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Abstract. This paper presents a framework for online adaptive optimal control of continuous-time linear
systems with unknown dynamics. The approach uses approximate and adaptive dynamic programming
to learn the optimal control policy and value function in real-time, without prior knowledge of the system
matrices. We introduce two algorithms based on policy iteration and value iteration, providing proofs
the convergence and stability. Our value iteration method is robust against from exploration noise. The
effectiveness of these control strategies is demonstrated through two examples, highlighting their ability
to achieve near-optimal performance despite unknown dynamics.
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1 Introduction

In modern control theory, optimal control is an important subfield that focuses on developing controllers
to optimize system performance. This process usually depends on the complete knowledge of system
parameters. There are two main methods for solving optimal control problems: The Pontryagin method
establishes the necessary conditions for optimality, whereas the dynamic programming method provides
sufficient conditions. In dynamic programming, problems are usually solved backwards. For continuous-
time (CT) systems, this methodology results in the Hamiltonian Jacobi Bellman (HJB) equation. In
general, the traditional optimal control methods require precise knowledge of system dynamics to solve
the algebraic Riccati equation (ARE) [12].

The study of linear quadratic optimal control problems within the context of linear systems has
been ongoing for over fifty years. The application of Pontryagins maximum principle to these optimal
control problems, as detailed in [16] and [17], leads to a system of coupled two-point boundary value
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problems. In the realm of dynamic programming, the sufficient conditions for an optimal controller and
the functional with prescribed derivatives proposed by [8] result in a set of partial differential equations
known as the RE for these systems.

Assuming known system dynamics, the authors of [14] introduced an iterative approach to address
linear time-delay optimal control problems. Moreover, neural networks (NN) have become a promising
approach for researchers. In these methods, the optimal control problem is reformulated into a system of
equations that can be resolved using established NN models, such as Perceptron models. In the work of
Effati and Pakdaman [2], the authors focused on approximating the state, co-state and control functions
that are essential for optimal control problems. In another study, Effati et al. [3] utilized artificial neural
networks (ANNs) to address a linear optimal control problem defined by a quadratic cost functional with
fuzzy variables. Additionally, the study referenced in [24] examined adaptive synchronization of two
non-identical bidirectional associative memory NNs, which included time-varying delays and unknown
parameters.

The design of adaptive controllers for unknown linear systems has been extensively explored in the
literature (e.g., [5,21]). A traditional approach involves identifying system parameters before solving the
associated ARE. However, this method often results in slow responses to parameter changes. Recently,
inspired by biological learning behaviors, reinforcement learning (RL) and adaptive dynamic program-
ming (ADP) have gained popularity for addressing optimal control problems in uncertain systems [20].
For continuous time linear systems, the authors of [22] proposed a policy iteration-based ADP method
to solve the optimal control for partially unknown continuous time linear systems.

In this study, we aim to utilize RL techniques, such as policy iteration (PI) and value iteration (VI)
algorithms, to address the optimal control problem. We leverage approximate and ADP to learn the opti-
mal control policy and value function in real-time, without requiring any prior knowledge of the system
matrices. Unlike the work in [6], which focuses solely on PI and necessitates a stabilizing initial control
policy (K0), our work introduces two distinct algorithms. The VI algorithm overcomes the limitation of
requiring a stabilizing initial control policy, making it more practical in scenarios where finding such a
K0 is challenging or impossible.

The remainder of this paper is structured as follows: Section 2 formally states the problem. Section
3 details the proposed PI and VI algorithms, accompanied by the aforementioned convergence and sta-
bility proofs, as well as the trajectory error analysis and immunity of exploration noise. In Section 4,
the effectiveness of the proposed algorithms is demonstrated through two illustrative examples. These
examples are implemented using both PI and VI, and the convergence behavior and computational time
are compared using figures and tables. Finally, Section 5 concludes the paper and discusses potential
directions for future research.

Notations: Throughout this paper, we denote the set of real numbers by R and the set of positive
integers by Z+. For a square matrix A, the notation A� 0 indicates that A is positive definite, while A� 0
signifies that A is positive semi-definite. The transpose of matrix A is represented as AT . For any given
n ∈ Z+, In ∈ Rn×n denotes the identity matrix. If A is a symmetric matrix, λmin and λmax represent its
minimum and maximum eigenvalues, respectively. Given a matrix D ∈ Rn×m, the vectorization of D is
defined as vec(D) = [dT

1 ,d
T
2 , . . . ,d

T
m]

T ∈ Rm×n. For a symmetric matrix E ∈ Rm×m, the vectorization is
expressed as vecs(E) = [e11,2e12, . . . ,2e1m,e22,2e23, . . . ,2em−1,m,emm]

T ∈ R 1
2 m×(m+1). For an arbitrary

column vector C∈Rn, we define vecv(C)= [c2
1,c1c2, . . . ,c1cn,c2

2,c2c3, . . . ,cn−1cn,c2
n]

T ∈R 1
2 n×(n+1). The

space of all n×n real symmetric matrices is denoted by Dn, and Dn
+ = {D ∈Dn : D≥ 0} represents the
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subset of non-negative matrices. The Kronecker product of matrices X and Y is denoted by X ⊗Y , and
the Euclidean norm for vectors is indicated by ‖.‖.

2 Problem formulation

To begin with, consider a class of CT linear system described by

ẋ(t) = Ax(t)+Bu(t), x(0) = x0, (1)

where x(t) ∈Rn and u(t) ∈Rm are the system state vector and the control input. A ∈Rn×n and B ∈Rn×m

are constant matrices of system. In the systems mentioned above, we assume that there is no knowledge
about the dynamics of the systems denoted as (A,B), but they are controllable. The design objective is
to find a linear optimal control law in the form of

u(t) =−K̄x(t), (2)

which minimizes the following performance index

J =
∫

∞

0

(
xT (t)Qx(t)+uT (t)Ru(t)

)
dt, (3)

where Q = QT � 0 and R = RT � 0 are matrices with appropriate dimensions.

3 Analysis of optimal control problem solution

In the classical optimal control when the system information (A,B) is completely known, the optimal
feedback gain matrix K̄ in (2), can thus be determined by K̄ = R−1BT P̄, where P̄ is the solution of
following well-known ARE

AT P+PA+Q−PBR−1BT P = 0. (4)

Due to the nonlinearity of equation (4) with respect to P, finding the solution P̄ directly is often chal-
lenging, especially for large-scale matrices. However, various efficient algorithms have been developed
to approximate the numerical solution of equation (4). One of these algorithms is known as Kleinmans
algorithm [9], which is outlined below.

Lemma 1. [9] Let K0 ∈ Rm×n be a stabilizing feedback gain matrix and repeat the following steps for
j = 0,1, . . .

1. Solve for the real symmetric positive definite solution Pj of the Lyapunov equation

AT
j P+PA j +Q+KT

j RK j = 0, (5)

where A j = (A−BK j).

2. Update the feedback gain matrix by

K j+1 = R−1BT Pj.
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Then, the following properties hold:

1. (A−BK j) is Hurwitz;

2. P̄� Pj+1 � Pj;

3. limk→∞ K j = K̄, limk→∞ Pj = P̄.

3.1 Policy iteration

In this subsection, we introduce an ADP method inspired by RL to develop online adaptive optimal
controllers for unknown linear systems. Hence, exploration noise is incorporated into the input during
parameter adaptation:

u j(t) =−K jx(t)+η , (6)

where the exploration noise η is composed of trigonometric function noises of different frequencies and
is added for on-line learning [6]. By substituting the control input (6) into the system (1), we can get

ẋ(t) = A jx(t)+Bη . (7)

To begin, by taking the time derivative of xT (t)Pjx(t) and considering system (7) with equation (5), we
have

d
dt
(xT (t)Pjx(t)) = ẋ(t)T Pjx(t)+ xT (t)Pjẋ(t)

= xT (t)
(
AT

j Pj +PjA j
)
x(t)+2

(
u(t)+K jx(t)

)T BT Pjx(t)

=−xT (t)
(
Q+KT

j RK j
)
x(t)+2

(
u(t)+K jx(t)

)T RK j+1x(t). (8)

Now, by integrating both sides of (8) over the time interval [t, t +δ t] it can be observed that

x(t+δ t)T Pjx(t +δ t)− xT (t)Pjx(t)

=
∫ t+δ t

t

[
xT (τ)

(
AT

j Pj +PjA j
)
x(τ)+2

(
u(τ)+K jx(τ)

)T BT Pjx(τ)
]
dτ

=−
∫ t+δ t

t
xT (τ)

(
Q+KT

j RK j
)
x(τ)dτ +2

∫ t+δ t

t

(
u(τ)+K jx(τ)

)T RK j+1x(τ)dτ. (9)

To simplify our computations, we aim to convert the unknown matrices Pj and K j+1 into vectors. A
highly effective approach to accomplish this conversion without losing any information is by using the
Kronecker product representation [10]. We rely on an important identity for this purpose:

vec(XY Z) = (ZT ⊗X)vec(Y ).

By Kronecker product representation, we obtain

xT (t)
(
Q+KT

j RK j
)
x(t) =

(
xT (t)⊗ xT (t)

)
vec
(
Q+KT

j RK j
)
,

(u(t)+K jx(t))T RK j+1x(t) =
[(

xT (t)⊗ xT (t)
)(

In⊗KT
j R
)
+
(
xT (t)⊗u(t)T )(In⊗R

)]
vec
(
K j+1).
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Moreover, for positive integer r, define

Dxx =
[
vecv

(
x(t1)

)
−vecv

(
x(t0)

)
,vecv

(
x(t2)

)
−vecv

(
x(t1)

)
, . . . ,vecv

(
x(tr)

)
−vecv

(
x(tr−1)

)]
,

Txx =
[∫ t1

t0
xT (τ)⊗ xT (τ)dτ,

∫ t2

t1
xT (τ)⊗ xT (τ)dτ, . . . ,

∫ tr

tr−1

xT (τ)⊗ xT (τ)dτ

]
,

Txu =
[∫ t1

t0
x(τ)T ⊗uT (τ)dτ,

∫ t2

t1
xT (τ)⊗uT (τ)dτ, . . . ,

∫ tr

tr−1

xT (τ)⊗uT (τ)dτ

]
,

where t0 < t1 < · · ·< tr are positive integers. So, (9) implies the following linear equation

Ω jF j = Φ j, (11)

where

Ω j =
[
Dxx,−2Txx

(
In⊗KT

j R
)
−2Txu(In⊗R)

]
, (12a)

F j =
[
vecs(Pj)

T ,vec(K j+1)
T ]T ,

Φ j =−Txx
[
vec(Q+KT

j RK j)
]
. (12b)

It is important to note that, the calculation of K j+1 and Pj after each iteration of the algorithm can be
performed directly if Ω j has full column rank:

F j =
((

Ω j
)T

Ω j

)−1(
Ω j
)T

Φ j. (13)

By applying above equations to calculate the unique pair (Pj,K j+1), we can obtain the optimal numerical
solution for the matrix K j+1. The process is summarized as Algorithm 1.

Algorithm 1: PI for Optimal-Feedback Controller

1: Find matrices Q̄ and R with appropriate dimensions.
2: Set j ← 0 and choose a suitable output-feedback control gain K0, where (A−BK0) is a stability

matrix.
3: Implement u j(t) = −K jx(t)+η on the system (1), construct the matrices Ω j from equation (12a)

and Φ j from equation (12b) based on collected sampling data.
4: Compute the unique pair Pj and K j+1 from equation (13).
5: Update to j← j+1 and iterate Steps 3-5 until the convergence condition ||K j−K j+1||< ε is satis-

fied.
6: Terminate the exploration noise η and apply u j+1(t) =−K j+1x(t), as the optimal control input.

Remark 1. Computing the matrices Txx and Txu in Algorithm 1 can be challenging. It requires a total
of 1

2 n(n+ 1) +mn integrations to gather data on both the state and input variables. However, when
calculating these matrices, numerical errors can arise, potentially leading to the non-existence of a
solution for equation (11). In such situations, the solution to equation (13) can be interpreted as the
least squares solution for equation (11).

It is important to note that Algorithm 1 does not require any knowledge of the matrices A and B.
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3.1.1 Convergence and stability analysis of Algorithm 1

In this section, we analyze the convergence and stability of Algorithm 1. The uniqueness of the solution
to (13) is ensured by the following lemma.

Lemma 2. If there exists an integer r0 > 0, such that for all r ≥ r0, the following rank conditions hold

rank([Txx,Txu]) =
n(n+1)

2
+mn, (14)

then, the matrix Ω j has full column rank for all k ∈ Z+. Subsequently equation (13), can be uniquely
solved.

Proof. See [6] for the proof.

The convergence of Algorithm 1 is proved under the rank condition established in Lemma 2.

Theorem 1. The sequences {F j}∞
j=0 and {K j}∞

j=1 generated by Algorithm 1 converge to F∗ and K̄ re-
spectively, under the rank condition outlined in Lemma 2.

Proof. Based on Lemmas 1 and 2, the proof is the same as [6].

The following theorem gives the stability of system (1).

Theorem 2. Assuming that the matrix Q in performance index (3) satisfies Q> µIn, where µ is a positive
real number and the control policy u∗(t) =−K j∗x(t)+η is obtained using Algorithm 1, system (1) will
generally be asymptotically stable at the origin if the following condition is met:

‖K jx(t)‖2 ≤
θ µ‖x(t)‖2 +2λmin(R)‖η−u(t)‖2−2‖ηT x(t)‖BT Pj

λmax(R)
, (15)

where the parameter θ ∈ (0,1).

Proof. Define the Lyapunov function V (x(t)) = xT (t)Pjx(t). Along with presenting solutions for the
closed-loop system, we have

d
dt
(xT (t)Pjx(t)) = ẋT (t)Pjx(t)+ xT (t)Pjẋ(t)

= xT (t)
[
AT

j Pj +PjA j
]
x(t)+2η

T BT Pjx(t).

According to equation (5), we get

d
dt
(xT (t)Pjx(t)) =− xT (t)

[
Q+KT

j RK j
]
x(t)+2η

T BT Pjx(t). (16)

By adding and subtracting the term xT (t)KT
j RK jx(t) in (16) and using KT

j x(t) = η − u(t), with several
manipulations yields

d
dt
(xT (t)Pjx(t)) =− xT (t)Qx(t)+2η

T BT Pjx(t)

+ xT (t)KT
j RK jx(t)−2

(
η−u(t)

)T R
(
η−u(t)

)
≤−θ µ‖x(t)‖2− (1−θ)µ‖x(t)‖2 +2‖ηT x(t)‖BT Pj

+λmax(R)‖K jx(t)‖2−2λmin(R)‖η−u(t)‖2.
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Based on (15), it is clear that

V̇ (x(t)) =
d
dt
(xT (t)Pjx(t))�−(1−θ)µ‖x(t)‖2.

Hence, asymptotic stability can be achieved.

In order to validate the effectiveness of the control presented in equation (6), and to prevent the
wasting of valuable online computing resources while avoiding the endless execution of Algorithm 1,
the following convergence condition is provided to stop the algorithm.

Lemma 3. Under the control law (6), the trajectory error is bounded by

Tee =
2
(
‖ηT‖‖RK j+1‖

)
λmin(Q+KT

j RK j)
. (17)

Proof. Choose a Lyapunov function candidate as V (x(t)) = xT (t)Pjx(t). By taking the derivative of
V (x(t)) with respect to x(t), we have

d
dt
(xT (t)Pjx(t)) =xT (t)

[
AT

j Pj +PjA j
]
x(t)+2η

T BT Pjx(t)

=− xT (t)
(
Q+KT

j RK j
)
x(t)+2η

T RK j+1x(t)

≤−λmin(Q+KT
j RK j)‖x(t)‖2 +2

(
‖ηT‖‖RK j+1‖‖x(t)‖

)
=−λmin(Q+KT

j RK j)‖x(t)‖
(
‖x(t)‖−

2
(
‖ηT‖‖RK j+1‖

)
λmin(Q+KT

j RK j)

)
.

It is seen that
d
dt
(V (x(t))) � 0 when ‖x(t)‖ ≥ Tee. Hence, the trajectory error will converge to the ball

‖x(t)‖= Tee.

3.2 Value iteration

In this section, a VI algorithm is proposed. The PI Algorithm 1, starts with an initial stabilizer control
gain matrix K0. If the A and B matrices in system (1) are unknown, it can be difficult to find a gain matrix
satisfying this requirement. To address this challenge, algorithm VI for system (1) is proposed in this
section. The VI approach does not require a known stabilizing control law for initialization. First, we
give several definitions. Let ε > 0 be a small threshold and {Bi}∞

i=0 as a collection of bounded sets with
nonempty interiors, and satisfying

Bi ⊆Bi+1, i ∈ Z+, lim
i→∞

Bi = Dn
+.

Define L j =
d
dt

(
xT (t)Pjx(t)

)
+ xT (t)Qx(t) for each iteration of Pj. It follows from system (1) that

L j = ẋT (t)Pjx(t)+ xT (t)Pjẋ(t)+ xT (t)Qx(t)

=
(
Ax(t)+Bu(t)

)T Pjx(t)+ xT (t)Pj
(
Ax(t)+Bu(t)

)
+ xT (t)Qx(t)

= xT (t)
(
AT Pj +PjA

)
x(t)+2uT (t)BT Pjx(t)

= xT (t)E jx(t)+2uT (t)RK jx(t), (18)
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where E j = AT Pj +PjA+Q and K j = R−1BT Pj. By using the kronecker product representation and the
predefined operators in notations, we have

ẋ(t)Pjx(t) =
(
x(t)⊗ ẋ(t)

)T vec(Pj),

uT (t)RK jx(t) =
[(

x⊗u
)(

In⊗R
)]

vec(K j).

For convenience of description, we further define a set of functions Uab as

Uab = [a(t1)⊗b(t1), . . . ,a(tr)⊗b(tr)]T , (20)

where a and b are column vectors.
Combining (18)-(20), the iterative learning equation (ILE), is given in the following linear parameters

form:
WT Z̄ j = H̄ j, (21)

where W= [Uxx,2Uxu(In⊗R)], Z̄ j = [vech(E j),vec(K j)] and H̄ j = 2Uxẋvec(Pj)+Uxxvech(Q).
Note that W is not square matrix in most cases, thus (21) is solved by using pseudo-inverse method as

given in (22). Finally, the direct reinforcement learning (DRL)-based learning algorithm with VI scheme
for system (1) is given in Algorithm 2. Its convergence is proved in Theorem 3.

Remark 2. It is important to highlight that including exploration noise is crucial in the learning process
as it helps to explore new policies that may be better than the current policy. However, there is a tradeoff
between exploring new options and exploiting established policies, as new policies may not always be as
effective as existing ones.

Remark 3. Algorithm 2 exhibits superiority over the other presented methods due to the following rea-
sons:

• Efficiency: The proposed Algorithm 2 significantly reduces computational load by eliminating the
need for repeated finite integrals, as opposed to the previous methods that heavily relied on such
calculations ( [1, 4, 15, 18]). This improvement in efficiency makes Algorithm 2 more suitable for
practical implementation.

• Online, Off-Policy Approach: Algorithm 2 operates as an online off-policy learning algorithm.
It does not depend on an initial stabilizing control policy or prior knowledge of system matrices,
making it more flexible and adaptable to various control scenarios.

• Reduced Complexity: In contrast to [6], the design matrix W in (21) is independent of K j. This
eliminates the need for recalculating W in future learning iterations, leading to a reduced compu-
tational complexity per iteration compared to [6] for certain systems.

Remark 4. Algorithm 1 relies on a stabilizing control law being known, which could restrict its appli-
cations. However, it has a faster convergence rate compared to Algorithm 2, with quadratic convergence
in the vicinity of the steady state. On the other hand, Algorithm 2 does not require a known stabilizing
control law but may have a slower convergence rate as a trade-off.

The differences between PI and VI are summarized in Table 1.
Similar to the analysis of Theorem 1, the convergence of Algorithm 2 is shown as follows.
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Algorithm 2: VI for Optimal-Feedback Controller

1: Initialization: Choose i, j← 0 and P0 = PT
0 � 0.

Give an arbitrary initial control gain K0 for the dynamic output feedback{
u(t) =−K0x(t)+η

ẋ(t) = Ax(t)+Bu(t)

Online data collection and control input:
2: Collect the online data of input u0(tr) at the instant tr, until the rank condition (14) is satisfied.
3: loop
4: Solve (E j,K j) from the equation

Z̄ j = (WTW)−1WT H̄ j. (22)

5: Update P̄ j+1 as,
P̄ j+1← Pj + ε j(E j−KT

j RK j). (23)

6: if P̄ j+1 /∈Bi then
7: Pj+1 = P0 & i← i+1
8: else if ‖P̄ j+1−Pj‖< ε then
9: return K j as the estimate of K∗

10: break
11: else
12: Pj+1 = P̄ j+1
13: end if
14: j← j+1
15: end loop
16: Update Controller: Update the control input to u j(t) =−K∗j x(t).

Table 1: Algorithms Comparison

Algorithm PI VI
Initial control policy Required Not required
Convergence rate Quadratic Sub-linear
Computational complexity High Low

Theorem 3. If there exists a sampling instant ti, such that the rank condition of (14) holds, then the
sequences {Pj}∞

j=0 and {K j}∞
j=1 obtained from Algorithm 2 converge to P∗ and K∗.

Proof. Note that W is independent of Pj and only relies on a series of past data. If the rank condition (14)
is satisfied, it implies that W has full row rank. This indicates that equation (22) has a unique solution
at each iteration. As shown in [1, 23], for an arbitrary P0, the calculated P̄ j+1 will converge to P∗ as
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j→+∞ from the following equation

P̄ j+1← Pj + ε j
(
AT Pj +PjA+Q−PjBR−1BT Pj

)
. (24)

In Algorithm 2, by substituting Pj into equation (21) and considering the full rankness of W, equation
(22) has a unique solution E j and K j at each iteration j. Consequently, Pj+1 can be uniquely recalculated
from equation (23). It should be pointed out that equation (23) is transformed from equation (24).
Therefore, Pj+1 computed from equations (22) and (23) converges to P∗ as j→ +∞. This implies that
K j converges to K∗ as j→+∞.

Now we show that the proposed method in Algorithm 2 is not affected by the exploration noise.

Theorem 4. The proposed VI scheme is immune to exploration noise in parameter estimation.

Proof. To demonstrate the immunity of Algorithm 2 to exploration noise, we define the control policy as
û(t) = u(t)+η , where η is the exploration noise. We aim to show that the VI-based learning equation
(21) is not affected by exploration noise. Consider two pairs of estimates, (Ê j, K̂ j, P̂j) and (E j,K j,Pj),
obtained using û(t) and u(t), respectively. By combining (18) with the control input û(t), we obtain

2ẋT (t)P̂jx(t)+ xT (t)Qx(t) = xT (t)Ê jx(t)+2û(t)T RK̂ jx(t). (25)

Substituting the description of the closed-loop system (1) with û(t) = u(t)+η into (25), we can derive

2
(
Ax(t)+Bu(t)+Bη

)T P̂jx(t)+ xT (t)Qx(t)

=xT (t)Ê jx(t)+2
(
u(t)+η

)T RK̂ jx(t). (26)

By K̂ j = R−1BT P̂j, we have ηT BT P̂jx(t) = ηT RK̂ jx(t). Therefore, equation (25) can be rewritten as

2
(
Ax(t)+Bu(t)

)T P̂jx(t)+ xT (t)Qx(t) = xT (t)Ê jx(t)+2uT (t)RK̂ jx(t).

This form is equivalent to the learning equation derived using the control policy u(t), which can be
expressed as:

2ẋT (t)P̂jx(t)+ xT (t)Qx(t) = xT (t)Ê jx(t)+2uT (t)RK̂ jx(t). (27)

From equations (18) and (27), it follows that Ê j = E j and K̂ j = K j for any given P̂0 = P0. This shows
that the iterative learning method with the dynamic state feedback controller is immune to exploration
noise.

4 Numerical results

In this section, two simulation examples are provided to demonstrate the effectiveness of the developed
online ADP algorithm.
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Example 1. We study the controller design for a turbocharged diesel engine with exhaust gas recircula-
tion, which is modeled by a sixth-order linear system. The system matrices A and B are directly extracted
from [7] and are provided below:

A =



−0.4125 −0.0248 0.0741 0.0089 0 0
101.5873 −7.2651 2.7608 2.8068 0 0

0.0704 0.0085 −0.0741 −0.0089 0 0.0200
0.0878 0.2672 0 −0.3674 0.0044 0.3962
−1.8414 0.0990 0 0 −0.0343 −0.0330

0 0 0 −359.00 187.5364 −87.0316

 ,

B =



−0.0042 0.0064
−1.0360 1.5849
0.0042 0
0.1261 0

0 −0.0168
0 0

 .

To demonstrate the effectiveness of the proposed computational adaptive optimal control approach, exact
knowledge of A and B is not utilized in designing optimal controllers. Given the stability of the physical
system, the initial stabilizing feedback gain can be set to K0 = 0. The weighting matrices are chosen as

Q = diag
[
1 1 0.1 0.1 0.1 0.1

]
, R =

[
1 0
0 1

]
.

During the simulation, initial values for the state variables are randomly chosen around the origin. From
t = 0 s to t = 2 s, the exploration noise e = ∑

100
j=1 sin(Ω jt) is used as the system input, where Ω j, with j =

1, . . . ,100 takes random numbers on [−50,50]. State and input data are recorded over each 0.01-second
interval. The PI started at t = 2 s, and convergence is attained after 16 iterations, when the stopping
criterion ‖Pj−Pj−1‖ < 0.003 is satisfied. The convergence of Pj, K j and u j to their optimal values is
depicted in Figure 1. Notice that if B is accurately known, the problem can also be solved using the
method in [11]. Due to the PI algorithm’s dependence on a difficult-to-satisfy initial stabilizing control
gain, we have also implemented this example using Algorithm 2 and presented the convergence results
in Figure 2. The average CPU time and the number of iterations of each algorithm for convergence
are illustrated in Table 2. Now, we will provide a detailed explanation of how the proposed algorithm

Table 2: Performance Comparison of Algorithms 1-2 in Example 1

Algorithm PI VI
No. of Iterations 16 100
CPU Time (sec) 0.35527 0.56301
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computes the cost and feedback gain matrices using the Algorithm 1 outlined below:

Papprox =



127.5320 0.5416 16.8310 1.8310 1.4033 0.0117
0.5416 0.0675 0.0375 0.0292 0.0433 0.0001
16.8310 0.0375 18.8042 −0.3328 4.1500 0.0012
1.8310 0.0292 −0.3328 0.5038 −0.1223 −0.0001
1.4033 0.0433 4.1500 −0.1223 3.3589 0.0004
0.0117 0.0001 0.0012 −0.0001 0.0004 0.0006

 ,

Kapprox =

[
−0.7952 −0.0684 −0.0725 0.0242 −0.0487 −0.0002
1.6511 0.1098 0.0974 0.0601 0.0211 0.0002

]
.

For comparison purposes, we will also present the optimal solutions derived from directly solving
the ARE, as indicated in equation (4), by utilizing the following MATLAB command: [Kopt,Popt] =
lqr(A,B,Q,R):

Popt =



127.5325 0.5416 16.8300 1.8307 1.4004 0.0117
0.5416 0.0675 0.0376 0.0292 0.0436 0.0001

16.8300 0.0376 18.8063 −0.3323 4.1558 0.0012
1.8307 0.0292 −0.3323 0.5039 −0.1209 −0.0001
1.4004 0.0436 4.1558 −0.1209 3.3764 0.0004
0.0117 0.0001 0.0012 −0.0001 0.0004 0.0006

 ,

Kopt =

[
−0.7952 −0.0684 −0.0726 0.0242 −0.0488 −0.0002
1.6511 0.1098 0.0975 0.0601 0.0213 0.0002

]
.

Additionally, we will introduce the matrices Papprox Kapprox, Popt and Kopt. These matrices are obtained by
implementing Algorithm 2 with a specified interval length of T = 0.1s. This will provide a comprehen-
sive comparison between the optimal and approximate solutions, highlighting the effectiveness of our
proposed method:

Papprox =(1.0e+03)



1.2766 0.0045 0.1692 0.0174 0.0049 0.0001
0.0045 0.0013 0.0003 0.0004 0.0013 0.000
0.1692 0.0003 0.1913 −0.0038 0.0382 0.000
0.0174 0.0004 −0.0038 0.0050 0.0039 0.000
0.0049 0.0013 0.0382 0.0039 0.0831 −0.000
0.0001 0.000 0.000 0.000 −0.000 0.0001

 ,

Kapprox =

[
−1.0807 −0.0433 −0.0828 0.0115 −0.0752 0.0001
2.1038 0.0704 0.1140 0.0730 0.0723 0.0003

]
.

Popt =(1.0e+03)



1.2750 0.0046 0.1683 0.0183 0.0140 0.0001
0.0046 0.0013 0.0004 0.0003 0.0004 0.000
0.1683 0.0004 0.1881 −0.0033 0.0416 0.000
0.0183 0.0003 −0.0033 0.0045 −0.0009 0.000
0.0140 0.0004 0.0416 −0.0009 0.0337 −0.000
0.0001 0.000 0.000 0.000 −0.000 0.0001

 ,

Kopt =

[
−1.0856 −0.0428 −0.0842 0.0141 −0.0482 0.0001
2.1127 0.0695 0.1176 0.0683 0.0237 0.0003

]
.
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Example 2. The F-16 aircraft control system is used to demonstrate the effectiveness of the theoretical
results. The dynamics of the aircraft are defined as follows [13, 19]:

ẋ(t) =

−1.01887 0.90506 −0.00215
0.82225 −1.07741 −0.17555

0 0 −20.2

x(t)+

 0
0

20.2

u(t).

In this context, x1(t), x2(t) and x3(t) denote the angle of attack, pitch rate and elevator deflection angle,
respectively. The variable u(t) represents the elevator actuator angle.

In the simulation, the initial system state is chosen randomly and the sampling period is set to 0.01.
Several parameters employed in the analysis include Q = diag([0.1,0,0.1]) and R = diag([0.01]). The
learning error trajectories, specifically ‖Pj −P∗‖, ‖K j −K∗‖ and ‖u− u∗‖, are depicted in Figures 3
and 4. These figures demonstrate that Pj, K j and u, obtained through Algorithms 1 and 2, converge
towards the optimal values P∗, K∗ and u∗. The comparison results presented in Table 3 indicate that the
convergence speed of the PI algorithm is faster than that of the VI algorithm. It is worth pointing out
that the PI algorithm requires an initial stabilizing matrix K0, while the VI algorithm does not have this
requirement. Consequently, the VI algorithm achieves rapid convergence without the necessity for an
initial stabilizing K0.

Table 3: Performance Comparison of Algorithms 1-2 in Example 2

Algorithm PI VI
No. of Iterations 20 1000
CPU Time (sec) 0.40074 1.05073

5 Conclusion

This paper presents two computational approaches that utilize PI and VI algorithms to create online
adaptive optimal controllers for CT linear systems with completely unknown dynamics. The PI algo-
rithm iteratively solves the ARE by utilizing real-time state and input information, thereby eliminating
the need for prior knowledge of the system matrices. Notably, the VI algorithm is flexible because it
does not require K0-stability, making it suitable for systems with uncertain dynamics. We demonstrated
the effectiveness of methods by applying both algorithms to two practical examples: the control de-
sign of a turbocharged diesel engine and an F-16 aircraft. Each example illustrated the capabilities and
performance of both algorithms in tackling the challenges posed by unknown dynamics.

Looking forward, our future research will focus on exploring time-varying delayed dynamical sys-
tems characterized by unknown dynamics.
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