −β j)S j

]
,

0 = S j
[
−µ j − γ j +(β j −βi)Si

] (5)

in Si,S j ∈ R+ has only the trivial solution (0,0).

Proof. Clearly, (0,0) is a solution of the system. Suppose by contradiction that (Si,S j) ̸= (0,0) is a
solution. If Si = 0 and S j > 0, then the system’s second equation implies

0 = (β j −βi)Si = µ j + γ j > 0,

a contradiction. Similarly, if Si > 0 and S j = 0, then the system’s second equation implies

0 = (βi −β j)S j = µi + γi > 0,

another contradiction. Finally, if Si > 0 and S j > 0, then the system’s first equation implies (βi −β j)S j =
µi + γi > 0, which forces βi > β j, while the system’s second equation implies (β j −βi)Si = µ j + γ j > 0,
which forces β j > βi, contradicting each other. The lemma is proved.

Applying the above lemmas, let us now derive a result on the equilibria of model (3).

Theorem 2. Suppose that model (3) in Rn
+ has only finitely many equilibria. Then the only equilibrium

of the model is (0, . . . ,0︸ ︷︷ ︸
n

).
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Proof. If the case of n = 2, the model’s equilibria (S1,S2) ∈R2
+ are the solutions of a system of the form

(5). By Lemma 2, (0,0) is the model’s only equilibrium.
Now consider the case n = 3. The model’s equilibria (S1,S2,S3)∈R3

+ are the solutions of the system
0 = S1 [−µ1 − γ1 +(β1 −β2)S2 +(β1 −β3)S3] ,

0 = S2 [−µ2 − γ2 +(β2 −β1)S1 +(β2 −β3)S3] ,

0 = S3 [−µ3 − γ3 +(β3 −β1)S1 +(β3 −β2)S2] .

If none of S1, S2, and S3 are zero, then (S1,S2,S3) satisfies a system of the form (4) which, by Lemma
1, has either no solution or infinitely many solutions, a contradiction. If exactly one of S1, S2, and S3 is
zero, then the non-zero variables satisfy a system of the form (5), contradicting Lemma 2. If exactly two
of S1, S2, and S3 are zero, then one of the equations in the above system is not satisfied, a contradiction.
If S1, S2, and S3 are all zero, we obtain the equilibrium (0,0,0).

Finally, consider the case n ⩾ 4. Assume that (S1, . . . ,Sn) ∈ Rn
+ is an equilibrium. Suppose that

exactly k of S1, . . . , Sn are zero. If k ⩽ n− 3, then the non-zero Sis satisfy an (n− k)× (n− k) system
of the form (4), where n− k ⩾ 3, which has either no solution or infinitely many solutions by Lemma 1,
a contradiction. If k = n− 2, then the two non-zero Sis satisfy a system of the form (5), contradicting
Lemma 2. If k = n−1, then one of the equilibrium equations is not satisfied, a contradiction. Finally, if
k = n, we obtain the equilibrium (0, . . . ,0︸ ︷︷ ︸

n

).

Let us next show that the zero equilibrium of model (3) stated in Theorem 2 is locally asymptotically
stable, using [33, Thm. 4.6(a)].

Theorem 3. The equilibrium (0, . . . ,0︸ ︷︷ ︸
n

) of model (3) is locally asymptotically stable.

Proof. The (i, j)-entry of the Jacobian of model (3) is given by

∂

∂S j

[
Si

[
−µi − γi +

n

∑
j=1

(βi −β j)S j

]]
=

−µi − γi +
n

∑
j=1

(βi −β j)S j, if i = j;

(βi −β j)Si, if i ̸= j,

which, at the equilibrium (0, . . . ,0︸ ︷︷ ︸
n

), evaluates to −µi − γi if i = j, and to 0 if i ̸= j. Therefore, the eigen-

values of the Jacobian of model (3) at the equilibrium (0, . . . ,0︸ ︷︷ ︸
n

) are −µ1−γ1, . . . , −µn−γn, which are all

negative since µ1, . . . ,µn,γ1, . . . ,γn > 0. It follows that the equilibrium (0, . . . ,0︸ ︷︷ ︸
n

) is locally asymptotically

stable.

The main problem of this paper concerns the number of students graduated with each specialization.
In the notation of our model, we are interested in the limit

lim
t→∞

Si(t)
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for every i ∈ {1, . . . ,n}. For every i ∈ {1, . . . ,n}, equation (2) gives

dS = γiSi dt, and so Si(t) = γi

∫ t

0
Si(τ)dτ.

Therefore, assuming that γ1, . . . , γn are the only parameters amenable to intervention, we are interested
in the limit

Gi (γ1, . . . ,γn) := lim
t→∞

Si(t) = γi

∫
∞

0
Si(τ)dτ (6)

for every i∈ {1, . . . ,n}. Our problem of maximizing the total number of graduates can thus be formulated
as the following optimization problem.

Problem 1. Fix a set of values for the parameters λ1, . . . ,λn ∈ R+ and µ1, . . . ,µn,β1, . . . ,βn ∈ (0,∞),
and fix an initial condition (S1(0), . . . ,Sn(0)) ∈ Rn

+. Determine (γ1, . . . ,γn) ∈ Rn
+ such that the solution

of model (1), i.e.,

dSi

dt
= λi − (µi + γi)Si +Si

n

∑
j=1

(βi −β j)S j, i ∈ {1, . . . ,n},

associated to the fixed initial condition (S1(0), . . . ,Sn(0)), maximizes the value of

G (γ1, . . . ,γn) :=
n

∑
i=1

Gi (γ1, . . . ,γn) =
n

∑
i=1

[
γi

∫
∞

0
Si(τ)dτ

]
.

Suppose that the function G is found to achieve a maximum at (γ∗1 , . . . ,γ
∗
n ) ∈ Rn

+. At this maximum
state, the sensitivity index of G with respect to each γi is given by

ϒ
G
γi

:=
∂G

∂γi
· γi

G

∣∣∣∣
(γ1,...,γn)=(γ∗1 ,...,γ

∗
n)
, (7)

i.e., the ratio of the relative change in G to the relative change in γi [8]. In the upcoming section we shall
introduce a discretized version of this index, which will be used in our numerical analysis in Section 4.

3 Discretization

To prepare a setting for our numerical study in Section 4, let us now discretize our model given by (1) and
(2) using Euler’s method [16, sec. 22.3] with an arbitrary step size. We shall show that, in the case of zero
registration rate and finitely many equilibria, the discretized model also has a unique equilibrium at the
origin, which is also locally asymptotically stable provided a sufficiently small time step. Subsequently,
we describe how our optimization problem will be solved numerically, and how our sensitivity analysis
will be conducted numerically in the upcoming section.

Fix an arbitrary step size ∆t > 0. Euler’s method [16, sec. 22.3] discretizes our model (1) into the
system of difference equations

Si,k+1 = Si,k +

[
λi − (µi + γi)Si,k +Si,k

n

∑
j=1

(βi −β j)S j,k

]
∆t, i ∈ {1, . . . ,n}, (8)
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where Si,0 = Si(0) for every i ∈ {1, . . . ,n}. In the zero-registration case λi = 0 for every i ∈ {1, . . . ,n},
model (8) reduces to

Si,k+1 = Si,k +Si,k

[
−µi − γi +

n

∑
j=1

(βi −β j)S j,k

]
∆t, i ∈ {1, . . . ,n}. (9)

Any (S1, . . . ,Sn) ∈ Rn
+ is an equilibrium of model (9) if and only if for every i ∈ {1, . . . ,n} we have

Si

[
−µi − γi +

n

∑
j=1

(βi −β j)S j

]
= 0,

i.e., if and only if it is an equilibrium of model (3). This implies the following theorem.

Theorem 4. Suppose that model (9) in Rn
+ has only finitely many equilibria. Then the only equilibrium

of the model is (0, . . . ,0︸ ︷︷ ︸
n

).

Furthermore, the (i, j)-entry of the Jacobian of model (9),

∂

∂S j

[
Si +Si

[
−µi − γi +

n

∑
j=1

(βi −β j)S j

]
∆t

]
,

in the case of i = j and i ̸= j reads, respectively,

1+

[
−µi − γi +

n

∑
j=1

(βi −β j)S j

]
∆t and (βi −β j)Si ∆t,

which, at the equilibrium (0, . . . ,0︸ ︷︷ ︸
n

), evaluate to, respectively, 1+(−µi − γi)∆t and 0. The Jacobian’s

eigenvalues are thus 1 + (−µ1 − γ1)∆t, . . . , 1 + (−µn − γn)∆t. By [33, Thm. 12.3(a)], we have the
following theorem.

Theorem 5. The equilibrium (0, . . . ,0︸ ︷︷ ︸
n

) of model (9) is locally asymptotically stable if

∆t < min
{

2
µ1 + γ1

, . . . ,
2

µn + γn

}
.

Next, using the trapezoidal rule [16, Sec. 21.3] to discretize the integral appearing in (6), we define
the following discrete analogue for the estimated number of students graduated with specialization i:

G̃i :=
1
2

γi ∆t
∞

∑
k=0

(Si,k +Si,k+1)

for every i ∈ {1, . . . ,n}, and thus reformulate our optimization problem in a discrete setting as follows.
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Problem 2. Fix a set of values for the parameters λ1, . . . ,λn ∈ R+ and µ1, . . . ,µn,β1, . . . ,βn ∈ (0,∞),
and fix an initial condition (S1,0, . . . ,Sn,0) ∈ Rn

+. Determine (γ1, . . . ,γn) ∈ Rn
+ such that the solution of

model (8), i.e.,

Si,k+1 = Si,k +

[
λi − (µi + γi)Si,k +Si,k

n

∑
j=1

(βi −β j)S j,k

]
∆t, i ∈ {1, . . . ,n},

associated to the fixed initial condition (S1,0, . . . ,Sn,0), maximizes the value of

G̃ (γ1, . . . ,γn) :=
n

∑
i=1

G̃i (γ1, . . . ,γn) =
∆t
2

n

∑
i=1

[
γi

∞

∑
k=0

(Si,k +Si,k+1)

]
.

This optimization problem can be solved numerically —as we shall see in the upcoming section—
using a coordinate-descent method [20, Sec. 8.9] which generates recursively a sequence

(
γ(0),γ(1), . . .

)
of vectors in Rn

+ as follows. First, choose an initial guess γ(0) ∈ Rn
+, and a step size ∆γ > 0. We employ

the following recursion for every ℓ ∈ N:

γ(ℓ) =

{
γ(ℓ−1), if G̃

(
γ
(ℓ−1)
max

)
⩽ G̃

(
γ(ℓ−1)

)
;

γ
(ℓ−1)
max , otherwise,

where
γ
(ℓ−1)
max ∈

{
qγ
(ℓ−1)
1 , . . . ,qγ

(ℓ−1)
n ,pγ

(ℓ−1)
1 , . . . ,pγ

(ℓ−1)
n

}
is chosen such that G̃

(
γ
(ℓ−1)
max

)
is maximum among G̃

(
qγ
(ℓ−1)
1

)
, . . . , G̃

(
qγ
(ℓ−1)
n

)
, G̃

(
pγ
(ℓ−1)
1

)
, . . . ,

G̃
(
pγ
(ℓ−1)
n

)
, the notation pγ

(ℓ−1)
i denoting the vector obtained from γ(ℓ−1) by replacing its i-th entry γ

(ℓ−1)
i

with γ
(ℓ−1)
i +∆γ , while qγ(ℓ−1)

i denoting the vector obtained from γ(ℓ−1) by replacing its i-th entry γ
(ℓ−1)
i

with max
{

γ
(ℓ−1)
i −∆γ,0

}
. The resulting sequence

(
γ(0),γ(1), . . .

)
is thus expected to stabilize at a rea-

sonable estimate for a point γ ∈ Rn
+ at which G̃ achieves a maximum.

Finally, using the forward difference estimation [20, Sec. 20.2] for the derivative ∂G /∂γi in (7),
we define the discretized sensitivity index of G̃ with respect to each γi at the maximum state γ∗ =
(γ∗1 , . . . ,γ

∗
n ) ∈ Rn

+ as

pϒ
G̃
γi

:=
G̃ (pγi)− G̃ (γ)

∆γ
· γi

G̃ (γ)

∣∣∣∣
γ=(γ∗1 ,...,γ

∗
n)
,

where, as above, pγi denotes the vector obtained from γ by replacing its i-th entry γi with γi +∆γ . In our
numerical simulations, by computing this index numerically for each γi, we shall identify the parameter γi

upon which G̃ depends most sensitively, and interpret the results in connection to the optimal intervention
strategy.

4 Numerical simulations

In this section, we shall use our zero-registration discrete model (9) to address our main problem
—determining an optimal intervention strategy— in two simulated cases involving, respectively, two and
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four specializations. In each case, using simulated values of drop-out rate coefficients and specialization-
change rate coefficients, we determine the graduation rate coefficients γi which maximize the total num-
ber of graduates, analyze the sensitivity of the total number of graduates at its maximum with respect to
each γi, and interpret the results in connection to the suggested strategy. All numerical simulations are
performed using Maple 2016 on a personal computer equipped with an Intel Core i7 processor.

4.1 A two-specialization case

For our first simulation, consider a study program offering n = 2 specializations 1 and 2, with drop-out
rate coefficients µ1 = 0.001 and µ2 = 0.002, respectively, and specialization-change rate coefficients β1 =
0.25 and β2 = 0.3, respectively. Suppose that the numbers of students enrolled in these specializations
are initially S1(0) = 150 and S2(0) = 100, respectively. Let us set ∆t = 0.01, and —for the estimation of
the total number of graduates— carry out N = 500 iterations:

G̃ (γ1,γ2)≈
∆t
2

[
γ1

N

∑
k=0

(S1,k +S1,k+1)+ γ2

N

∑
k=0

(S2,k +S2,k+1)

]
. (10)

One way to obtain numerically a pair (γ1,γ2) maximizing the value of G̃ is to assume that such a
pair is to be sought within a specific square, say, [0,9]2, and to discretize the square into a lattice of a
specified step size, e.g., ∆γ = 0.01:

L =
{
(0.00,0.00) (0.01,0.00) · · · (9.00,0.00),
(0.00,0.01) (0.01,0.01) · · · (9.00,0.01),

...
...

. . .
...

(0.00,9.00) (0.01,9.00) · · · (9.00,9.00)
}
.

Using (10) to estimate the values of G̃ (γ1,γ2) for all (γ1,γ2) ∈ L , one finds that the maximum value of
G̃ over L is approximately 240.462298, which is achieved at (γ1,γ2) = (1.04,7.46). For a significant
reduction of computational effort, the same result could instead be obtained by using the coordinate-
descent method described in the previous section, again with ∆γ = 0.01. See Figure 1. Notice that the
method necessitates not a domain over which the maximum point is to be sought, but an initial guess of
the point, for which one could choose, e.g.,

(
γ
(0)
1 ,γ

(0)
2

)
= (0.1,0.1) ∈R2

+. For (γ1,γ2) = (1.04,7.46), the
time evolution of the number of students enrolled in each specialization is visualized in Figure 2. Notice
the expected monotonic convergence towards the zero equilibrium.

The fact that the maximum number of graduates is achieved at the state where γ1 = 1.04 and γ2 = 7.46
implies that, in order to achieve a maximum total number of graduates from the two specializations,
interventions must be directed towards raising the graduation rate coefficient of specialization 2 while
keeping the graduation rate coefficient of specialization 1 relatively low. This is not surprising since our
parameter values reflect that specialization 2 is more attractive to students while also having a higher
drop-out rate coefficient. Furthermore, at the maximum state, the discretized sensitivity indices of G̃
with respect to γ1 and γ2 are given by

pϒ
G̃
γ1
=

G̃ (1.05,7.46)− G̃ (1.04,7.46)
0.01

· 1.04
G̃ (1.04,7.46)

≈−0.000085
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Figure 1: The points
(
γ1,γ2, G̃ (γ1,γ2)

)
for all (γ1,γ2) ∈ L ∩ [0.8,1.2] × [7.0,7.6]. The red point

(1.04,7.46,240.462298) is the maximum point of G̃ over L . The coordinate-descent method generates the red
trajectory, which emanates from the initial point (0.1,0.1,93.196405) to the maximum point.
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Figure 2: The time evolution of the number of students enrolled in specializations 1 (red) and 2 (blue) in our
two-specialization case.
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and
pϒ

G̃
γ2
=

G̃ (1.04,7.47)− G̃ (1.04,7.46)
0.01

· 7.46
G̃ (1.04,7.46)

≈−0.000035,

respectively, which means that the total number of graduates, at its maximum, depends with negative
correlation on both γ1 and γ2, and is more sensitive to changes on γ1 than to those on γ2: a 10% increase
in γ1 results in a 0.00085% decrease in the total number of graduates, while a 10% increase in γ2 results
in a 0.00035% decrease in the total number of graduates.

4.2 A four-specialization case

Let us now turn our attention to a scenario involving n = 4 specializations 1, 2, 3, and 4, with drop-out
rate coefficients µ1 = 0.001, µ2 = 0.002, µ3 = 0.004, and µ4 = 0.003, respectively, and specialization-
change rate coefficients β1 = 0.25, β2 = 0.3, β3 = 0.1, and β4 = 0.2, respectively. Consider the initial
condition given by S1(0) = 150, S2(0) = 100, S3(0) = 120, and S4(0) = 140. Again using ∆t = 0.01 and
performing N = 500 iterations, one makes the estimation

G̃ (γ1,γ2,γ3,γ4)≈
∆t
4

[
4

∑
i=1

γi

N

∑
k=0

(Si,k +Si,k+1)

]
.

Using the initial guess
(
γ
(0)
1 ,γ

(0)
2 ,γ

(0)
3 ,γ

(0)
4

)
= (0.1,0.1,0.1,0.1) ∈ R4

+, the coordinate-descent method
reveals that G̃ achieves a maximum of 477.213418 at (γ1,γ2,γ3,γ4) = (15.96,58.93,0,1.14). Thus, in the
case of the specializations possessing such different levels of popularity, interventions must be directed
only towards raising the graduation rate coefficients of the popular specializations. At this maximum
state, the evolution of the number of students enrolled in each specialization over time is plotted in
Figure 3, and the discretized sensitivity indices of G̃ with respect to the γis are given by

pϒ
G̃
γ1
≈−0.000002, pϒ

G̃
γ2
≈−0.000005, pϒ

G̃
γ3
≈ 0, and pϒ

G̃
γ4
≈−0.000112.

Thus, at the maximum state, the total number of graduates depends most sensitively on γ4, with a 10%
increase in γ4 leading to 0.00112% decrease in the total number of graduates.

5 Conclusions and future research

Adopting the perspective of a mathematical epidemiologist, we have constructed a continuous model
governing the time evolution of the number of students enrolled in each specialization offered by a
multi-specialization study program, under the assumption that students change specializations solely due
to peer influence. We have established the non-negativity and boundedness of the model’s solutions. In
the case of each specialization having a zero registration rate and the model having only finitely many
equilibria, we have proved that the origin is the model’s only equilibrium, which is locally asymptotically
stable. We have also formulated an optimization problem aimed at identifying an intervention strategy
which maximizes the program’s total number of graduates, and a sensitivity index as a key quantity for
sensitivity analysis. Finally, we have constructed discretized versions of the model, the optimization
problem, and the sensitivity index, and exploited them to carry out numerical experiments in two simu-
lated cases involving, respectively, two and four specializations, solving the optimization problem using
a coordinate-descent method.
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Figure 3: The time evolution of the number of students enrolled in specializations 1 (red), 2 (blue), 3 (green), and
4 (magenta) in our four-specialization case.

There are various avenues for extending our work. First, for both our continuous and discretized mod-
els with zero registration rates and finitely many equilibria, one could investigate whether it is possible to
prove that the unique equilibrium is globally asymptotically stable, using Lyapunov functions [17,33,40].
On the other hand, the case of infinitely many equilibria may also be worth addressing. If an empirical
dataset of the time-dependent number of students at each specialization from a certain study program
is available, one could conduct a parameter estimation using machine-learning methods such as neural
networks [1,31] or Bayesian inference [9,19,28]. Furthermore, one could employ multiple discretization
methods —not only Euler’s method but also the fourth-order Runge-Kutta method or even non-standard
finite-difference methods— and investigate how the spectral radius of the Jacobian associated with each
method depends on the discretization step size [18] while also comparing their computational efficiency.
Finally, one could attempt accelerating the convergence of the coordinate-descent method employed to
solve our optimization problem by using a relatively large step size during early iterations, to be gradually
reduced as the iterations proceed. Finally, one could attempt

Our model itself is open to various modifications. One could investigate, for instance, whether
it is appropriate to replace the bilinear form of our specialization-change rates —which assumes that
specialization changes are driven purely by peer influence— with more sophisticated forms such as the
Holling forms or the Beddington-DeAngelis form [27]. Additionally, in the zero-registration case, the
solutions of our present model approach the origin only asymptotically. For an improvement, it may be
of interest to develop a model according to which the number of students enrolled in each specialization
actually becomes zero at some finite time. To construct such a model, one could adopt the idea of
Mickens [23] who has realized the same improvement to the Kermack-McKendrick SIR-type epidemic
model.
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