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Abstract. In this paper, a two-dimensional eco-epidemiological model with diffusion and convex in-
cidence rate is studied, that is, the density of population depends on time and two spatial variables.
The main challenge in investigation of population models is finding a numerical method to obtain non-
negative solutions. Some numerical methods, for instance Euler’s method, based on the standard finite
difference formulas are inefficient for solving such models because they are not always able to pro-
duce non-negative approximate solutions. On the other hand, the non-standard finite difference schemes
can provide non-negative approximations conditionally. In the current work, first, the stability of the
dynamic proposed eco-epidemiological model is examined. Then, a numerical method that provides
unconditional acceptable solutions is introduced. In what follows, the consistency and stability of the
numerical method are discussed. Finally, using numerical simulation, the efficiency of this method
is compared with the Euler and non-standard methods. Furthermore, we examined the role of initial
functions in interpreting species-environment interactions and deliberated on predator-prey behaviors in
various scenarios.

Keywords:  Consistency, convex incidence rate, eco-epidemiological model, stability, unconditionally positivity
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1 Introduction

One of the effective techniques for investigating the behavior and disease control of population species
is the use of mathematical models [28]. The most powerful and popular mathematical tools for modeling

*Corresponding author
Received: 18 January 2025 / Revised: 10 May 2025 / Accepted: 1 July 2025
DOI: 10.22124/jmm.2025.29603.2634

© 2025 University of Guilan http://jmm.guilan.ac.ir


https://doi.org/10.22124/jmm.2025.29603.2634
http://jmm.guilan.ac.ir

Numerical study of a two-dimensional ... 941

are the use of differential equations. Partial differential equations (PDEs) are more suitable for describing
a system over a realistic time and spatial interval. These equations represent the population distribution
by considering the interactions of populations in different locations and time. For example, Holmes
et al. discussed the use of PDEs in various models and how to model ecological phenomena in their
paper. They also examined the movement patterns of animal species [16]. Dariva and Lepoutre studied
the chronic myeloid leukemia disease model. They described their model with PDEs by considering
age as a continuous variable and analyzed the stability of the equilibrium points [12]. One of the most
useful models employed for analyzing diseases is the family of SIR models. Several important ecological
models and their mathematical formulations are summarized in [38]. In the following, we will examine
the importance of these models and review previous studies.

1.1 Literature review

Due to the global spread of epidemic diseases, the study of infectious disease models has become in-
creasingly important. Given the significance of preventing and managing infectious diseases, the study
of epidemics are considered essential [4]. Buonomo and Lasciategnola examined an SEIR model with
convex incidence and analyzed the existence of backward bifurcation. They investigated the global sta-
bility of their system by using geometric methods [7]. Cai et al. explored the global dynamics of an
SIRS epidemic model with a ratio-dependent incidence rate, along with its corresponding stochastic dif-
ferential equation [9]. The prevalence of diseases in the environment also poses a risk to human society’s
health. Consequently, research in the field of eco-epidemiology can simultaneously contribute to im-
proving human health and the environment. Predator-prey models, including the Leslie-Gower model,
are commonly employed to analyze ecological dynamics, particularly in disease-impacted systems (e.g.,
Mondal et al. [27] ). Greenhalgh et al. conducted an eco-epidemiological study examining the impact of
a disease on a specific species. They investigated the effects of the disease on prey activities, as well as
the population densities of both the prey and predator species [15]. Pal and Samanta studied the effects of
refuge and disease on the prey species in a predator-prey model and analyzed the dynamic behaviors of
the model. They also conducted studies involving discrete time delays in their model [32]. San et al. have
considered a model of infectious disease in a periodic environment and conducted research on the speed
of wave propagation, travelling wave solution, and the minimum wave speed [39]. In [0], the authors
have proposed an eco-epidemiological model with diffusion. They have investigated the travelling wave
solutions as well as the effect of preytaxis on the speed of disease invasion and predator attack. Sieber et
al. have considered a model of epidemic disease in an animal habitat with intra-group prey competition.
They have investigated the effects of disease and pathogens on this competition. Additionally, they have
studied changes in the interaction between prey and predator species [42]. In [5], the authors used an
epidemic model in the ecosystem with a convex rate and studied the effect of the convexity of the disease
transmission function on the speed of predator invasion and different types of prey. Recent advances
in eco-epidemiological modeling, including studies on prey-predator systems with harvesting (Saha et
al. [36]) and predator switching with prey refuge, have enhanced our understanding of disease-mediated
ecological dynamics. These works employ qualitative analysis and control strategies to assess how har-
vesting and predator behavior influence disease transmission and ecosystem stability [30,31]. Mondal et
al. studied a delayed pest-plant ecological model where a disease spreads in the pest population [26].
The transmission rate of a disease in a population is a key factor in mathematical models related to the
behavior and spread of a disease in an environment. Initially, the disease prevalence rate was expressed
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as a linear function. In order to complete models of various infectious diseases, this rate was modified
and presented in a non-linear form (see for example [8, 14,21,22]). One of the nonlinear prevalence
functions for disease is BI(1 4 vI*~1)S with B, v,k > 0, introduced by Jin et al. [18]. For k = 2, this
function named as the convex incidence rate, which is due to the repeated exposure and interaction of
an infected person with a susceptible individual, leading to an increase in disease spread [34]. Indeed,
convex incidence rate is a non-linear rate of disease prevalence in which the speed of disease transmission
increases more rapidly with an increasing number of infected individuals compared to a linear rate, and
eventually reaches a constant rate. The increase in disease spread in an environment can be due to
the repeated exposure and interaction of an infected person with a susceptible person. For example,
respiratory diseases that are transmitted through airborne particles have a higher likelihood of infection
compared to the other diseases, and the convex incidence rate can be used in mathematical modeling of
such diseases [ 13, 34]. Din and Algehyne have introduced a model for COVID-19 disease with a convex
prevalence rate, and then examined the global stability of the system using the Lyapunov method and
local stability by using the Jacobian matrix. They have used a non-standard finite difference method
(NS-FDM) in their study for numerical simulation [13]. Khan et al. have conducted research on the
model of COVID-19 disease with a convex prevalence rate and its development. They have examined
the stability of their model and analyzed the bifurcation by using the central manifold theory [19]. Yang
et al. considered a disease delay model with convex incidence rate and studied the stability and existence
of Hopf bifurcation [44]. Khan et al. have proposed a model for Hepatitis B disease with a convex
prevalence rate and analyzed the stability of their model using Castillo-Chavez and geometric methods.
They have developed their model with the help of a control variable and evaluated the system behavior
by numerical simulation [20].

Most eco-epidemiological models have been developed with a one-dimensional spatial variable. Re-
cent research emphasizes the importance of cooperative hunting strategies among predators and dis-
ease dynamics in prey populations within predator-prey systems [37,40]. For example, Rahman and
Chakravarty modified the eco-epidemiological model introduced by Cosner et al. [11] and investigated
the dynamics of equilibrium points and the presence of Hopf bifurcations [33]. Sapoukhina et al. exam-
ined the effect of taxis in the predator-prey model, analyzed the system dynamics concerning large-scale
predator release. In their model, they employed logistic and Holling Type II response functions [41].

In both human societies and ecosystems, the linear movement of populations appears implausible.
Consequently, to develop a model that better mirrors reality, incorporating a higher spatial dimension is a
logical approach. Ahmed et al. extensively explored a numerical method for a measles infectious disease
model involving spatial diffusion in two dimensions. Their investigation encompassed the analysis of
stability and the existence of waves within the proposed model [2].

Given the challenges of obtaining analytical solutions for the majority of eco-epidemiological mod-
els, the application of numerical methods becomes essential. Moreover, population models must yield
non-negative solutions, as certain existing numerical techniques might result in negative populations.
Consequently, researchers in this field are actively seeking numerical methods that generate non-negative
solutions to accurately capture the behavior of such models [1,2, 10,35].

In the subsequent subsection, we present a two-dimensional predator-prey model that incorporates
disease prevalence among the prey species, employing convex incidence rates.
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Table 1: The parameters of model (1)

Parameters Description

Growth rate of the prey species

Natural mortality rate of preys

Natural mortality rate of the predators
Mortality rate of intergroup prey competition
Predator invasion rate of uninfected prey
Predator invasion rate of infected prey
Disease-related mortality rates for infected prey
Predators’ conversion rate from prey consumption
Diffusion coefficient of uninfected prey
Diffusion coefficient of infected prey

Diffusion coefficient of predators

Time of predator access to sensitive prey

Time of predator access to diseased prey
Disease transmission rate from a single contact
Disease transmission rate double exposures
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1.2 Model description and motivation

Here, we consider the following eco-epidemiological model:

0S = d,AS+F(S+1)— &S — RS(S+1) — BSI(1+ ) — %3P

~ - - T THpS+A
ol = diAl = (& + i) = RI(S+1)+ BSI(1 + C1) — 155757, (1)
_J (dis"rdil)P
oP =d,AP —dP + m
where A = 3‘9722 + g—yzz. The initial conditions of (1) are
S(x,,0) = fi(x,y),
1(x,y,0) = fa(x,y),  (x,y) €[0,L] x[0,L,], (2)

P(x,y,0) = f3(x,y),

and the boundary conditions are the homogeneous Neumann conditions. In this system, the functions
filx,y), i=1,2,3 are known and also, S(x,y,?), I(x,y,?) and P(x,y,t), respectively, indicate the den-
sity of prey infectious, susceptible prey and predator. The non-negative parameters of the model are
introduced in Table 1.

Considering that most animals, unlike humans, cannot have self-care methods, the possibility of
the interaction of the diseased prey species with susceptible prey is doubled. In other words, animals
are directly or indirectly exposed to the disease, and this will cause more spread of the disease among
them [19,20]. For this purpose, we choose a convex disease prevalence rate in our model.

In the proposed model, two-dimensional space is selected to spread animal species in the habitat. The
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movement of animals in the habitat can be in different directions. Defending self and escaping the
predator, finding food for the weak, chasing and trapping their prey, or facing barriers to nature and
closing the path of movement, can be the cause of redirecting the movement of animal species. Therefore,
their path of movement is not linear and their movement is on the surface. As a result, models with two-
dimensional space can bring us closer to more real results.

On one hand, most eco-epidemiological models are non-linear, making it rarely possible to solve
these models analytically. For this reason, many researchers prefer numerical methods to approximate
the solutions of these models. On the other hand, sometimes the numerical methods employed to solve
non-linear dynamic systems, especially those related to populations, yield unacceptable solutions. This
leads to an incorrect analysis of the dynamic behavior of the system. While a system may not inherently
behave chaotically, certain numerical methods result in chaotic solutions [2]. Given the nuanced nature
of population models, attaining positive solutions is crucial. Negative solutions in such models lead to
unrealistic fluctuations. Therefore, we are in search of numerical methods that, in addition to producing
positive solutions, provide a reliable approximation of the solution. One of the most widely recom-
mended numerical methods for approximating PDEs is the finite difference method (FDM) [17,23,25].
In this work, using the FDM, we propose a technique that can identify a positive solution. The subsequent
section outlines the structure of this study.

1.3 Structure of the paper

This paper is organized as follows: In Section 2, the stability of equilibria is examined. Section 3, is
related to the explanation of numerical methods. The consistency of the proposed numerical method
is analyzed in Section 4 . Then, the stability of the proposed FDM is discussed in Section 5. Numer-
ical simulations based on the proposed method are provided in Section 6. Finally, the conclusion are
summarized in the last section.

2 The stability of equilibria

In this section, the stability of equilibria is examined. To simplify numerical and dynamic analysis, we
define

@1(S,1) =F(S+1),

0:(S,1) =6+ K(S+1),

@3(S,1) = (6+ 1) +K(S+1), 3)
Q4(1) = BI(1+ 1),

¢5(S,1,P) = 1+ﬁ£+ﬁi1>

where, the functions @1, @2, @3, @4, Qs represent the growth rate of prey, death rate of susceptible, death
rate of infected prey, incidence rate and functional response, respectively. Using relation (3) and for
simplicity of calculations, system (1) is rewritten as follows:

oS = gisAS+ @1(S,1) — 92(S,1)S — @a(1)S — s s (S, 1, P)S,
al‘I:dLAI_(p3(S7I)I+(p4(1)S_dl(pS(SaLP)Iv (4)
0P = d,AP — dP + e(0,S + 0,1) ¢5(S, 1, P).
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The equilibrium point (S*,7*, P*) is obtained by solving the following system of equations:

dAS+ @1 (S, 1) — ¢2(S,1)S — @4(I)S — &S5 (S,1,P) =0,
d;AI — @3(S, 1)1 + @4 (1)S — &l @5(S,1,P) = 0,
d,AP — dP +e(8,S + &;1) s (S,I,P) = 0.

Consider the following linear system around the equilibrium point (S*,7*, P*):

8;5 = JSAS—i—allS—l—alzI—i-aBP,
Ol = diAl +az S + anl + axP, &)
8tP = dpAP+a3lS+a321+a33P,

where, the values of a,,, m,n =1,2,3 are obtained as follows:
aiy = — 0,8 A,5(S*, I* | P*) — B, 5 (S*, 1", P*) — BEI — (B + R)I* —2&S* +F— &,
ary = — 0,0, @s(S*, I, P*) + (= 2BEI* — B — &) S* +F,
alz = —56£Sjap(p5(5*,l*,P*), _
an :I*([Bél*—65,-8s<p5(S*,I*,P*)+B—fc), . _
axn = —0;l*0;s(S*, I*, P*) — 05 (S*,I*, P*) + (2BES* —2&) " + (B — K)S* — i — G,
ayzy = —écil*apqos(S*,I*,P*),
asp = 6(551'1>k +6‘SS*)8.Y(P5(S*7I*7P*)+e&s(P5(S*7I*7P*)a
aszy = e(ﬁc,-l* + &SS*)8,-(p5(S*,I*,P*) +€5€,‘(P5(S*,I*,P*),
az3 = —d +e(0l* + &,S*) 9, s (S*,I*, P*).

Suppose the solutions of system (5) are in the form of Fourier series, that is:

S(x,y,t) = ZSl,ke’l’ cos(Ix) cos(ky),
Ik

I(x,y,t) = ¥ I xe* cos(1x) cos(ky),
Ik

P(x,y,t) = Zl’l_,kel’ cos(Ix) cos(ky),
Ik

where [ = " and k = 4" (n;, n € N) are the wave numbers. Putting S(x,y,), I(x,y,1) and P(x,y,t) in

system (5), we have
(a11 — Jslz — Jskz — /1)S+a121+a13P =0,
a S+ (azz — d,’lz — dikz — A)I—F apP =0, (6)
azS+azl+ (033 —Jplz — d~pk2 — ;L)P =0.

Based on the Roth-Horwitz stability criterion, consider the characteristic polynomial of system (6):

A2+ oy (1A + @ (1,k)A + oy (1, k) =0,
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( L+ d)* —ay — a3 —ai,
w1 (1,k) = ((d, +dy)d; + dpdy ) k* + [((2d), +2d5)d; + 2d,dy) I* + (—azs — an)d; + (—axn — ai1)d)
—dy(ax +az3) |k + ((dp +dy)d; + dpdy) 1* + ((—az3 — ai1)d; — (ax +an)d,
dy(axn +a33))1* + (a2 +az3)ar — anaz + anass — anazn — ai3as,
wo(L,k) = Kodid,ds + (31 didyds + (—aiid, — assdy)d; — aznd,d, ) k' + [31*did,ds + ((—2a11d,,
— 2az3dy)d; — 2axnd,d,) I* + (an1a33 — arzas)d; + (a1axn — aaz )d,
+dy(anazs — axaxn) |k +1°dd,d, + ((—aid, — assdy)d; — axnd,d,)1*
+ ((ar1ass — ai3a31)d; + (ar1a22 — apaz )dy, + dy(axaszs — 61236132))12

+ (a23a32 - a22a33>all —a13a21a32 + 12021033 + A13022031 — 412023031 -

|
~
(3]

Therefore, system (4) at endemic equilibrium point (S*,7*, P*) is stable under the conditions

w(1,k) >0,
wo(l,k) >0, (7)
@(lak)wl(lak) - (D()(l,k) > 0.

Considering the large number of parameters and the difficulty of finding their analytical relationships,
we can numerically investigate the stability of equilibrium points by selecting specific values of the
parameters in certain cases. Here, by choosing parameters 7 = 0.4, & = 0.03, d=045%=0.2, 0, =1,
G=1,1=03¢=1,d=0,d=0,d,=0,0,=03,p,=03,3=15and { =0.3, system (4) has
five acceptable equilibrium points as:

* E; = (0, 0, 0) is trivial equilibrium point,

* E> = (1.233333333, 0, 0) is prey equilibrium point,

E3 = (0.5882352941, 0, 0.2276816609) is disease free equilibrium point,

E4= (0.3231552167, 0.3738271639, O) is only prey equilibrium point,

= (0.36714387, 0.2210914174, 0.09502681046) is endemic equilibrium point.

Using conditions (7), the stability of equilibrium points of system (4) is shown in Table 2.
To solve model (4), we will describe the following three numerical methods:

e Forward Euler finite difference method (FE-FDM),
* NS-FDM,
* Unconditionally positivity preserving FDM (UPP-FDM).

According to the nature of population system (4), the solutions must be non-negative. We use these
three FDMs to approximate the solutions of system (4) to test whether these methods can produce
non-negative solutions or not.
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Table 2: The stability of equilibrium points

Equ. Points w [O)) ;W — Stability
Eq 0.46 —0.06105 —0.004316 X
E, —1.180243309 0.1703035278 —0.0365699001 X
Es —0.03491176480 | —0.01499852942 | 0.01306568607 X
Eq4 0.5410045428 —0.01382794090 | 0.08614504247 X
Es 0.3687042477 0.007015001256 | 0.04395782533 v

947

3 Description of numerical methods

One of the most popular techniques for the numerical solution of PDEs is the FDM. In this method,
by using derivative approximations, the continuous system converts into a discrete model in its domain.
Here, we discretize the range of time and space variables uniformly. To construct FDM, choose integers
My, My, N >0 and let h, = M hy = AI:T)) and T = % Also, define

Q. = {xi:xi=ihy, 0<i< M}, (8)
Qi =1y yj=Jjhy, 0< j <M}, )
Qr={ty:t,=n1,0<n <N} (10)

Assuming that U}; is an approximation of U (xi,¥j:tn), we use the following notations to make it easier
to develop the method

n 1 n+1 n

8:U}' = E[Uif -t (11)

5, Ul = Th,C[ IR ;11,].], (12)

&, Uf'j = o Ut = Uil (13)
y

AUl = - (Ut ;= 2005+ UL (14)
X
1

AU —hz[U,]+1 207+ U] (15)

y

3.1 FE-FDM

Substituting mesh points (8)-(10) into system (4) and applying formulas (11), (14), and (15), we derive
the following set of discrete equations:

6S J é(Ath:l/+AhvS7/)+(pl( ij? l/) ((P2(S:lj’ z/)+(P4( )+&S(p5(Sl/7Iln[’f)lnj))
50! d(Ahx F ML) — 105 (ST, l,)+S”J<P4( ) — azl”,fps(S”,, I, P, (16)
5‘; dp(AhXPi’?j—I—AhyP’?) dP” —|—€((ng 4 O l])(ps( 5t 1]7Pzn])
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for0 <i< M, 0<j<M,and 0 <n <N — 1. Therefore, with the FE-FDM, we arrive at the following
explicit formulas:

Sn+l (1_2%x 2%>) Si +%X( l+l]+St 1])+%\( ]+I+Szj 1)+T[¢1( z]’Izn])
_Sn](p2( i,j 1]) j(p4( ) aSSn](pS( i,j lj7Pln]):|

In+l (1_2% }’) +%X(l+1]+ln1])+%!(lj+l+llj 1)+T[ th(S;lj’Izn]) (17)
+Sn](p4( ) alln](PS( i,jo l]?Pn )]

PnH (1=2%p, = 2%, ) B+ Yo PRy j Py ) + Yo, (PP PP y) +T[ —dPY

+e (@S] + 04l )<ps( NN DI

where _ . . . . N
Td, Tdy Td; Td; Td, Td,

= T ISy T Ty My — T o My — T 9 T 0 y — 5 9 ¢ 18

Vs hx2 ’}/Y.‘ hyl Vi hxz y hyz p, hx2 I ) hyl ( )

Using the initial conditions (2), the initial conditions of the discrete model are computed in the following
form:
SzJ:fl(xivyj)a OSZ<MX7 O§J§M}7

Iw:fg(x,-,yj), 0<i<M,, 0<j<M,, (19)

P)i=fslxiy)  0<i<M, 0<j<M,
Now, employing the boundary conditions
0xS(0,y,1) = 0S(Ly,y,t) = 0,:S(x,0,1) = d:S(x,Ly,1) =0,
and the formulas (12) and (13), give

S on n n
On S0, = =50

2sz[ 1.
1

81, Sio = 2y 1511 = St
So,for0<i<My, 0<j<Myand0<n<N,wehave S}, =S5", and§/, =S_,. Similarly, we can
derwethat[" —I"lj, Il’fl szl’Pn =P, andPl—Pl’QI

Consider in mind, based on (17), it is very difficult to control the solutions in FE-FDM.

3.2 NS-FDM

In this subsection, according to the scheme proposed by Mickens [24], we construct the NS-FDM on the
system (4) as follows:

S:tjl:s?]—i_l%x[ ;1+1/ 2Sn _'IS? 1/]+%)[ tjl+1 2Sn +S:l/ 1]+T[(P1( i,j? 1})
n+ n+ n+

. _nS (Pz(S:lJvlsz) Si n(p4( ) a,S; @s(S} i,j? zr{’Psz)] il —
Ii,j _I +%x(z+1] 21 +I 1])_’_%1(1]—&-1 2Il,j+11,]— )+T[_Ii,j %(Slj’llj)

" n (20)
' +S ](P4( ) alln+l(p5( ij? l]’P )] |
+
P ) 3
+€(a;~S +a1 ) X (PS( i,j? l]’ lr,lj)]
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After rewriting and categorizing the sentences, we have

SP L4+ Ta (82, 1) + T (I + T s (S, I, PE))] = (1— 2%, —2%,) S
| +%X( l+l]+S:1 1])—'_’}/5)( l]+l+Slj l)+T(P1( i,j? lj)]
1+ Tes(S7, It) + 705 (S}, ,,J’,"]ﬂ —( =20, = 2% )0+ n (1

21)
| +Il*1,]) +’}’s,( i,j+1 +Itn/ 1) +T(p4( ) i,j? (
Pln;r [1+d] = ( _2ny_2yPy) +y]’x( i+1 ]+P ]]) +YP>( i,j+1 +Te(a3S
+all;) + Pl ) 0s(S2. ).
Finally, utilizing (21), the following explicit formulas are obtained:
Sn+ll AlN [( 2% 2%v> +YSX( l+1]+Sz 1])—’_%)( l]+1+Slj 1)+T(P1( i,j’ l])]
In+ AN, [( 2’}’,}( 2’}/,},) +%x( i+1 j+I 1, 1) +y‘ ( i,j+1 +Itn/ 1) +T(p4( i,j) l,]] (22)

P”Jrl AIIV (1 —27px—27p») i Vo (Pl + P 11)"”/”‘( i T P) e (S
+&; l])(PS( ij? lj’Pln])]

where

ANy = 14+7102(S} il )+T(P4( +Tas(P5( ijo t]’Pan))

AN2 = 1+T(p3(S:1]7 l])+1al(p5(sl]71;l]’Pln])
AN3; = 1+d.

Similarly, the initial and boundary conditions are calculated as method FE-FDM in Subsection 3.1. Ac-
cording to (22), the approximations obtained by the NS-FDM are positive if

1-2y, — 2%), >0,
1-2y, 2% >0, (23)
1 =2y, =2y, >0.

Putting relations (18) into (23) and rewriting them, we have

h2hy?
hxz—‘,-hy2
hy2hy?
I +hy?
hﬁh\

by

> 21d,,
> 21d;, (24)

> 21d,.

Therefore, the divisions of space and time can be chosen according to conditions (24), so that the solu-
tions are positive.

3.3 UPP-FDM

Considering that the two numerical methods presented in the previous subsections may produce a neg-
ative solution, therefore, according to Ahmed’s proposed method [2], we present the unconditionally
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positivity preserving method for model (4), as

Sty =SS 7+1J_2Sn+1+5? L) 0 (87 _ZSnHJFSzn/ o+ elenSi 0
=S oo (S}, 17) — St @a(I) — ST s (S7, 17, P

mr=r 4y (1 ]*ZIH{H +1 1]) 0 (I =20 1) [ 1 s () 07) (25)
+Snjq) ( ) In+ (P5( i,j? tj’Plnj)]

A ,+1J—2P"+1+P"1J)+Yp‘( Vi = 2P R ) T dR
+e(asS7 +allrf )(PS( i,jo l]’l)tnj)]

Arranging the terms of the discrete equations, the following explicit and non-negative formulas are

obtained:

SIS (1420 + 2, 5 00a(S 1 115) + 508 ) + Tu9s(SL o 11 2] = L+,

(Sz+lj+St lj) +%>( i,j+1 +Slj 1) + 701 (S] i,j? l])

I 42y, 42y, +705(S, 1)) + 095 (. 1 P D =1+ (0 1)
05 (T + 11y 1)+r<p4( DS

Pzn;rl [1 + 2%, + 27, "‘Td] "‘?’px( ARIE o i 1J) 'H’p)( IR 1) +Te
X (GsS7+ 0l ) @s (ST o 1y PLy)-

(26)

1]71]7

The relation (26) can be simplified as follows:

Sn+1 API[ +%x( l+1]+Sznlj)+ysx( j+1+Sl] 1)+T(p1( 11711)]
In+1 12[1" +%x( z+1]+l 1])+%,( lj+1+ll] 1)+T(P4( l,J) t,J] (27)
P”H ap P Vo (PR PRy )+ Y, (P + Py ) + Te (0657

+@; l])(p5( i,j? l]’Psz)]

where

AP =1 +2’y§‘v +2%x +T(P2( i,jo 11) +T(p4( )+T(XY(P5( i,jo l]’l)ln])
AP2 =1 +2%x +2%\ + T(P3(57p 1/) + ’C(X,(Ps( i,jo t/?Pth)
APy =142y, +2y, +1d.
Similarly, the initial and boundary conditions are calculated as method FE-FDM in Subsection 3.1.
It can be seen that in the implementation of UPP-FDM, all coefficients in (27) and the parameters of

the problem are non-negative, as a result relation (27) produces a non-negative approximation of the
solution of the problem without any additional conditions.

4 Consistency of UPP-FDM

The FDM used to approximate a PDE is consistent if the truncation error approaches zero by reducing
the time and space subdivisions [43]. In this section, we examine the consistency of UPP-FDM. For this
purpose, we first check the consistency of the method for one of the equations of system (4), for example:

9,8 = dsAS+ @1 (S,1) — @2(S,1)S — @4(I)S — &, 95(S, 1, P)S. (28)
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Then, we use UPP-FDM for this equation, that is
St 1429, + 2%, +T@a(ST 1) + Ts (1)) + Gt s (ST, I, L))

= 81+ Yo (St +Siry) + %, (S +S121) + 71 (SE). 1)

; > ; n+1 ¢n n n n .
Using Taylor’s expansion for 87 ;, %, ;. Si; ;, 87,4, and S}, one can get:

S 129%* 1333S

o taar Taian T
N N h2 %S  h}d3S N
Tox  2!0x2 3! 0x3 ’
as+h§aQS+h§a3s+
ox 2! 9x2 31913 ’

2 3

9s WS mas
Yy  219y? 310y} ’
dS hid*s h}93s
vy T g Tl T
dy 2!dy? 3!dy

Sitl=8i+1

n _on
i1, = Sij—h

n n

i+1,j Si,j hx
n n
ij-1=Sij—h

L1 =Sl th
and substituting them into (29) yields:

as 1292 139%s td, _1d,
(Si+75, 3732 Targs T +2h—2s +2h—§ +T02(S} 1, 1) + TQu(SE ), 7 )
! ! . y

Td

+asTs (S, 17, Py)] = 87+ 7oy “ﬁjv%”,ﬁ(ﬂﬁh
X

oS h29*S hda3s

aS h29%S K a3s 7d,

98  hy %S Iy oS
T332 3198 ) T2 Skt X 0
y

St —h T A s
MR 8y+2!8y2 3! 9y3

dx ' 210x2 3!9x3
s 3% h IS
42 2_7734_...)'
dy 2!dy* 3!dy

Finally, from (30) and (28), the truncation error of the method is obtained as follows:

+S2j _hy

7 7 2 3 4 7 o 25 9%
s 2td% 2d % 193 298 S n2dg3 hyds

TS — S 9t o1 ot Soxt It
i hy2 - hy? T e T 12 12
~ 32 ~ 2 ~ 33 ~ 33 ~ 94 ~ 94
rzdS% TzdS% N T3dS% T3ds% T“dS% T“ds%
h? hy? 3h,* 3h,* 12h,% 12k

“ox Taee Taae T

951

(29)

(30)

Choosing T = min{A3, A3}, if h, — 0 and hy — 0, then Tl"jS — 0. Therefore, (28) is obtained. This

X777y
process can be developed for the other equations in system (4). Similarly, we can obtain
7 9l jol LM 23 394 2 7 94 25,94
nl _ ZTdim 2Td,'§ T2 Vopg UogE B hy diW B hy dtay4
b h,? hy2 2 6 24 12 12
~ 932 ~ 92 ~ 13 ~ 13 ~ 4 ~ 4
245t Pd3t P4t DAyt Pdd) tdigd

+
h? hy? 3h,* 3h2  12h% 12k
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7 7 %P 2P 2*P 27 3*p 24 2t
nP 2td or 21d op TW 727 T3W I’lx de hy dp ay4

P ot P ot 3 _
S hy? 2 "6 T4 12 12
~ 92 ~ 32 ~ 13 ~ 933 ~ 4 ~ 34
©2d,%E  d, %t Pd,%E PdSE *d,%r  thd,%E
+ 2t 2 2 T 2+ 2 2 T
hy hy 3h, 3h, 12h, 12h,

where TZ"JI and Tl."J?P are truncation errors. Selecting T =min{A},h}}, if hy — 0 and h, — 0, then Tlnjl —0

P
and Tl"j — 0. Hence, we have

and

O,P = d,AP —dP +e(0,S + 0,1) ¢5(S,1,P).

Therefore, it can be concluded from what has been said that UPP-FDM is consistent for solving the
system (4). Similarly, we can demonstrate the consistency of the FE-FDM and NS-FDM.

5 Stability of UPP-FDM

In this section, we use the von Neumann method to prove the stability of the UPP-FDM. In this method,
we check the growth of the initial errors with the help of the Fourier series and thereby obtain the stability
conditions of the numerical method [29]. For this purpose, we first consider the small error E,’fk =
Ul’fk — Ul’fk = e pillBrhxtkPahy) — é(t)e“lﬁlhﬁkﬁzhy) wheret =nt,landk€R, o, Byand B, € C,i=+/—1
and &(7) = e™ [3]. To simplify calculations, consider the error sentence in form Ej';, = & (1) e BihctkBahy)
and replace it in the system (4). First, we will examine the first equation of system (4). Substituting
S = & (1) PrhetkPah) into (29), we have

é(l‘ + T)ei(lﬁlhx+k/32h,v) [1 + 27sx + 27’&}, + Tq)z(Szj,];?j) + Ty (Iln]) + G TQs (Szj’];fj’Pi’?j)]
= g(t)ei(lﬁlhx-l-kﬁzhy) +% (5(t)ei((l+1)ﬁ|hx+kﬁzhy) Jré(t)ei((l—l)ﬁ]hx—s—kﬁzhy))

5, (E e BB g (1) (B 0Bm) ) o (2 )

i,j2 0]

and after rewriting, one can get

E(t+T)[142%, +2%, +102(S} I ) + T0a(I})) + 05 (7, 17 1, PY) |
=£(t) [1 + 7, (eiﬁlhx + e_i,Blhx) +% (eiﬁzhy + e—iﬁzhy)] )
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Table 3: Three sets of parameters values to compare the efficiency of the numerical methods FE-FDM, NS-FDM
and UPP-FDM

| Parameters | 7 6 d &k a& ¢ ¢ d d d, po p B T |
case (1) 1 03 05 01 1 1 01 I 1 02 07 03 03 05 003
1 1 1
11 1

case (2) 07 03 02 06 05 001 03 02 02 07 07
case (3) 04 07 05 03 07 052 06 03 03 05 05

Due to the positiveness of the approximate solution produced by the UPP-FDM and triangular inequality,
we have

. hy
‘5 tﬂ)‘ 14+2%, +2%, — 4%, sin’ <ﬁ1h>_4ysysm2 2 ) ‘
1+2%x+2%x+1¢2( 1]7 1])+T(p4( )—|—56S‘E(p5(S ’Izn]7Pn)
hy 2 ( By
‘1+2%_Y+2}/Sv—4%‘,sm (ﬁl—)—4}/s},sm ( 5 ))
1429, + 27, +702(S] 1, 1) + T0a(I})) + T8 5 (ST 1, 17 PE))
142y, |1 2sin? (M>’+2% 1—2s1n2(ﬁ )
2%, 2%, HTQa(S] L ) Tea(I] ) + T s (S}, 07 4, )
1427, +27
g + ’y'c_‘_ }/\ _ g 1.
129, + 2%, + 70287 1)) + T0a (1) + 7005 (S, 171, P))

2
S
i,j

Similarly, for I ”H and Pl",jl, we can conclude that

. iy . hy
‘ét-l—f)’ 1—‘,—2%}(—#2%‘—4%}(51112( 1 )_4’)/ivSIn2(Bz )) ‘
]‘+2%x+2% +T(p3( i,j? l])+Tal(p5( ij? tJ’PInJ)

142y, +2v, <1
S 1425 125 +ooa(S PR+ TS (S I P
and
) Iy .2 ( Bahy
‘g(tﬂ) ’ B ‘ 1+2%9, +2%, — 47y, sin (ﬁlT) — 4, sin <T> ‘ o 120+ 20,
N l + 2YPX + ZYP}' + Td h 1 + 2?’[% + 2Yp)' + Td h
where §7;, I'; and P;; are acted as (local) constants. From the previous inequalities, it can be con-

cluded that UPP- FDM is unconditionally stable, while method the FE-FDM and NS-FDM have not this
properties.

6 Numerical simulation and discussion

To compare the numerical methods and their efficiency, we examine the approximate solution of the
infected prey with three sets of parameters in Table 3. In Figures 1 and 2, we have solved system (1) using
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Figure 1: Density of infected prey for the numerical methods FE-FD, NS-FD and UPP-FD for case (1) parameters

FE-FDM. T=7 NS-FDM, T=7 UPP-FDM, T=7

l(x,y)
Ixy)

(a) (b) (©)

Figure 2: Density of infected prey for the numerical methods FE-FDM, NS-FDM and UPP-FDM with case (3)
parameters

three FDMs, namely FE-FDM, NS-FDM, and UPP-FDM. It is important to note that disease outbreaks
are always influenced by various factors, such as population density, habitat quality, and appropriate
decision-making policies. Therefore, in Figures 1 and 2, the density of the infected population has been
examined and compared.

In Figure 1, upon selecting the parameters of case (1) at time ¢t = 4, it becomes evident that all
three numerical methods are capable of producing non-negative approximations. However, in Figure
2, panels (a) and (b) reveal that the FE-FDM and NS-FDM have generated negative solutions, leading
to an incorrect interpretation of disease behavior. In contrast, UPP-FDM offers a more appropriate
approximation. Furthermore, in Figure 2, we have chosen the parameters of case (3) at time t = 7. The
approximate solutions of infected prey were compared in all three methods to determine the effectiveness
of UPP-FDM in producing non-negative solutions compared to the other two methods. These results are
shown in Table 4, where it can be seen that the FE-FDM will fail in large time intervals. If the time and
space partitioning are chosen such that condition (24) is met, the NS-FDM will be successful in producing
acceptable approximations. Otherwise, this numerical method will not be able to produce non-negative
solutions. It should be noted that UPP-FDM not only produces non-negative solutions unconditionally
but also uses an acceptable amount of time to calculate these approximations. Figures 3 to 10, are
based on UPP-FDM. Panel (a) of Figure 3, shows the density of the sensitive prey population, panel
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Table 4: The efficiency of the numerical methods FE-FDM, NS-FDM and UPP-FDM in the production of positive
answers for infected prey

Case T N M, M, FE-FDM NS-FDM UPP-FDM
case (1) 10 50 100 100 v v v
case (2) 60 60 50 50 X v v
case (3) 10 30 200 200 X X v
CPU time (s) for case (1) 22.156 22.281 22.641

(a) (b) (©

Figure 3: Approximate solutions with UPP-FDM for case (1) parameters

(b) shows the density of the diseased prey population, and panel (¢) shows the density of the predator
population at time ¢t = 4. The chosen initial function (32) for the density of the prey and diseased prey
species is dense in the area [0,20] x [0,30] and the density is almost zero outside of this area. In the
initial prey operations, the predator was successful in the area [0,20] x [0,30], and the growth of their
population is evident. Also, the disease is transmitted among the prey species outside of this area.
However, considering that the predators have negligible dispersion outside of this area at the beginning,
the population of prey is significantly increasing. For easier interpretation, contour plots of population
densities have been presented in Figures 4, 5, 8, and 9.

Initially, in Figures 4 and 5, we modified the initial function used to solve the system of equations
(1) to observe the impact of the initial function on the solution.

Subsequently, based on the outcomes obtained from each initial function, we selected the most suit-
able one in order to attain better approximations. This selection aims to align our expectations with the
achieved approximations for the problem. Both figures include panels (a), depicting the density of the
sensitive prey population; (b), illustrating the density of the infected prey population; and (c¢), showing
the density of the predator population at time ¢ = 50, utilizing the parameters from case (3).

In these figures, the color yellow signifies the highest population density, transitioning to gradually
lighter shades to represent reduced population density. The red color region corresponds to an almost
zero population density.

In Figure 4, the initial function is the sigmoid function:

1 1

fi(X,y):ai+bi(1—m)(1—m), i=12,3, (31

where
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Figure 4: UPP-FDM contour plot, for case (3) parameters with the initial condition of (31)

and in Figure 5, the initial function is the hyperbolic function:

filx,y) =a; +b,-(1 — tanh(1/0.4x% + 0.9y — 20)), i=1,2,3, (32)
where

ay = 57 bl = 07
a=0, b,=0.6,
as 20, b3 =0.9.

As seen in Figure 4, the change in population density is in the form of a rectangle. Panel (a) in Figure
4, show the density of the sensitive prey population, which has a very low density due to being hunted
by the predators in the rectangular area [0,30] x [0,40], and the population density gradually increases
outside of this area. Panel (c) in Figure 4, is located opposite to panel (a). Based on panel (b) of Figure
4, in areas 34 < x < 36 and 24 < y < 26 and panel (b) of Figure 5, in areas 20 < x < 22 and 35 <y < 37
diseased prey are more concentrated. Therefore, in the areas mentioned in both figures, the population
density of sensitive prey decreases in both figures due to being affected by disease, and the population of
predators expands due to the easier capture of diseased prey. The other two panels of Figure 5 provides
a similar interpretation of population density but with a radial change in the density region. Considering
the unpredictable movement of animal species due to various reasons such as instinctive behavior or
natural barriers, the initial function with a radial shape is more relevant to reality. In the subsequent
simulations and results, we have used the initial function (32).



Numerical study of a two-dimensional ... 957

UPP-FDM, T=2 UPP-FDM, T=10 UPP-FDM, T=20

Ioay)
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Figure 6: Density of infected prey with case (1) parameters and the initial condition of (32) at T=2, 10, 20
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Figure 5: UPP-FDM contour plot, for case (3) parameters with the initial condition of (32)

In Figures 6 and 7, the population density of the diseased prey species is compared at times ¢t =
2, 10, 20. In both figures, it can be observed that the disease will eventually disappear over time.
However, the intensity of the disease varies in different areas. In Figure 6, the initial function is (32), and
in Figure 7, the initial function is the hyperbolic function:

fi(x,y) = @i+ b; (1 — tanh(1/0.02x2 +0.9y2 —20)), i=1,2,3, (33)

where
ap = 5, b] = 0,
a) = 0, bz = 0.6,
a3=0, b3=009.

The difference between the x and y coefficients in Figure 6 is much less than in the initial function
of Figure 7. Due to a variety of factors, including obstacles in specific areas that impede species
movement, the spread of species can vary significantly based on location variables. Therefore, in the
presented figures (Figures 8 and 9), we have deliberately selected distinct coefficients x and y to account
for these spatial variations. This distinction is evident in the contour plots depicted in both Figures 8 and
9 where the population density of sensitive prey, infected prey, and predator species is examined using
different coefficients in the initial functions (32) and (33) at time ¢ = 20. Notably, the reduction of the
x variable coefficient in Figure 9 leads to a noticeable decrease in species population density along this
axis compared to the y axis.
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UPP-FDM. T=2 UPP-FDM. T=10 UPP-FDM, T=20
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Figure 7: Density of infected prey with case (1) parameters and the initial condition of (33) at T=2, 10, 20
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00
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00

Figure 8: UPP-FDM contour plot, with case (3) parameters and the initial condition of (32)

By choosing the parameters of Section 2, the phase portrait of the dynamic system (1) is shown in
Figure 10 about the disease-free and endemic equilibrium points. This figure shows the instability of the
disease-free equilibrium point and the stability of the endemic equilibrium point.

7 Conclusion

In our study, we explored the eco-epidemiological model incorporating diffusion and a convex incidence
rate model. This choice was motivated by the need to account for the realistic movement patterns of ani-
mals within their habitats, which often occur in multiple dimensions. Additionally, animals are typically
exposed to diseases either directly or indirectly, further justifying the inclusion of these factors in our
research. The summary of the results obtained from this study is as follows:

* The dynamic of system (1) was analyzed by investigating stability conditions concerning the equi-
librium points. Furthermore, the stability or instability of these equilibrium points was determined
for certain parameters.

* Three numerical methods (FE-FDM, NS-FDM and UPP-FDM) were presented for obtaining the
approximate solutions of system (1). We showed that UPP-FDM produces non-negative numerical
solutions without any constraint, while the NS-FDM succeeds in generating non-negative solutions
under certain conditions. In addition, we observed that the Euler method is often inefficient in
computing the non-negative approximations, especially encountered in large time intervals.
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Figure 9: UPP-FDM contour plot with case (3) parameters and the initial condition of (33)
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Figure 10: Phase portrait of the system for disease-free and endemic equilibrium points

* The unconditional consistency and stability of UPP-FDM was proved.

» The effectiveness of generating non-negative approximate solutions through numerical simulations
based on three specific parameter sets was demonstrated. Furthermore, analysis was performed on
the obtained numerical solutions of the problem, utilizing two different initial conditions (31) and
(32). Considering the instincts of animals and their movement in eco-systems, the hyperbolic
function (32) was found to be more suitable than the sigmoid function (31) for interpreting the in-
teraction of species with their environment as realistic. These distinctions were explored in Figures
4 and 5. Moreover, through adjustments in the coefficients of x and y in the hyperbolic function,
various predator-prey behaviors in the presence of obstacles were investigated. For instance, the
existence of barriers in species movement pathways could result in higher or lower population den-
sity along a spatial dimension. This phenomenon is clearly observable in the contour plots (refer
to Figures 8 and 9).

In order to further explore the behavior of birds or marine animals, including their defence mechanisms,
it is necessary to consider a higher-dimensional space and incorporate different response functions. For
future research, we plan to extend the current study to three-dimensional case and incorporate more
complex and diverse response functions. This will enable a more comprehensive understanding of the
dynamics and interactions of these organisms in their natural habitats.
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