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Abstract. The obstacle problem is a well-known type of elliptic variational inequality that originally
arose from contact issues in solid mechanics. The solutions to the obstacle problem often have irregulari-
ties along a free boundary, which can be effective in designing an appropriate numerical method for these
problems. In this paper, we present a mesh-free method based on the radial point interpolation method
for numerically solving an obstacle problem. In the proposed method, the radial point interpolating shape
functions are utilized in the global weak form of the obstacle problem, based on the element-free Galerkin
method. This approach is combined with an active set strategy to address the obstacle problem. One of
the key benefits of the proposed method is its independence from any mesh of the computing domain,
along with its straightforward implementation and high numerical stability. To ensure the efficiency
of the presented method, we have investigated the convergence of the proposed method. The obtained
numerical results confirm the theoretical achievements and demonstrate the method’s effectiveness and
accuracy.
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1 Introduction

In mathematical view, the obstacle problem can be formulated as an elliptic variational inequality. A
variational inequality is an inequality involving a functional that must hold for all values within a convex
subset of a space [23]. For the mathematical modeling of the obstacle, consider the area D⊂Rn,n = 1,2
and its boundary ∂D, where the elastic membrane is located on D. The membrane position is denoted
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by y and the force applied to it is denoted by g ∈C(D). Also, the surface of the obstacle situated on D
is denoted by z ∈ C(D). Then by definition of the range of admissible changes for the desired elastic
membrane as

O :=
{

h ∈ H1(D) | h≤ z a.e. in D & h |∂D= yb
}
, (1)

the model of the obstacle problem will lead to the finding y ∈ O such that [13]:

(∇y,∇(y−u))≤ (g,y−u) ∀u ∈ O. (2)

Here, the notation H1(D) is used to refer the Sobolov function space of order 1 from L2(D) and its inner
product denoted by (·, ·). The problem (1)-(2) is an elliptic variational inequality, since the functional
inequality (2) must hold for all values of u ∈ O . This problem is recognized as a free boundary problem
in science [5].

Due to the existing a priori unknown free boundary between contact and non-contact sets, special
methods are required to solve this problem numerically. Semi-smooth Newton algorithm [7,24], interior
point strategy [29] or active set algorithm [12] are some of the famous method to tackle the obstacle
problem. These algorithm combined with some traditional numerical method for discretization issue.
Several numerical methods have been used for this purpose so far. Finite difference (FD) methods [19]
and finite element methods (FEM) [2,3] are most popular numerical methods which are used for solving
obstacle problem. Moreover, more accurate numerical methods, such as wavelets methods [14] and
pseudo spectral method [15] have also been utilized for this purpose. Additionally, in [16,30] the discrete
Galerkin method (DGM) has been employed to tackle this issue.

Due to the simplicity and flexibility in the implementation, compatibility with non-rectangular do-
mains, research on solving problems with mesh-free methods has been increasing [1, 27]. Among this
family of methods, the following examples can be mentioned that have been used to solve the obstacle
problem: the meshless local Petrov-Galerkin method in [26], the generalized finite differences in [4] and
the element-free Galerkin method in [18]. Some of these methods are based on obtaining the weak form
of the problem. Where the numerical integration can ultimately be used to derive a linear system, and
solving this system will yield an approximation of the solution to the problem [9].

In this paper, we seek to design a mesh-free method based on the global weak form. The element-free
Galerkin method (EFGM) is one of the most important methods in this family of methods. In EFGM,
the moving least squares (MLS) shape functions are employed as the test and trial functions in Galerkin
schema [6]. The main disadvantage of these basic functions is the lack of the delta Kronecker prop-
erty. For this reason, the essential boundary conditions cannot be implemented directly in this method.
Therefore, designing a method in the form of a global weak form with bases having the Kronecker delta
property became the subject of further research. To overcome this weakness, the use of the radial point
interpolation method (RPIM) shape functions instead of MLS shape function is recommended [20, 21].

In this work, we will present a meshless method based on the use of the RPIM to solve the obstacle
problem. Also, a combination of this meshless method with an efficient algorithm for solving obstacle
problems, known as the active set algorithm, has been employed. Moreover, the error analysis of the
presented method has been investigated. In fact, the main objective of this paper is to demonstrate that
the RPIM as a globally weak form method that, just as it has been useful for solving PDE problems, can
also be beneficial in solving the obstacle problems.

The outline of the rest of the paper is as follows. In the next section, the active set algorithm for
solving the obstacle problem is presented. We will examine the RPIM shape functions and how to use
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them in global weak form for solving obstacle problem, in the third section. The convergence analysis
of the method is presented in the fourth section. In the fifth section, we will provide two numerical
examples to assess the efficiency and accuracy of the method.

2 Radial point interpolation method

Consider ΞI = {xl}NI
l=1 ⊂ D and Ξb = {xl}Nb

l=1 ⊂ ∂D as the selected scattered point in computational
domain and its boundary, respectively. By considering N = NI +Nb, set Ξ = {xl}N

l=1 := ΞI ∪Ξb. For
y, the function which must be approximated, let y = {yl = y(xl)}N

l=1. The approximation of y at the
interested point x can be defined as [10, 22]

y(x)≈ yh(x) :=
N

∑
l=1

Rl(x)cl +
r

∑
s=1

Ps(x)ds = Rt(x) · c+Pt(x) ·d (3)

where Rl(x) are the radial basis functions (RBF), Ps(x) are polynomial basis functions, and cl and ds are
the unknown coefficients of the approximation. These coefficients can be determined by imposing the
approximating function yh to pass through all scattered points of Ξ. In order to guarantee the uniqueness
of the approximation, the following additional conditions are added to the problem:

N

∑
l=1

Ps(xl)cl = 0, for s = 1,2, . . . ,r, (4)

where Pss is built using with Pascal’s triangle coefficients and a complete basis is usually preferred.
Therefore, the interpolating conditions and additional conditions (4) can be summarized in matrix-vector
form as the following equation

ŷ :=
[

y(x)
0

]
=

[
R P
Pt 0

][
c
d

]
=: Mĉ, (5)

where y(x) := [y(x1),y(x2), · · · ,y(xN)]
t and

R :=


R1(x1) R2(x1) · · · RN(x1)
R1(x2) R2(x2) · · · RN(x2)

...
...

. . .
...

R1(xN) R2(xN) · · · RN(xN)

 , (6)

P :=


P1(x1) P2(x1) · · · PN(x1)
P1(x2) P2(x2) · · · PN(x2)

...
...

. . .
...

P1(xN) P2(xN) · · · PN(xN)

 . (7)

Now, by substituting the solution of (5) in (3), the RPIM approximation of the function y in nodal points
Ξ can be written as

y(x)≈ yh(x) :=
[
Rt(x),Pt(x)

]
M−1ŷ =ψR(x)y(x). (8)
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The functions ψR(x) in (8) are called as RPIM shape functions. It is important to note that, since these
approximation interpolate the function values y at the nodal values, the RPIM shape functions satisfy the
delta Kronecker property.

Now, we can use the obtained RPIM shape functions as the trail and test functions in the standard
Galerkin method. The delta Kronecker property of these functions causes that the boundary conditions
can be applied without the need of any other method.

3 Obstacle Problem

Consider the optimization problem

min
y∈O

E(y) :=
∫

D

(
1
2
|∇y(x)|2−g(x)y(x)

)
dx. (9)

It can be shown that (9) has a unique solution which must solve the variational inequality (2) [8]. On the
other hand, it’s solution must satisfy a strong form which can be obtained as follows.

Consider the point x0 such that y(x0) < z(x0). We can find a number ε > 0 and a neighborhood
like N(x0) where y(x) < z(x)− ε for all x ∈ N(x0). Let ϕ ∈C∞(N(x0)) and ‖ϕ‖∞ ≤ 1. So, by taking
u = y± εϕ , we have −∆y(x0)− g(x0) = 0. Then, consider φ ∈ C∞(D), φ |∂D = 0 and φ ≥ 0. By
substitution of u = y+φ in (2), we have∫

D
(∇y(x).∇φ(x)−g(x)φ(x))dx≤ 0. (10)

The differential inequality
−∆y(x)−g(x)≤ 0, x ∈ D. (11)

is the strong form of (10). Therefore, we can write the following strong form complementarity problem
as the obstacle problem:

−∆y(x)−g(x)≤ 0, x ∈ D, (12a)

y(x)≤ z(x), x ∈ D, (12b)

(−∆y(x)−g(x))(y(x)− z(x)) = 0, x ∈ D, (12c)

y(x) = yb(x), x ∈ ∂D. (12d)

As a result of rewriting of obstacle problem in (12) form, it can be proved that the computational
domain must be divided into two sections [5]. First, the contact region, is denoted by A , where the
elastic membrane will collide with the obstacle. It means that in contact region, (12b) holds in the
equality form and (12a) holds in the strict inequality form. Latter, the non-contact region, which is
denoted by B, where the Poisson equation applies. In other word, in non-contact region (12a) holds in
the equality form and (12b) holds in the strict inequality form.

In the first view, one can use (1) and (2) for Galerkin discretization and define the weak form of the
discretized obstacle problem, by considering finite dimensional subspace Vh ⊂ H1(D), as follows:

Find yh ∈ Oh ⊂Vh ⊂ H1(D) (13a)

〈Ayh−gh,yh−uh〉 ≤ 0 ∀uh ∈ Oh (13b)
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but it is important to note that Vh ⊂ H1(D) and Oh ⊂ Vh cannot yield Oh ⊂ O [5]. For this very reason,
we use equations (12a)-(12d) to obtain a discrete weak form for the obstacle problem.

In [12], by defining a the Lagrange function λ (x), it had been proven that the solution of CP (12a)-
(12c) satisfy the following regularization conditions

g(x) =−∆y(x)+λ (x) (14a)

λ (x) := max{λ (x)+η(y(x)− z(x)),0} (14b)

where η > 0 is an arbitrary positive number. It is important to note that, since the max operator in
(14b) is non-differentiable operator, the regularized system of equations (14) cannot be solved by usual
algorithms that use derivatives. However, this equivalent form of obstacle problem is the base of some
numerical methods for solving of the problem. One of the famous method of this family is the active set
method, which which will be explained bellow.

The algorithm is initialized with choosing y(0) = z and λ (0) = g+∆y(0) ≥ 0. Let y(l) and λ (l) be the
solution and Lagrange functions obtained in the l-th iteration of the active set algorithm, respectively.
The contact and the non-contact set of each iterate can be defined as:

A (l+1) = {x ∈ D| λ (l)(x)+η(y(l)(x)− z(x))> 0}, (15a)

B(l+1) = {x ∈ D| λ (l)(x)+η(y(l)(x)− z(x))≤ 0}. (15b)

By these definitions, the unknown functions must be updated in the following form:

y(l+1)(x) = z(x), λ
(l+1)(x) = g(x)+∆y(l+1)(x), for x ∈A (l+1), (16)

λ
(l+1)(x) = 0, −∆y(l+1)(x) = g(x), for x ∈B(l+1). (17)

This successive iteration continues until the stopping condition is met as B(l) = B(l+1). In the modified
version of the active set method, the way of updating in the contact region is changed. In this algorithm,
instead of equations (16), one can update A (l+1) in the following form:

λ
(l+1)(x) = λ

(l)(x)+η(y(l)(x)− z(x)), (18a)

∆y(l+1)(x) = λ
(l+1)(x)−g(x). (18b)

In fact, in the modified active set method the change that has been made is that the Lagrange multiplier
is updated before the unknown function y.

4 Radial point interpolation method for obstacle problem

In this section, we purpose RPIM for obstacle problem. To do that, we should use RPIM shape functions
in element-free Galerkin scheme as the test and trial functions.

Consider the associated indices with ΞI and Ξb points with ΛI and Λb, respectively and set Λ =
ΛI ∪Λb. Denote the mass matrix with M := [M(ψl,ψk)]l,k∈ΛI

and g := [gk]k∈ΛI
, whose elements are

defined as

M(ψl,ψk) :=
∫

D
∇ψl(x)∇ψk(x)dx, (19)

gk :=
∫

D
g(x)ψk(x)dx− ∑

l∈λb

M(ψl,ψk)yb(xk). (20)
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Now, we can define the RPIM discretization of the obstacle problem as the following discreted comple-
mentarity problem:

(yl− zl)

(
∑

l∈ΛI

M(ψl,ψk)yl−gk

)
= 0, xk ∈ D, (21a)

∑
l∈ΛI

M(ψl,ψk)yl−gk ≤ 0, xk ∈ D, (21b)

yk− zk ≤ 0, xk ∈ D, (21c)

yk = yb(xk), xk ∈ ∂D, (21d)

where zk := z(xk). By considering z := [zk]k∈ΛI
, the matrix-vector form of (21a)-(21c) is as follows:

(My−g)� (y− z) = 0, (22)

My−g≤ 0, (23)

y− z≤ 0. (24)

where � is Hadamard product symbol.
Now, by defining a suitable Lagrange variables we can rewrite these inequalities as equality form.

Considering λ as Lagrange variables vector, yields that the solution of (24) satisfy the following condi-
tions [12]:

My+λ= g, (25a)

λ= max{λ+η(y− z),0}, (25b)

where η is any positive number.
The equations (25a)-(25b) are RPIM discritized form of (14a)-(14b). Therefore, the modified active

set strategy can be implemented in this case.
By considering y(l) and λ(l) as the solution and Lagrange variable in l-th iterate, the algorithm is

initialized with y(0) = z and λ(0) ≥ 0. Then, all the indices are divided into two disjoint parts:

Λ
(l)
c = { j ∈ ΛI| λ(l)+η(y(l)− z)> 0}, (26)

Λ
(l)
n = { j ∈ ΛI| λ(l)+η(y(l)− z) = 0}. (27)

Then, the following new updated variables are considered:

λ
(l+1)
i = 0, for i ∈ Λ

(l)
c , (28)

y(l+1)
i = zi, for i ∈ Λ

(l)
n , (29)

and by using the sub-matrix notation, for example Mnc for [Mi, j]i∈Λ
(l)
n , j∈Λ

(l)
c

, the remaining variables
updated by solving the following linear system

Mnny(l+1)
n = gn +Mnczc, (30)

λ
(l+1)
c = gc−Mcczc−Mcny(l+1)

n . (31)

The algorithm continues until the stopping condition is met as Λ
(l)
n = Λ

(l+1)
n . The algorithm can be

followed in the below steps:
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Algorithm 1 Modified active set algorithm

1. Initialized with y(0) = z and λ(0) ≥ 0.

2. Divide the computational indices into

Λ
(l)
c = { j ∈ ΛI| λ(l)+η(y(l)− z)> 0}, (32)

Λ
(l)
n = { j ∈ ΛI| λ(l)+η(y(l)− z) = 0}, (33)

3. Update variables as

λ
(l+1)
i = 0, for i ∈ Λ

(l)
c , (34)

y(l+1)
i = zi, for i ∈ Λ

(l)
n , (35)

4. Compute remained variables by solving the following linear system

Mnny(l+1)
n = gn +Mnczc, (36)

λ
(l+1)
c = gc−Mcczc−Mcny(l+1)

n . (37)

5. Repeat steps 2-4 until the following condition is met.

Λ
(l)
n = Λ

(l+1)
n . (38)

4.1 Error analysis of the presented method

It has been proven that under the given assumptions the active set algorithm is uniformly convergent, and
if it stops under the considered stopping condition, the obtained solution satisfy (25a) and (25b) [12].

Let h = h(Ξ,D) be fill distance of D, i.e. [11]

h(Ξ,D) = sup
x∈D

min
xl∈Ξ
‖x−xl‖2.

In fact, the density of the computational points in the domain D can be measured by h(Ξ,D). Consider y
as the analytical solution of obstacle problem (12). Moreover, y(l) is the analytical solutions obtained by
active set strategy and y(l)h is the numerical solutions of RPIM implementation. It means that

y(l)h (x) =ψR(x)y(l) =
N

∑
k=1

ψk(x)yk,

where ψR = [ψ1,ψ2, . . . ,ψN ]
t .

Lemma 1. [12] Let z ≥ y(0) ≥ y be given. By defining λ (0) = max{g−A}, Algorithm 1 converges
monotonically. It means that y≤ y(l+1) ≤ y(l), for all l ≥ 0.
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Theorem 1. The modified active set algorithm described in Algorithm 1 is convergent in the H1 norm to
the analytical solution of the obstacle problem (12).

Proof. First, we can write∫
D

[
∆y(l+1)−∆y

]2
dx =

∫
D

[
∆y(l+1)−∆y(l)− c(y(l)− z)+∆y(l)+ c(y(l)− z)−∆y

]2
dx

=
∫

D

[
∆y(l)+ c(y(l)− z)−∆y

]2
−
[
∆y(l+1)−∆y(l)− c(y(l)− z)

]2

+2
[
∆y(l+1)−∆y(l)− c(y(l)− z)

]
·
[
∆y(l+1)−∆y

]
dx. (39)

First, for any x ∈B(l+1), we have 0 ≥ λ (l)(x)+ c(y(l)(x)− z(x)) = ∆y(l)(x)− g(x)+ c(y(l)(x)− z(x)).
Substituting g(x) = −∆y(l+1)(x) from (17) leads to ∆y(l+1)(x)−∆y(l)(x)− c(y(l)(x)− z(x)) ≥ 0. On the
other hand, for any x ∈ A (l+1), according to (18b) we have λ (l+1)(x)− λ (l)(x)− c(y(l)(x)− z(x)) =
∆y(l+1)(x)−∆y(l)(x)− c(y(l)(x)− z(x)) = 0.

Now, since inequality−∆y(x)≤ g(x) holds for the exact solution y, by substituting g(x)=−∆y(l+1)(x),
we have ∆y(l+1)(x)−∆y(x)≤ 0. It concludes that∫

D

[
∆y(l+1)−∆y(l)− c(y(l)− z)

][
∆y(l+1)−∆y

]
dx≤ 0. (40)

By combining results (39) and (40), we get the following inequalities

‖∆y(l+1)−∆y‖2 ≤
∫

D

[
∆y(l)−∆y

]2
−
[
∆y(l+1)−∆y(l)

]2
+2c(y(l)− z) ·

[
∆y(l+1)−∆y

]
dx

= ‖∆y(l)−∆y‖2−‖∆y(l+1)−∆y(l)‖2 +2c
∫

D
(y(l+1)− y) ·

[
∆y(l+1)−∆y

]
dx

+2c
∫

D
(y(l+1)− y(l)) ·

[
∆y−∆y(l+1)

]
+(y− z) ·

[
∆y(l+1)+g

]
dx

−2c
∫

D
(y− z) · [∆y+g]dx. (41)

Applying Gauss theorem for the first integral in right hand side of (41) leads to∫
D
(y(l+1)− y) ·

[
∆y(l+1)−∆y

]
dx =−

∫
D

[
∇y(l+1)−∇y

]2
dx. (42)

Moreover, the value of the second integral is negative and the third integral will vanish since comple-
mentarity condition (12d) holds. Thus, we can conclude that

‖∆y(l+1)−∆y‖2 ≤ ‖∆y(l)−∆y‖2−‖∆y(l+1)−∆y(l)‖2 ≤ ‖∆y(l)−∆y‖2. (43)

Consequently, (43) yields that liml→∞ ∆y(l) = ∆y. So, by considering (42), we can obtain liml→∞ |∇y(l)−
∇y| = 0. Finally, by combining the letter result and the result of Lemma 1, we can conclude that
liml→∞ ‖y(l)− y‖H1(D) = 0 and the proof is completed.

In [25] the error estimate of RPIM approximation has been discussed and the following theorem is
given for interpolating by multiquadric RBFs.
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Lemma 2. [25] The error of interpolation by multiquadric RBFs φ(r) =
(
α2 + r2

) s
2 , for all functions

y : Rn→ R with generalized Fourier transform Ŷ satisfying in∫
D
|Ŷ |2‖t‖n+sexp(‖t‖)dt < ∞,

is
|y(m)(x)− y(m)

h (x)| ≤C · cy ·hk−|m|(x),

where 0≤ |m| ≤ k and |m|= ∑l ml . Here,

cy =
1

(2π)n

∫
D
|Ŷ (t)|2(ψ̂(t))−1dt < ∞.

5 Numerical illustrations

This section is devoted to solve various numerical examples of obstacle problem with the presented
RPIM method. Computer programming was done in MATLAB software, and was executed on a personal
computer. This PC has a 3. Giga-Hertz Core i5 Processor and 8 Gbs of RAM.

The multiquadric RBFs which are used in constructing RPIM shape functions, are defined as follows

Rk(x) =
(
(αh)2 +‖x−xk‖2)s

, (44)

where the radius of the local support domain is considered as rl = αlh. Regarding the selection of
parameters α and s, we note that in reference [20], the corresponding values of these parameters are
stated as α = 1∼ 7 and s = 1.03, respectively.

We have used the composite Gaussian quadrature to calculate all integrals in the algorithm. More
precisely, first we divided the integration domain into several separated subdomains and then we used a
Gaussian integration formula in each subdomain. In the following examples, the number of subdomains
in the integral regions is 16 and the 8-point Gauss-Lobatto-Legendre formula is used in each subdomain.
One area of future research could be research into more appropriate integration methods for numerically
solving the integrals in the method. Because, in this method, increasing nodes in Gauss quadrature rules,
not only greatly increase the computational cost, but also impair the optimal convergence.

Example 1. Our first example is devoted to a two-dimensional obstacle problem with forcing function
z(x) = 0 and obstacle function as g(x) = 2. This problem defined in D = [−1.5,1.5]2. It has the unique
exact solution as follows [17]:

y∗(x) =

 ln
√

x2
1 + x2

2−
x2

1+x2
2−1

2 , for
√

x2
1 + x2

2 ≥ 1,

0, for
√

x2
1 + x2

2 < 1.

It had be proven that the contact region is the unit disc x2
1 + x2

2 ≤ 1.
The obtained solution by applying RPIM with h = 1

20 , α = 5 and αl = 4 is plotted in Figure 1.
Moreover, Figure 2 shows the gridpoints that the described algorithm has identified as the contact or the
non-contact points.
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Figure 1: The solution function for Example 1 by using RPIM with h = 1
20 , α = 5 and αl = 4.

Also, Table 1 contains L2-error of the presented method for different choices of h and α . In this table,
the computational order of error is calculated by the following formula:

order =
log(E1)− log(E2)

log(h1)− log(h2)
, (45)

where E1 and E2 are the errors associated with h1 and h2, respectively.

Table 1: The computed errors and the computational order of error for Example 1.

α = 4 α = 5 α = 6
h ‖y∗− yh‖2 order ‖y∗− yh‖2 order ‖y∗− yh‖2 order

0.2 4.8931e−02 – 2.5704e-02 – 2.1417e-02 –
0.1 1.5132e−02 1.6931 7.2241e-03 1.8311 5.2147e-03 2.0381
0.05 4.1021e−03 1.8832 1.9124e-03 1.9174 1.0622e-03 2.2955
0.02 7.1656e−04 1.9042 3.1922e-04 1.9538 1.1986e-04 2.3811

Example 2. In this example, the computational domain is D = (−2,2)× (−2,2) and the obstacle func-
tion is defined as follows

g(x) =
{ √

1− r2, for r ≤ 1,
−1, o.w.

where r = ‖x‖2 =
√

x2
1 + x2

2. The forcing function g is set equal to zero on D. In this example, the
Dirichlet boundary condition is determined such that the following function is the exact solution of the
problem [28]:

u∗(x,y) =

{ √
1− r2, r ≤ a,
−a2
√

1−a2 ln(r/2), r > a.
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Figure 2: Grid points in contact and non-contact regions for Example 2.

Here a ∈ R is less than 1 and being satisfied in a2
(
1− ln(a

2)
)
= 1. In this example, the contact zone is a

disk of radius a.
The obtained solution by applying RPIM with h = 1

20 , α = 6 and αl = 6 is plotted in Figure 3.
Also, Table 2 contains L2-error of the presented method with αl = 6 and choosing different values

of h and α . In this table the computational order of error is reported in term of (45). Table 3 shows the
results of the presented method in comparison with some other methods.

Table 2: The computed errors and the computational order of error for Example 2.

α = 4 α = 5 α = 6
h ‖y∗− yh‖2 order ‖y∗− yh‖2 order ‖y∗− yh‖2 order

0.2 3.3705e−02 – 2.1751e-02 – 1.5301e-02 –
0.1 9.4178e−03 1.8395 5.8881e-03 1.8852 3.7849e-03 2.0153
0.05 2.5240e−03 1.8997 1.5615e-03 1.9149 8.1601e-04 2.2136
0.02 4.3642e−04 1.9153 2.6459e-04 1.9374 8.7401e-05 2.438

The results compared with direct local boundary integral equation method (DLBIE) , the element free
Galerkin method (EFG) and Interpolation element free Galerkin method (IEFG). The results indicate the
appropriate accuracy of the proposed method for solving the obstacle problem.

Table 3: Absolute errors of some meshless methods for Example 2.

h RPIM DLBIE EFG IEFGM
0.2 1.5301e−02 6.531e-02 2.0613e-02 4.9142e-02
0.1 3.7849e−03 1.7438e-02 4.1772e-03 6.5011e-03
0.05 8.1601e−04 5.0721e-03 3.1995e-03 3.4821e-03
0.02 8.7401e−05 7.4271e-04 2.3140e-04 1.7112e-04
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Figure 3: The solution function for Example 2 by using RPIM with h = 1
20 , α = 6 and αl = 6.

6 Conclusion

In this paper, a mesh-less method based on radial point interpolation method is presented for numerical
solving of the obstacle problem. This method is combined with the active set algorithm to be suitable
for solving elliptic variational inequality problems such as the obstacle problem. Some results about
convergence of the presented method has been proven and finally, two examples of obstacle problems
have been solved by the presented method. The calculated results showed that the RPIM is efficient and
it can provides accurate solution for the obstacle problem.
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