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 Recommender systems based on content-based and collaborative 

filtering techniques face significant challenges, including the cold-start 

problem and privacy concerns due to their reliance on user profiles and 

product metadata. This study presents an optimized pairwise 

association rules (PAR) algorithm that addresses these limitations by 

operating independently of personal user data while maintaining 

recommendation accuracy. The proposed solution incorporates three 

key enhancements: (1) a privacy-preserving design using only 

transactional co-occurrence patterns, (2) a caching mechanism for 

modular training models that reduces recommendation latency by up to 

102%, and (3) asynchronous execution for efficient resource 

management. Evaluations on a dataset of 20,000 food items 

demonstrate the algorithm's effectiveness, showing 18.7% higher 

nDCG scores than conventional methods while maintaining sub-second 

response times even with large-scale catalogs. The PAR algorithm 

proves particularly robust in sparse-data scenarios and cold-start 

conditions, offering a practical alternative to traditional approaches. 
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1. Introduction 

The rapid advancement of computing technology has fundamentally reshaped modern society, 

with internet-based services becoming deeply integrated into nearly every aspect of daily life. As 

digital platforms continue to proliferate, users face an unprecedented challenge of information 

overload when navigating the vast array of available options. In this context, recommender 

systems have emerged as both a critical research frontier in computer science and an essential 

component of practical digital solutions [1][2]. These sophisticated systems employ advanced 
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algorithms to analyze complex patterns within user data, behavioral histories, and preference 

indicators to generate personalized content recommendations. 

Contemporary recommender systems serve as intelligent filters that process massive datasets to 

identify items with the highest probability of user engagement. Their applications have expanded 

dramatically across multiple domains, including but not limited to: e-commerce platforms (where 

they suggest relevant products), digital entertainment services (for video and music 

recommendations), educational resources (in library management systems), and content 

aggregation platforms (for news and media consumption). By effectively reducing the cognitive 

load associated with decision-making processes, these systems not only enhance user experience 

but also optimize outcomes by minimizing suboptimal choices in increasingly complex digital 

environments. 

However, despite their widespread adoption and proven utility, current recommender systems face 

several persistent challenges that limit their effectiveness. The cold start problem remains 

particularly problematic, as systems struggle to generate accurate recommendations for new users 

with limited interaction history or for newly introduced items with insufficient usage data. Privacy 

concerns have also emerged as a critical limitation, as traditional recommendation algorithms 

typically require extensive collection and analysis of personal user data, creating potential 

vulnerabilities and raising ethical questions about data usage [3][4]. Additionally, issues of 

algorithmic bias, scalability constraints, and the accuracy-privacy tradeoff continue to present 

significant hurdles for researchers and practitioners alike. 

This study aims to address these challenges by building upon existing research in the field while 

introducing novel technical improvements. Our work focuses particularly on enhancing 

algorithmic efficiency through two key innovations: the implementation of asynchronous 

programming techniques to optimize computational resource utilization, and the strategic 

application of cache memory systems to accelerate recommendation generation. These technical 

advancements are designed to operate within the constraints of limited user data, thereby 

simultaneously addressing both performance and privacy concerns. Furthermore, our approach 

seeks to establish a more robust framework for handling cold start scenarios while maintaining the 

accuracy and relevance of recommendations across various application domains. 

Our primary objectives are: 

1. Resolving cold start issues while preserving user privacy. 

2. Assessing the performance and accuracy of the proposed system through empirical 

validation. 

3. Conducting a comparative analysis of collaborative filtering, content-based systems, and our 

hybrid algorithm. 

The structure of the article will be as follows. Section 2 reviews the research literature. In this 

section, we will get acquainted with the history and types of recommender systems and examine 

the strengths and weaknesses of each. We will also get acquainted with the commonly used 

similarity criteria in recommender systems. In section 3, the algorithms and the proposed method 

will be described. It is also discussed about the data set used and the method of evaluating the 

efficiency of the algorithms. In Section 4, the evaluation methods used and their results for the 
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proposed method are presented and reviewed. Finally, in section 5, conclusions will be drawn and 

suggestions for future works will be presented.  

2. Literature Review 

Recent years have seen extensive research efforts aimed at enhancing the performance of 

recommender systems. One important research direction focuses on incorporating profit 

considerations into recommendation algorithms. While numerous algorithms have been developed 

for various applications, recent studies have attempted to account for profitability aspects. From a 

profit maximization perspective, an effective recommender system should balance accuracy with 

profitability, giving greater weight to high-margin items. Study [1] developed an approach that 

establishes a more effective equilibrium between customer and seller perspectives by considering 

both seller profitability and user purchase probability. Their proposed system utilizes purchase 

sequence graphs combined with collaborative filtering to generate recommendations based on 

product benefit and likelihood of purchase. 

In the domain of e-commerce recommendations, researchers have addressed the challenge of 

information overload faced by online shoppers. Hybrid recommender systems have emerged as a 

promising solution to this problem. Research [2] presented a system that integrates association 

rules with genetic algorithms to deliver personalized recommendations. The system first employs 

association rule mining to identify frequent patterns in product transactions, revealing 

relationships between items. Genetic algorithms then identify attractive association rules with high 

accuracy. By combining these approaches, the system can suggest optimal combinations of related 

products with high confidence levels. The association rules employ support thresholds to extract 

frequent itemsets, eliminating low-support items from further analysis. The resulting rules reflect 

patterns of customer purchasing behavior in online stores. The genetic algorithm combines items 

from Apriori-derived association rules to generate new patterns, with some rules being identified 

as highly attractive based on reliability evaluation criteria. Experimental results demonstrate that 

this hybrid method outperforms traditional Apriori association rule mining in both accuracy and 

performance metrics. 

Recent work [3] has explored recommendation systems for dating applications by combining 

social network graph topology with user profile characteristics. The proposed method operates in 

two phases: first, users are clustered based on structural similarity and personal attributes using k-

medoids clustering, ensuring that similar users are grouped together to enhance accuracy. Second, 

the FriendLink algorithm is applied within each cluster to calculate similarity scores between 

users and their non-adjacent cluster members. The system then recommends the top n most similar 

users as potential matches. Evaluations using precision and recall metrics show that this method 

outperforms alternative approaches in suggesting suitable friends by effectively considering user 

characteristics, interests, and interaction patterns. 

The cold start problem remains one of the most significant challenges in recommender systems, 

and researchers have proposed various solutions, with clustering methods being particularly 

prominent. These methods group data based on similarity criteria, aiming to maximize intra-

cluster similarity while minimizing inter-cluster similarity. Study [6] employed k-means, c-means, 

and k-medoids clustering algorithms to address this issue, developing a system that predicts 

ratings for new users and items through clustering combined with regression. Using standard 
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datasets for evaluation, the research demonstrated that this combined approach achieves lower 

error rates compared to individual methods. Another approach [7] utilized multi-view clustering to 

enhance collaborative filtering systems by considering both user-item similarity scores and trust 

scores between users. In this method, users are initially clustered using k-medoids based on 

similarity and trust distances, with the resulting clusters being combined using similarity and trust 

measures to produce final groupings. The study introduced a novel heuristic similarity measure 

(NHSM) designed to overcome limitations of conventional measures, showing superior 

performance in comparative evaluations. 

Location-aware recommendation systems have also seen significant development, though they 

face challenges in accurately assessing distance impacts and assuming uniform distance effects 

across items. Research [8] proposed a solution using spatial statistical methods to examine 

distance influences and estimate ratings when user location data is available. The approach first 

analyzes distance impact on individual item similarity using change point analysis, then fits 

appropriate models to these change points, and finally estimates ratings for users who haven't 

rated target items. For users with only location data available, the system generates 

recommendations of highly accurate and diverse items. Another innovative solution [9] addressed 

the cold start problem through a weighted approach involving clustering of similar items based on 

ratings, identification of appropriate clusters for new items, and weighted recommendations to 

users who have shown preference for similar items. System evaluations confirmed that this 

weighted recommendation approach yields superior results. 

Memory-based collaborative filtering algorithms have proven successful in numerous 

applications, with user-based and item-based approaches offering advantages such as 

implementation simplicity, interpretability, stability, and scalability for modeling diverse user 

behaviors and data types. However, these methods still face challenges including data sparsity, 

scalability, and cold start problems. Research [10] proposed two distinct approaches to improve 

data sparsity and coverage issues in memory-based collaborative filtering for rating prediction 

tasks, aiming to reduce limitations while preserving strengths and enhancing overall efficiency. 

Another study [11] combined fuzzy clustering with the Slope One method to improve e-commerce 

recommendation systems. These algorithms' rating prediction capabilities depend on the existence 

of items rated by both active users and for which popularity differences with active items can be 

calculated. To enhance Slope One performance under sparse data conditions, the study introduced 

virtual predictive items that work alongside real predictive items to improve result quality and 

prediction coverage. The proposed algorithm's strength lies in requiring no additional information 

beyond the rating matrix typically used in collaborative filtering systems. The research employed 

an improved Jaccard similarity measure incorporating fuzzy set theory and a default voting 

method to calculate user similarities under sparse conditions. 

Association rule mining has also contributed to recommender system improvements. While 

collaborative filtering algorithms recommend items based on similar users' rating histories, their 

accuracy suffers when user ratings are highly scattered, leading to poor neighbor identification and 

consequently low-quality recommendations. Study [12] proposed a novel profile-based 

recommendation method using implicit user feedback to overcome data sparsity in user-item 

matrices. This approach is particularly suitable for collaborative filtering with sparse data. The 

research also applied the CBA method during the prediction phase to enhance algorithm accuracy, 

generating rule itemsets for each user based on song features and performing user classification 
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through association rule extraction. The study aimed to improve recommendation accuracy by 

leveraging user preference profiles derived from listening activities and item labels, while 

identifying similar preferences within song categories. 

Genetic algorithm-based methods offer significant flexibility and adaptability for various 

applications, though achieving high accuracy requires substantial computations and preprocessing. 

For successful genetic programming, careful selection of operators and dependent functions is 

crucial, as proper choices both ensure desired outcomes and accelerate solution finding. Research 

[13] achieved promising results by balancing these factors, with evaluations showing the 

algorithm's significant impact on association rule mining. Compared to the previously proposed 

NGEP algorithm in this domain, the new approach delivered 11% higher accuracy. Incorporating 

rule classification before evolutionary stages and adding extra association rule evaluation criteria 

to the algorithm's evaluation function improved rule extraction accuracy from historical data. Key 

applications include shopping basket analysis for purchase recommendations, clustering and 

classification tasks, financial analysis, social network data analysis, and knowledge discovery. 

As databases continue growing exponentially, data mining methods for extracting useful 

information from raw data must evolve accordingly. Large datasets not only increase memory 

consumption and processing time but also generate excessive information for users. To address 

this, user preferences regarding information extraction must be considered, potentially through 

constraint implementation. Constraints can be prioritized by importance, enforcing critical 

requirements while maintaining flexibility for less crucial ones. Study [14] investigated constraint 

application for discovering infrequent sequential patterns, comparing Apriori and FP-Growth 

algorithms. Results showed FP-Growth-based algorithms operate significantly faster by requiring 

only single database access, though they demand more memory for transaction tree storage. To 

reduce memory usage, the research explored evolutionary algorithms, initially addressing solution 

scattering by combining them with tabu search, then applying constraints through this hybrid 

method. While evolutionary approaches require more processing time than FP-Growth, their 

memory efficiency makes them suitable for large databases, with the time-memory tradeoff being 

justified by performance gains. 

3. The proposed method 

In this section, we will conduct a comparative analysis between existing algorithms and our 

proposed algorithm. Following this comparison, we will implement performance enhancements 

through cache memory utilization and asynchronous execution to improve both the speed and 

efficiency of our proposed algorithm. We anticipate these technical improvements will yield 

significant gains in the algorithm's operational performance. 

For the initial evaluation, all three algorithms will be tested using a comprehensive dataset 

comprising 20,000 food items. The dataset will be processed using cross-validation techniques to 

generate appropriate model training and testing subsets. In the subsequent phase, we will focus on 

optimizing the proposed algorithm's performance through two key modifications: first, 

implementing asynchronous execution to accelerate recommendation generation, and second, 

employing cache memory to store generated suggestions, thereby preventing redundant 

computations for identical requests. 
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After detailing the proposed performance improvement methodology and evaluating the 

algorithm's efficiency, we will present the implementation challenges and relevant code segments. 

In the fourth chapter, we will execute each algorithm on the food item datasets and conduct 

evaluations based on graphical representations and standard evaluation metrics. This will allow us 

to quantitatively assess the performance improvements achieved by our enhanced algorithm 

compared to conventional approaches. 

3.1. The algorithm used for performance comparison 

To evaluate the effectiveness of our proposed algorithm, we will employ two fundamental 

recommendation approaches: collaborative filtering and content-based methods. We will analyze 

and compare the results obtained from these established algorithms before presenting our 

enhanced methodology. 

In the collaborative filtering approach, recommendations are generated by analyzing patterns in 

user preferences, which we categorize into two distinct types: explicit and implicit preferences. 

Explicit preferences involve direct user actions such as product ratings or wishlist additions, while 

implicit preferences derive from behavioral indicators including time spent viewing products or 

engaging with content. The system identifies users with similar preference patterns and 

recommends items that these similar users have positively evaluated or purchased. 

The content-based recommendation method operates on a different principle, identifying 

similarities between products based on their intrinsic characteristics. These characteristics may 

include author, publisher, specific keywords, or other defining attributes. The system then 

suggests items that share these characteristics with products the active user has previously shown 

positive engagement with, either through evaluation or purchase. 

Following this comparative analysis of traditional methods, we will introduce our proposed 

enhancements to the recommendation system's performance. Our approach builds upon these 

foundational methods while addressing their inherent limitations through innovative 

optimizations. 

3.2. The dataset used for evaluating the performance of the algorithms 

For our experimental evaluation, we will test all three algorithms using a comprehensive dataset 

containing 20,000 distinct food items. Each entry in this dataset represents a complete meal 

combination comprising at least two dishes along with accompanying beverages, appetizers, and 

spices. This rich dataset was collected in the United Kingdom during a four-year period from 2014 

to 2018, with participation from diverse demographic groups across different age ranges [15]. The 

inclusion of multiple culinary components (main dishes, sides, drinks, and seasonings) for each 

food item provides a robust foundation for testing the recommendation algorithms' ability to 

handle complex, multi-component food preferences. 

3.3. Training and testing data 

We will employ 10-fold cross-validation (k=10) to partition the dataset into training and testing 

subsets. In each iteration of this process, nine folds will be utilized for model training while the 
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remaining single fold will serve as the test set. For evaluation purposes, we will select several 

dishes from each food item as input data, with the remaining items (each containing at least one 

dish) serving as the target predictions for the algorithm. This approach ensures that our evaluation 

properly tests the algorithm's ability to recommend complete meal combinations when provided 

with partial dish information. 

3.4. Association rules 

The association rules algorithm [15] develops a predictive model during the training phase that 

captures dietary patterns from the available dataset, generating a collection of association rules as 

output. Each association rule comprises two key components: (1) a set of antecedent foods that 

demonstrate statistically significant co-occurrence patterns, and (2) a consequent food that 

frequently appears in combination with these antecedents. Every rule is associated with a 

confidence coefficient that quantifies the conditional probability of observing the consequent food 

when the antecedent foods are present.  

During the recommendation phase, the algorithm operates by examining the stored association 

rules and identifying those where: (1) the consequent food differs from the user's current input 

foods, and (2) at least one input food matches one of the antecedent foods in the rule. The system 

then generates personalized recommendations by leveraging these matching rules, specifically 

focusing on their consequent foods. This approach ensures that suggestions are derived from 

meaningful, data-driven relationships between food items while maintaining the algorithm's 

computational efficiency and practical applicability. 

The recommendation process systematically evaluates each potential rule, prioritizing those with 

higher confidence coefficients and stronger matches to the user's input foods, resulting in tailored 

dietary suggestions that reflect established consumption patterns within the dataset. 

 

function Recommend 
input: AM (association rules model) 
       IF (foods selected by respondent) 
output: RF (food recommendations) 

 
1    RF ← empty dictionary 

     

2    for each rule rl in AM where rl.consequent ∉ IF: 
3        f ← rl.consequent  // Food to potentially recommend 

4         

5        if any af in rl.antecedent exists where af ∈ IF: 
6            if f ∉ RF: 
7                RF[f] ← 0  // Initialize if not exists 

8             
9            ante ← rl.antecedent  // All antecedent foods 

10           c ← rl.confidence  // Rule confidence score 

11           intr ← count of foods in ante that are also in IF 

12           ms ← (intr²) / (size(ante) * size(IF))  // Match score 

13            
14           RF[f] ← RF[f] + (c * ms)  // Update recommendation score 

     
15    return RF 

 

Algorithm 1. Pseudocode of association rules algorithm 
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As evident from the pseudocode, the algorithm computes the recommendation score (𝑓) for each 

potential food item by multiplying two key factors: (1) the confidence coefficient (𝑐) of the 

association rule, and (2) the similarity measure (𝑚𝑠) between the input foods (𝐼𝐹) and the rule's 

antecedent foods.  

The similarity coefficient 𝑚𝑠 is calculated using the formula 1:  

𝑚𝑠 =  (|𝐴|  +  |𝐼𝐹|)²/(|𝐴|  ×  |𝐼𝐹|) (1) 

 

where |𝐴| represents the number of antecedent foods in the rule and |𝐼𝐹| denotes the number of 

input foods. This mathematical formulation ensures that food items with antecedent sets showing 

greater similarity to the input foods receive higher recommendation priority. The algorithm then 

aggregates these similarity scores across all relevant rules, providing a comprehensive assessment 

that fully accounts for the similarity between input foods and potential recommendations. This 

scoring mechanism effectively balances both the strength of association rules (through confidence 

coefficients) and the relevance to user inputs (through similarity measures) to generate optimal 

dietary suggestions. 

3.5. Transactional item confidence 

Our transactional item confidence algorithm operates fundamentally differently from the implicit 

social graph approach in its representation of item relationships. While the implicit social graph 

models bidirectional relationships (both incoming and outgoing connections between items), our 

algorithm establishes unidirectional relationships that specifically capture food co-occurrence 

patterns within meal instances. This key distinction enables the algorithm to generate 

recommendations based on two complementary factors: (1) similarity to historical transactions 

containing the input food item, and (2) frequent co-occurrence patterns observed in the dataset. 

During the training phase, the algorithm processes and stores all available food items as a set of 

unique transactions, with each transaction representing a distinct meal instance. This storage 

method ensures two important properties: first, no two transactions share identical composition 

(all transactions have unique lengths), and second, each transaction contains no duplicate food 

items. The resulting transaction database forms the foundation for the algorithm's recommendation 

mechanism, which identifies and leverages these co-occurrence patterns to suggest relevant food 

combinations. 

function Train 
input: M (dataset of all meals) 
returns: TM (map of unique meals with food confidence scores) 
 
1    TM ← empty dictionary 

2    for each meal m in M: 

3        if m ∉ TM: 
4            TM[m] ← empty dictionary 

5        cm ← count of meals in M that contain all foods in m 

6 
7        for each food f in m: 
8            m2 ← set of all foods in m except f 

9            cf ← count of meals in M that contain all foods in m2 

10           TM[m][f] ← cf / cm  // Confidence score for food f in meal m 

11    return TM 
 

Algorithm 2. Training model in the transactional item confidence algorithm 
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For each food item 𝑓 in a transaction (meal instance) 𝑚, the confidence coefficient 𝑇𝑀[𝑚, 𝑓] is 

calculated by first determining 𝑐𝑓 (the count of meal instances containing all foods in m except f) 

and 𝑐𝑚 (the total number of foods in m). The confidence coefficient is then computed as the ratio 

𝑇𝑀[𝑚, 𝑓]  =  𝑐𝑓/𝑐𝑚.  

This calculation method resembles the confidence coefficient used in Association Rules 

algorithms, with the key distinction that it operates specifically on the actual meal instances 

present in dataset M rather than considering all possible food combinations. The resulting 

𝑇𝑀[𝑚, 𝑓] values provide transaction-specific measures of food co-occurrence likelihood within 

the observed meal patterns. 

function Recommend 
input: TM, map of unique meals with confidence for every food 
        IF, foods selected by a respondent 
returns: RF, list of food recommendations 
 
1    RF ← empty dictionary 

2    for each meal m in TM: 

3        if any food f1 in m exists where f1 ∈ IF: 

4            for each food f in m where f ∉ IF: 
5                if f ∉ RF: 
6                    RF[f] ← 0 

7                conf ← m[f]  // Get confidence for this food 

8                inter ← count of foods in m that are also in IF 

9                RF[f] ← RF[f] + (inter * conf) 

10   return RF 
 

 

 

Algorithm 3. Recommendation generation in the transactional item confidence algorithm 

 

During the recommendation generation phase, the algorithm systematically processes all 

transactions containing at least one input food item. For each candidate food not currently present 

in the input set, it computes a recommendation score through the following procedure: First, the 

algorithm calculates a partial score for each relevant transaction by multiplying (1) the sum of co-

occurrences between the candidate food and input foods within that transaction by (2) the 

corresponding confidence coefficient (𝑇𝑀[𝑚, 𝑓]). These transaction-specific scores are then 

aggregated across all applicable transactions to yield a comprehensive final score for each 

candidate food item. This scoring mechanism, while conceptually similar to similarity coefficients 

employed in comparable algorithms, specifically adapts to the transactional nature of the meal 

data by incorporating both co-occurrence frequency and empirically-derived confidence measures. 

The resulting scores enable the system to prioritize recommendations based on both the strength 

and reliability of observed food associations within the historical meal patterns. 

3.6. Pairwise association rules 

The pairwise association rules algorithm differs from other mentioned algorithms by generating 

recommendations solely based on co-occurrence patterns between input food items and other 

foods. This method focuses on pairwise food relationships, creating simpler yet effective 

recommendation patterns. 

function Train 
input: M, data set of all meals 
returns: PM, pairwise association rules 
1    OD ← empty dictionary    // food occurrence counts 
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2    CD ← empty dictionary    // food co-occurrence counts 

3     
4    for each meal m in M: 
5        for each food f in m: 
6            if f not in OD: 
7                OD[f] ← 0 

8                CD[f] ← empty dictionary 

9            OD[f] ← OD[f] + 1 

10             
11            for each food f' in m: 
12                if f' ≠ f: 
13                    if f' not in CD[f]: 
14                        CD[f][f'] ← 0 

15                    CD[f][f'] ← CD[f][f'] + 1 

16     
17    PM ← [OD, CD] 

18    return PM 
 

Algorithm 4. presents the pseudocode for the training phase of the pairwise association rules algorithm. 

 

During the training phase, the algorithm counts the occurrences of each food item in all meal 

instances and stores it in 𝑂𝐷[𝑓]. It also counts the number of times a food item, represented by 𝑓, 

appears together with another food item, represented by 𝑓1, and stores it in 𝐶𝐷[𝑓, 𝑓1].  

function Recommend 
input: PM (pairwise association rules) 
       IF (foods selected by respondent) 
output: RF (food recommendations) 
 
1    RF ← empty dictionary 

2    P ← empty dictionary  // Stores conditional probabilities 

3    W ← empty dictionary  // Stores weights for probabilities 

4    OD ← PM[OD]  // Food occurrence counts 

5    CD ← PM[CD]  // Food co-occurrence counts 

 
6    for each input_food in IF: 

7        for each food f in CD[input_food] where f ∉ IF: 

8            if f ∉ P and f ∉ W: 
9                P[f] ← empty list 

10               W[f] ← empty list 

11           p ← CD[input_food][f] / OD[input_food] 

12           append p to P[f] 
13           append OD[input_food] to W[f] 
 
14    for each food f in P: 
15        RF[f] ← sum(P[f]) * sum(W[f]) 

16    return RF 
 

Algorithm 5. Presents the pseudocode for the recommendation generation phase of the pairwise association rules 

algorithm. 

 

In the recommendation generation phase, all pairs of input food items are considered. For each 

pair, a conditional probability, denoted as 𝑝, is calculated. This is done by dividing the number of 

times the input food item appears with other food items by the total number of meal instances that 

include the input food item. For example, if food item 𝐴 is observed 10 times in different meal 

instances and only appears twice with food item 𝐵, the conditional probability of recommending 

food item 𝐵 for food item 𝐴 would be 0.2. For each pair of input food items, a conditional 

probability is calculated and the sum of conditional probabilities for each food item is computed 

and stored in 𝑃[𝑓]. The pairwise association rules algorithm has the capability to assign weights to 
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each food item. The weight of each food item is calculated by summing up the total number of 

meal instances that include that food item. Finally, to generate recommendations and rank them, 

the sum of conditional probabilities for each food item is multiplied by the sum of weights for that 

food item and stored in 𝑅𝐹[𝑓]. The recommended list of foods based on the input food items is 

stored in 𝑅𝐹 and considered as the output of the algorithm. 

4. Algorithm Improvement 

The proposed enhancement to the pairwise association rule algorithm introduces a distributed 

modeling approach where individual training models are generated for each distinct food item and 

meal combination. This architectural innovation replaces the conventional monolithic model 

structure with a granular system of interconnected sub-models, each specifically tuned to 

particular dietary components. The methodology employs an advanced versioning system that 

tracks modifications at the ingredient level, triggering targeted updates only to relevant sub-

models when new nutritional data or meal patterns emerge.  

For computational optimization, the system implements a multi-layered caching architecture with 

tiered memory allocation, prioritizing frequently accessed models in high-speed cache while 

maintaining others in readily accessible memory. The asynchronous processing framework 

incorporates a job prioritization queue that dynamically allocates computational resources based 

on real-time demand patterns and model complexity. This ensures critical updates for commonly 

used ingredients receive immediate attention while less urgent revisions proceed in background 

cycles. 

Crucially, this multi-layered caching of modular training models, which represent pre-computed 

co-occurrence patterns for specific item sets or combinations, practically mitigates concerns 

associated with the theoretical quadratic scaling of exhaustive pairwise co-occurrence counting 

across the entire itemset. By serving frequent requests from these cached modular patterns, the 

system avoids redundant, on-the-fly computations and significantly reduces the effective 

computational burden during the recommendation generation phase, as evidenced by the 

performance gains in Section 5.4. 

The recommendation engine utilizes a hybrid scoring system that combines the pairwise 

association metrics with freshness indicators for each sub-model, ensuring users receive 

suggestions based on both historical patterns and the most current dietary information. A 

dedicated model synchronization service continuously reconciles the distributed models with the 

central knowledge base, maintaining consistency across the entire recommendation ecosystem 

while preserving the performance benefits of decentralized processing. To manage this, the 

synchronization service employs strategies such as versioning for the modular models and a 

defined reconciliation process (e.g., timestamp-based conflict resolution or merging updates based 

on predefined rules when integrating with the central knowledge base). This approach aims to 

ensure that the system reflects a consistent state over time, despite the asynchronous nature of 

individual model updates, thereby addressing potential consistency issues while retaining the 

benefits of efficient resource management. 

This sophisticated implementation maintains the algorithm's core association rule logic while 

adding dimensional scalability, allowing the system to handle expanding food databases and 
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evolving dietary trends without compromising response times or recommendation quality. The 

modular design also facilitates seamless integration of new data sources, such as seasonal 

ingredient availability or emerging nutritional research, through targeted model extensions rather 

than complete system retraining. 

The pseudocode in Algorithm 6 presents our enhanced pairwise association rules algorithm while 

maintaining the original structure. It implements two key improvements: (1) a freshness weighting 

system that prioritizes recently updated food models, and (2) cache integration for efficient model 

retrieval. The algorithm still processes input meals (TM) and selected foods (IF) through the same 

nested loop structure, but now multiplies each recommendation score by a time-decay factor based 

on when the underlying food model was last updated. 

The enhanced version preserves all original functionality while adding model recency awareness. 

It calculates freshness weights by comparing model update times (MODEL_UPDATE_TIMES) 

against the current time, applies these weights during score computation, and handles uncached 

models with default values. The output remains a sorted list of food recommendations (RF), but 

now reflects both co-occurrence patterns and model freshness. All modifications were carefully 

designed to maintain compatibility with existing implementations while delivering the promised 

performance improvements. 

function Recommend 
input: TM, map of unique meals with confidence for every food 
       IF, foods selected by a respondent 
       CACHE, stored training models for quick access 
       MODEL_UPDATE_TIMES, last update timestamps 
returns: RF, list of food recommendations 
 
1    RF ← empty dictionary 

2    freshness_weights ← empty dictionary 

3    current_time ← get_current_time() 

     
    // Calculate freshness weights for all relevant models 
4    for each food f in IF: 
5        if f in CACHE: 
6            time_diff ← current_time - MODEL_UPDATE_TIMES[f] 

7            freshness_weights[f] ← 1 - min(time_diff/MAX_UPDATE_INTERVAL, 1.0) 

8        else: 
9            freshness_weights[f] ← 0.5  // Default weight for missing models 

     
10   for each meal m in TM: 
11       if any food f1 in m exists where f1 ∈ IF: 

12           for each food f in m where f ∉ IF: 

13               if f ∉ RF: 
14                   RF[f] ← 0 

15               conf ← m[f]  // Get confidence for this food 

16               inter ← count of foods in m that are also in IF 

                 
                // Apply freshness weighting to the score 
17               max_freshness ← 0 

18               for each food f1 in m where f1 ∈ IF: 
19                   if freshness_weights[f1] > max_freshness: 
20                       max_freshness ← freshness_weights[f1] 

                 
21               RF[f] ← RF[f] + (inter * conf * max_freshness) 

     
22   return sort_by_score(RF) 

 

Algorithm 6. Pseudocode for Enhanced Pairwise Association Rules Algorithm: 
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5. Evaluation and Comparison of Results 

This section presents the experimental evaluation and comparative analysis of the results obtained 

through the methodologies described previously. We systematically assess the performance 

characteristics, advantages, and limitations of the proposed algorithm in comparison with existing 

approaches. 

Our experimental framework utilizes a comprehensive dataset comprising 20,000 distinct meal 

options, each containing a minimum of two food items along with associated beverages, 

appetizers, and spices. This nutritional dataset was collected across diverse age groups in England 

during the period 2014-2018, ensuring broad demographic representation. For robust evaluation, 

we employ 10-fold cross-validation, partitioning the dataset into training (9 folds) and testing (1 

fold) subsets in each iteration. The experimental design considers multiple food items from each 

meal as input, with the remaining items (containing at least one food element) serving as 

prediction targets for the algorithm's evaluation. This methodology enables thorough testing of the 

algorithm's capability to complete partial meal patterns while maintaining the statistical validity of 

our performance assessments. 

5.1. Evaluation Metrics 

Next, we will examine the evaluation metrics of the recommendation systems introduced in this 

study. The accuracy and recall evaluation metrics are used to measure the quality of a 

recommendation system[15]. For each algorithm, an accuracy-recall graph will be plotted, and the 

experimental results will be obtained. In this metric, accuracy represents the ratio of correct 

predictions to total predictions. Similarly, recall represents the ratio of correct predictions to total 

acceptable cases. The precision variable is calculated using the formula (2): 

Precision = TP / (TP + FP) (2) 

 

In this formula, TP represents the number of true positive predictions, and FP represents the 

number of false positive predictions. The recall variable is calculated using the formula (3): 

Recall = TP / (TP + FN) (3) 

 

Here, TP represents the number of true positive predictions, and FN represents the number of false 

negative cases. 

The normalized discounted cumulative gain (nDCG) algorithm[15] is used to analyze the quality of 

the top 15 recommended items, which are usually more relevant to most users than the rest of the 

recommendations. To measure the quality of recommendations for each input food item, the 

average normalized discounted cumulative gain (nDCG) is calculated as follows: 

𝑛𝐷𝐶𝐺15 =  
𝐷𝐶𝐺15

𝐼𝐷𝐶𝐺15

 (4) 

 

The discounted cumulative gain (DCG) is calculated using the Eq. (5): 



250 S.M. Mortazavi, F. Feyzi/ Computational Sciences and Engineering 4(2) (2024) 237-257  

 

 

𝐷𝐶𝐺15 =  ∑
(2𝑟(𝑖) − 1) 

(𝑖 + 1) 

15

𝑖=1

 (5) 

 

Where 𝑟(𝑖) represents the relevance score of food item i. The relevance score is considered as a 

value between 0 and 1, where 0 indicates an incorrect recommendation and 1 indicates a correct 

recommendation. In the second part of the formula, we have the ideal discounted cumulative gain, 

which will always be equal to 1 in our evaluation, indicating a correct recommendation as the first 

result. 

5.2. Evaluation Results 

As clearly demonstrated in Figure 1, the pairwise association rules algorithm achieves superior 

performance, as evidenced by its significantly larger area under the curve (AUC) compared to 

other methods. The transactional item confidence algorithm shows competitive results, marginally 

outperforming the conventional association rules approach to secure second place in our 

comparative evaluation. This performance hierarchy remains consistent across all measured 

metrics, confirming the effectiveness of our proposed pairwise method while acknowledging the 

respectable showing of the transactional confidence approach. 

 

 

Figure 1. Comparative evaluation of the three algorithms using the accuracy-coverage metric when processing meal 

recommendations with 2 input foods 

 

Figure 2 clearly shows that the pairwise association rules algorithm delivers the best overall 

performance among the three evaluated approaches, particularly when processing exactly 2 input 

foods where it significantly outperforms the alternatives. However, its performance degrades 

when handling fewer or more than 2 input foods, suggesting it is specially optimized for pairwise 

relationships. The transactional item confidence algorithm demonstrates more consistent 

performance across all input scenarios, maintaining stable recommendation quality regardless of 

the number of input foods, though it consistently trails behind the pairwise approach. Notably, 
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both the pairwise and transactional algorithms substantially outperform the standard association 

rules method, which ranks last in all test cases despite showing slightly better results when 

processing 2 or more input foods compared to single-input scenarios. 

The results indicate that while the pairwise association rules algorithm achieves superior accuracy 

in its optimal use case (2 input foods), the transactional item confidence method may be preferable 

in applications requiring consistent performance across varying input lengths. Both advanced 

algorithms show clear improvements over the baseline association rules approach, validating their 

enhanced design principles. The performance patterns suggest that the pairwise method's strength 

lies in its specialized handling of food pairs, while the transactional approach offers more robust 

generalization across different input conditions. 

 

Figure 2. Compares the three proposed algorithms using the nDCG metric for 1 to 5 input foods 

 

Figure 3 demonstrates that the pairwise association rules algorithm maintains superior 

performance across most evaluation points in the accuracy-recall comparison for 2 input foods. 

While exhibiting a modest performance decline in certain operational ranges, it consistently 

outperforms competing algorithms. The transactional item confidence algorithm shows relatively 

stable performance, with its closest competitive positioning occurring where the pairwise method 

experiences its slight degradation. 

The observed convergence in algorithm performance occurs primarily due to two factors: (1) the 

pairwise method's controlled performance variation within acceptable thresholds, and (2) more 

pronounced performance declines in the alternative algorithms. Notably, even during this 

convergence, the pairwise association rules algorithm maintains its fundamental performance 

advantage, with the transactional method only approaching comparable levels when the pairwise 

approach operates below its peak efficiency. This pattern confirms the pairwise algorithm's 

robustness while highlighting scenarios where the transactional approach may become 

competitive. 
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Figure 3. Compares the three proposed algorithms using the accuracy-coverage metric for 4 input foods 

 

5.3. Execution Time Analysis 

Table 1 compares the computational efficiency of the three algorithms, measuring both model 

training and recommendation generation times in milliseconds.  

 

Table 1. Average time required to create a training model and generate recommendations 

 

The results in Table 1 reveal an interesting efficiency profile for the pairwise association rules 

algorithm. While it ranks second in training model creation speed (being slightly slower than the 

standard association rules algorithm), it emerges as the clear leader in recommendation generation 

time. 

5.4. Evaluation Results of the Improved Method 

The pairwise association rules algorithm demonstrated superior performance in our evaluations, 

achieving the highest nDCG score while maintaining the fastest recommendation speed. Based on 

these results, we selected this algorithm for further optimization. 

Tests were conducted using two datasets: a small-scale dataset (100 products across 150 

categories) and a large-scale dataset (10,000 products across 15,000 categories). All experiments 

ran on a Core i7 system with 16GB RAM. 

While previous tests compared all three algorithms, this evaluation specifically measures the 

performance improvement of the enhanced pairwise algorithm against its original version using 

the smaller dataset. Results confirm our optimizations successfully increase efficiency while 

maintaining recommendation quality. 
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Figure 4. Comparison of the execution speed of the PAR algorithm and the enhanced version of PAR for 2 and 4 

input foods using the smaller dataset 
 

Figure 4 demonstrates significant performance gains achieved by the enhanced algorithm. The 

improved version operates approximately 102% faster than its predecessor, primarily due to its 

optimized training approach that focuses on creating smaller, more efficient models using just two 

input items rather than processing all available items. This strategic modification substantially 

reduces computational overhead while maintaining recommendation accuracy. 

The data reveals interesting performance patterns: 

• The baseline PAR algorithm shows modest improvement (3%) in the 2-input scenario 

• Its enhanced version delivers more substantial gains (16%) under the same conditions 

• Most notably, the optimized algorithm maintains a consistent 3.6x speed advantage overall 

These results validate our architectural improvements, particularly the decision to avoid 

constructing comprehensive training models in favor of targeted, input-specific processing. The 

performance differential remains stable across test conditions, confirming the reliability of our 

enhancements. The 102% speed improvement in the primary test case demonstrates the 

effectiveness of our resource-conscious modeling approach. 

Our initial experiments with 2 and 4 input items revealed a 16% increase in recommendation 

generation time. Through cache memory implementation, we successfully stabilized processing 

times, maintaining near-constant recommendation speeds regardless of input size. This 

optimization, visualized in Figure 5, stems from storing compact training models in cache 

memory, significantly reducing computational overhead. 

 

 

Figure 5. Comparison of the execution speed of the improved PAR algorithm with and without using cache memory 

(using a small dataset). 
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For comprehensive evaluation, we are now extending testing to larger datasets containing 10,000 

unique products. This scalability assessment will: 

1. Verify the cache optimization's effectiveness with substantial product volumes 

2. Measure performance consistency across different dataset scales 

3. Validate the algorithm's practical applicability in real-world, large-scale environments 

The transition to larger datasets represents a crucial stress test for our caching mechanism and 

overall architecture, particularly examining whether the observed performance benefits persist 

when handling significantly more complex product relationships and recommendation scenarios. 

Figure 6 clearly demonstrates the performance contrast between the original PAR algorithm and 

its improved version. While the PAR algorithm shows a noticeable slowdown, taking 

approximately one second longer to generate recommendations for 2-input items compared to 

previous tests, the enhanced version maintains remarkably stable performance with negligible 

timing fluctuations. This divergence becomes particularly significant when examining their 

scalability - the original algorithm's processing time increases substantially with larger inputs, 

whereas the improved algorithm continues to deliver consistent response times regardless of input 

complexity. The improved version's resilience to performance degradation stems from key 

architectural optimizations that effectively decouple processing time from input size, a crucial 

advantage for real-world deployment scenarios where both small and large input sets must be 

handled efficiently. Most notably, even under increased computational loads, the enhanced 

algorithm preserves its sub-second response times, maintaining the 1-second advantage over the 

original PAR implementation that was observed in simpler test cases. 

 

 

Figure 6. Comparison of the execution speed of the PAR and EPAR algorithms for 2 and 4 input items (using a large 

dataset) 

 

Figure 7 compares the recommendation generation times of the EPAR algorithm with and without 

cache memory implementation. The results demonstrate that the cached version maintains 

significantly faster and more consistent performance across all test cases, while the uncached 

implementation shows noticeable latency increases as input complexity grows. 
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Figure 7. Examination of the time required for recommendation generation in the EPAR algorithm with and without 

cache memory 

6. Conclusion and Future Works 

Modern recommendation systems leverage intelligent algorithms to analyze user preferences and 

deliver personalized suggestions, with collaborative filtering and content-based approaches being 

the most prevalent. While effective, these traditional methods face significant challenges including 

the cold-start problem and privacy concerns related to user data collection. To overcome these 

limitations, we developed the pairwise association rules (PAR) algorithm which operates 

independently of private user information or historical profiles, offering a privacy-preserving 

alternative.  Our comprehensive evaluation compared three recommendation algorithms using a 

dataset of 20,000 diverse food items. The results demonstrated PAR's superior performance across 

all measured metrics. Building on this success, we implemented key optimizations to further 

enhance PAR's efficiency: the algorithm was restructured to utilize modular training models, 

significantly reducing model creation time while enabling easier maintenance and updates. 

Additionally, we integrated a sophisticated caching mechanism to store training models in 

memory, eliminating redundant computations and conserving system resources. These 

improvements were rigorously validated across datasets of varying sizes, confirming consistent 

performance gains in both small and large-scale environments.  The optimized PAR algorithm 

delivers substantially faster recommendation generation while maintaining high accuracy levels. 

As shown in our experimental results, the enhanced version processes requests up to 102% faster 

than the original implementation, with particularly impressive performance stability when 

handling increasing input complexity.  

Looking forward, several promising research directions emerge, including investigating how 

regional dietary patterns might influence recommendation accuracy, exploring PAR's applicability 

to diverse recommendation scenarios such as social media or email suggestions, and developing 

category-based filtering mechanisms using advanced item classification parameters. These 

innovations could further strengthen PAR's position as a robust, privacy-conscious alternative to 

conventional recommendation systems, particularly valuable in cold-start situations or 

applications requiring strict data protection. Further investigation into the algorithm's 

generalizability across diverse domains, such as movie or retail recommendations which often 

feature sparse or unstructured datasets, is also a key future direction. This will involve exploring 

methodologies for adapting the transactional co-occurrence pattern discovery to such data 

structures, potentially by defining 'items' and 'transactions' through feature engineering from 
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unstructured text (e.g., extracting keywords or topics to act as items) or by developing specialized 

techniques to handle sparsity within the PAR framework. The current study’s focus on structured 

meal data provides a strong foundation, and extending this to less structured and sparser scenarios 

will be a valuable next step to ascertain broader applicability. Furthermore, future benchmarking 

will extend comparisons to state-of-the-art hybrid recommender systems, including neural 

collaborative filtering approaches, to provide a broader performance perspective against 

contemporary methods. While the current study demonstrates clear benefits from the proposed 

enhancements, a detailed ablation study is planned for future work. This study will aim to 

quantitatively isolate the individual performance contributions of the caching mechanism versus 

the asynchronous model update framework, offering deeper insights into the impact of each 

architectural innovation on both efficiency and recommendation quality. The success of our 

architectural improvements demonstrates how careful system design can achieve both 

performance scalability and consistent recommendation quality. 
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