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 Violence Artificial Intelligence (AI) and Deep Learning (DL) systems 

present a difficult research area for identifying violence in videos 

within urban security frameworks and video surveillance systems. The 

proposed model divides violence detection tasks in video into two 

stages to achieve both rapid processing and precise outcomes. The 

LeNet-5 model operates at a speed of 0.8 frames per second to filter 

out non-violent videos during the first stage of operation. The second 

analysis stage employs the ResNet-50 model to inspect videos for 

potential violence when their probability surpasses 0.4. The Real-Life 

Violence dataset consisting of 1951 videos with 1000 violent and 951 

non-violent videos was used for testing this system. The 

implementation produced 97.03% accuracy together with 95.70% 

recall and 98.46% precision and 97.06% F1-Score and AUC of 0.9902. 

Each frame requires only 20 milliseconds of processing time which 

allows real-time application of this system. A comparative analysis 

with existing methods, such as 3D-CNN, ViT, and YOLOv5+TSN, 

highlights the superiority of the proposed model in terms of both 

accuracy and speed. The system achieves better violence detection 

capabilities and operational reliability in real-world applications 

because it decreases detection errors. 
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1. Introduction  

Urban life depends heavily on Closed-Circuit Television (CCTV) cameras as their essential 

elements in modern society [1]. These surveillance cameras function throughout public areas as well 

as shopping centers and transportation facilities and active streets to boost security while fighting 

criminal activities [2]. These security cameras alone do not resolve the security concerns [3]. 

Security cameras in crowded shopping centers need to respond swiftly when violent individuals 
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start their actions which causes panic and destruction. The situation requires quick response because 

time plays an essential role [4]. Security personnel would receive immediate notification through 

an alarm triggered by a real-time automatic violence detection system which would enable them to 

stop additional damage from occurring. Traditional video surveillance systems function as static 

cameras that need human operators for monitoring purposes since they lack artificial intelligence 

capabilities [5]. The system produces both high costs and human errors because of operator fatigue 

[6]. The year 2020 saw a violent shopping center incident which led to serious injuries according to 

reports. The implementation of an alert system would have prevented the incident from causing 

significant damage according to research [7]. This study addresses the challenge through its 

research. The proposed system implements a dual stage approach which utilizes LeNet-5 combine 

with ResNet-50 to identify violent content in videos efficiently and accurately [8, 9]. The system 

decreases computational requirements while showing flexibility to different environmental 

conditions. The developed model marks a substantial advancement toward better urban security by 

stopping violent events. The identification of violence in video content stands as a difficult issue 

within Deep Learning (DL) and image processing research domains [10]. Researchers have 

conducted multiple studies about this subject utilizing different techniques during the recent years 

[11]. Hand-crafted feature-based approaches including Histogram Of oriented Gradients (HOG) and 

Scale-Invariant Feature Transform (SIFT), were employed in the past for video motion and violence 

detection [12]. Scientists began using these methods because they were easy to implement and 

demonstrated reasonable abilities to detect motion variations [13, 14]. The detection model showed 

inferior results when confronted with environmental changes including lighting variations along 

with camera angle variations and diverse types of motion [15]. Convolutional Neural Networks 

(CNNs) transformed violence detection research through their arrival [16]. LeCun et al. developed 

convolutional networks to perform image feature extraction automatically which led to enhanced 

detection accuracy levels [17]. He et al., established the ResNet-50 architecture to overcome deep 

network gradient vanishing thus making it one of the primary image recognition models [18]. Song 

et al. applied 3D-CNN for video analysis in violence detection which resulted in an 94.3% accuracy 

level. The model demonstrated excessive computational complexity which resulted in 150 

milliseconds per frame processing time making it unfit for real-time usage [19]. The application of 

hybrid approaches that unite multiple models or techniques has increased in popularity during the 

recent years [3, 20]. The combination of CNN, LSTM,  and attention mechanism by Vosta et al., 

achieved better results for violence detection accuracy on the UCF Crime dataset [21]. The proposed 

model achieved 96.21% accuracy yet its processing requirements including 4000 MB memory use 

and 200 milliseconds per frame made it impractical for real-time usage. A vision transformers 

(ViTs) represent a new approach which competes against CNNs as an alternative solution [22]. 

Rendón-Segador et al. applied the ViT model to detect violence in videos which produced high 

accuracy [23]. The research by Gautam et al. developed a model which integrated YOLO v5 and 

CNN to detect violence effectively with 98.63% accuracy and 66 milliseconds per frame processing 

time [24].  However, the advancement of violence detection systems remains hindered by an 

essential trade-off between detection precision and real-time capability which leads to major 

security concerns in urban areas [25]. The proposed research implements a two-part architecture 

that joins LeNet-5 speed to ResNet-50 accuracy to deliver real-time processing (24 FPS) with 

retained lighting/angle resistance. The system incorporates three essential improvements to handle 

ongoing issues with previous research which include (1) hierarchical filtering for reduced 
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computational needs and (2) adaptive threshold values at 0.4 or 0.5 to reduce incorrect alarms along 

with (3) memory consumption optimization to support edge deployment under 1000 MB. 

2. Method & Materials 

This study uses a video violence detection system based on the combination of LeNet-5 and ResNet-

50 models using a benchmark dataset, which increases accuracy while reducing processing time. 

The system implementation method reduces computational requirements while maintaining tunable 

performance in different situations and has acceptable generalizability. 

2.1. Dataset 

This study relies on the Real-Life Violence Situations Dataset that stands as the leading extensive 

dataset for identifying violence in videos [26]. The Kaggle* platform makes this dataset accessible 

to the public through its platform and includes videos showing both violent and non-violent real-

life situations. This dataset has been widely adopted in recent violence detection studies due to its 

realistic representation of real-world scenarios. The dataset features 1951 videos arranged in two 

distinct groups: 

1. Violent Videos: This section contains 1000 videos showing violent behaviors including 

fights and physical assaults together with various violent activities. 

2. Non-Violent Videos: The second subcategory contains 951 videos that show regular 

nonviolent activities including walking and talking as well as routine daily activities. 

Furthermore, each video measurement ranges from 5 to 10 seconds which meets the needs of DL 

operations. The videos display three different environment types through their mix of open spaces 

(streets and parks) and closed spaces (malls and transit hubs) combined with natural and artificial 

lighting conditions. The MP4 file format stores these videos with sufficient quality to support easy 

processing by AI systems. The analysis becomes complicated due to fast and violent motions that 

appear in certain video elements. The detection accuracy of lighting conditions is a challenge while 

multiple camera angles require flexible model designs. 

 

Figure 1. Overall Flowchart of the Proposed method. 

 
* https://www.kaggle.com/datasets/mohamedmustafa/real-life-violence-situations-dataset 



206 A Safdel et al./ Computational Sciences and Engineering 4(2) (2024) 203-216 206 

 

 

 

Figure 2. Example image of a violent example in the dataset [26]. 

2.2. Filtering Non-Violent Videos with LeNet-5 

As shown in Figure 3, LeNet-5 represents one of the first CNN designs which uses seven hierarchical 

layers to perform handwritten digit recognition. The network design contains tree convolutional 

layers with tanh activation and 5×5 kernels (blue blocks) then two average-pooling layers (2×2 

subsampling) in sequence (purple blocks) before moving onto three fully connected layers (84-

neuron hidden layer and the 2-output classification layer (pink block)). Coarse spatial information 

proceeds from sequential convolution and pooling operations before ending in an Euclidean Radial 

Basis Function (RBF) output layer used for digit classification.  The network contains sixty thousand 

parameters of computation distributed across its architecture which establishes a standard for current 

DL theory and practice. In the first, the LeNet-5 model is employed to filter out non-violent videos. 

Due to its lightweight structure and high speed, this model can operate at a speed of 0.8 frames per 

second and effectively eliminate non-violent videos [27]. 

 

Figure 3. LeNet-5 Architecture for Detailed Violence Detection. 
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1. Input Data: 5 frames extracted from each video with a size of 28×28 pixels. 

2. Normalization: Pixel values are normalized using the mean [0.485, 0.456, 0.406] and 

standard deviation [0.229, 0.224, 0.225]. 

3. Output: Violence Probability for each video. 

If the violence probability is less than the threshold of 0.4, the video is identified as non-violent and 

further detailed analysis is omitted. The threshold value of 0.4 was selected based on empirical 

testing, and future work could leverage optimization techniques such as genetic algorithms to 

dynamically adjust this parameter for varying conditions. 

2.3. Detailed Analysis of Suspicious Violent Videos with ResNet-50 

The advanced deep CNN RezNet-50 serves for powerful video analysis especially in violence 

detection applications as shown in Figure 4. RezNet-50 comprises 64 layers which incorporate blue-

colored convolutional blocks with Rectified Linear Unit (ReLU) activation along with 3×3 kernels 

and purple-colored max-pooling layers and bottleneck residual connections (pink blocks) to manage 

gradient vanishing issues. The model’s various components work together to extract hierarchical 

features which protect essential fine-grained spatial-temporal patterns needed for correct 

classification. Through its deep residual network RezNet-50 deals with video frames and reaches 

high accuracy for violence detection at a real-time frame rate of 24 FPS which exceeds the 

capabilities of lightweight models such as LeNet-5 [28]. Skip connections in the model (Figure 4 

pink blocks) enable deeper training by improving gradient flow which prevents performance 

degradation during the process. The yellow blocks in the network represent its fully connected layers 

which use softmax activation for violent/non-violent binary classification. In the second, videos 

with a violence probability higher than the threshold of 0.4 are passed to the ResNet-50 model. Due 

to its greater depth and high feature extraction power, this model is capable of more detailed video 

analysis. 

 

Figure 4. ResNet-50 Architecture for Detailed Violence Detection. 

 

1. Input Data: 5 frames extracted from each video with a size of 224×224 pixels. 

2. Normalization: Similar to the first stage. 

3. Fine-Tuning: The model has been fine-tuned using the Real-Life Violence dataset. 

4. Output: Final Violence Probability. 
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2.4. Data Preprocessing  

Data preprocessing is a crucial step in preparing videos for the proposed model, which directly 

impacts the performance of the models [29]. This process is performed to standardize inputs and 

reduce noise, enabling the models to accurately extract features related to violence. 

2.4.1. Frame Extraction 

For each video in the Real-Life Violence dataset, which includes 1951 videos (1000 violent and 951 

non-violent), the total number of frames is first calculated using the OpenCV library. Then, to reduce 

computational load and preserve key temporal information, 5 frames are extracted from each video 

with a uniform step (step = frame_count // 5). This selection ensures that the frames represent a 

suitable temporal distribution of the video content. In cases where the number of frames is less than 

5 (such as very short videos), duplicate frames or frames filled with black color (RGB: [0, 0, 0]) are 

added to maintain a constant count. 

2.4.2. Color Space Conversion 

The extracted frames, which are read by OpenCV in the BGR color space by default, are converted 

to the RGB color space to align with the input standards of DL models [30]. 

2.4.3. Data Augmentation 

To improve the generalization of the models, data augmentation techniques such as random rotation 

(±10 degrees), horizontal flip with a probability of 0.5, and brightness variations (±0.2) were used 

during the training phase. These techniques help reduce overfitting and increase the model’s 

robustness to visual variations [31]. These steps were automatically implemented in a pipeline to 

ensure that the inputs for both LeNet-5 and ResNet-50 models are prepared uniformly and optimally. 

 2.5. Proposed Method 

The proposed method, through testing on the UCF101 dataset and challenging conditions, 

demonstrated suitable generalization and explainability potential, but requires improvements in 

preprocessing, fine-tuning, and the use of more advanced methods such as SHAP to enhance 

accuracy and transparency in complex scenarios.   As shown in Figure 5, the proposed model begins 

video processing through normalization of extracted 5 frames using statistics from ImageNet. 

LeNet-5 screens videos at an initial level while potential violence detection goes to ResNet-50 for 

verification. The system combines model predictions by applying a 0.5 confidence threshold to the 

maximal output value between LeNet and ResNet-50 (P=max(P_LeNet,P_ResNet)). The system 

implements a cascaded method that combines LeNet-5's fast speed (0.8 FPS) with ResNet-50's 

precise evaluation by providing violence indications and accuracy percentages. The design structure 

of this system maintains immediate operational performance standards for surveillance needs while 

reducing processing expenses. 
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Figure 5. Overall Flowchart of the Proposed method. 

 

2.5.1. First-Stage 

At the start of processing LeNet-5 operates as a lightweight architecture to generate initial violence 

probability scores (P_LeNet). The first-stage filter operates as an efficient processor by analyzing 

all frames at a fast speed using small computational power (0.8ms per frame processing time). The 

system employs an optimally set threshold T=0.4 which achieves top performance in experimental 

trials by eliminating 68% of non-violent media while producing less than 5% false negative results. 

When the threshold is exceeded, frames move to further evaluation yet all other frames receive 

instant non-violent classification to decrease system workloads. 

2.5.2. Second-Stage  

The refined analysis stage applies ResNet-50's deep residual learning abilities for generating precise 

probability predictions (P_ResNet). The 50-layer network architecture demonstrates superiority in 

detecting violent patterns because it exploits its advanced hierarchical extraction method to 

recognize spatial-temporal behavioral indicators. A secondary confidence threshold of 0.5 based on 

empirical evidence provides optimal precision-recall balance to achieve 93.4% accuracy on Real-

Life Violence dataset measurements. A dual-threshold method structures an optimal analysis 

framework that boosts operational efficiency while preserving analytical precision. 
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2.5.3. Advanced Decision Logic 

The system performs a decision fusion process by selecting maximum probabilities between both 

stages (P = max (P_LeNet, P_ResNet)) for producing end classifications (L). By using the 

probabilistic framework, the system demonstrates several significant benefits. 

I. The system maintains strong ability to detect violence incidents while keeping the rate 

of incorrect alerts at a minimum. 

II. Security personnel can make decisions based on alert confidence levels through this 

system design 

III. The system enables threshold adjustments according to specific requirements of 

various deployment settings. 

IV. This model produces easily comprehendible confidence scores (P) that describe each 

prediction. 

3. Experimental Results 

3.1. Implementation Environment 

Development of these models used the PyTorch framework on Windows 11 64-bit operating system. 

Training and inference operations took place on an NVIDIA Tesla P100 GPU supplemented with 

16GB of memory for speedup purposes. The Adam optimizer with a learning rate of 0.001 served 

as the optimization method [32]. The data was divided into 80/20 training-testing partitions for 

establishing reliable model assessment [33]. As well as, For LeNet-5, the frames are resized to 

28×28 pixels to match the lightweight architecture of this model. For ResNet-50, the frames are 

resized to 224×224 pixels, which is the standard input size for this model [34]. This process is 

performed using bilinear interpolation in the PIL library to preserve visual quality. Finally, after 

resizing, the frames are converted to three-channel (RGB) tensors and normalized using the mean 

([0.485, 0.456, 0.406]) and standard deviation ([0.229, 0.224, 0.225]). These values are extracted 

from the ImageNet dataset and help standardize pixel values to improve model convergence [16]. 

The normalization formula is as follows: 

𝑋norm =
𝑋 − μ

σ
 (1) 

 

3.2. Performance Evaluation 

The proposed model conducted an evaluation on the Real-Life Violence dataset through standard 

performance metrics that included accuracy, recall, precision, F1-score, AUC-ROC and processing 

speed [35]. The proposed model achieves its performance evaluation by comparing with state-of-

the-art techniques in Table 1 and Table 2 which shows its capability for live violence detection 

systems. 

 



 A Safdel et al./ Computational Sciences and Engineering 4(2) (2024) 203-216 211 

 

 

3.3. Simulation Results 

The confusion matrix functions as a fundamental performance evaluation tool for classification 

models to determine true/false positive and negative results [36]. The visual assessment of our 

model class predictions appears in Figure 6 as a confusion matrix that enables deep accuracy analysis 

for every target group. The matrix offers essential diagnostic information about correct predictions 

and specific errors thus enabling complete performance examination that extends standard accuracy 

indicators. The correct classification instances appear on the diagonal elements and off-diagonal 

entries show specific misclassification patterns that guide potential model development [37]. 

 

Figure 6. Confusion Matrix Illustration for the proposed model. 
 

The confusion matrix in Figure 6 provides a detailed breakdown of the proposed model's classification 

performance on the Real-Life Violence dataset [26]. It highlights the model's ability to distinguish 

between violent (positive class) and non-violent (negative class) videos with high precision. The 

matrix reveals a true positive (TP) rate of 95.7%, indicating robust detection of violent scenes, while 

the false positive (FP) rate is exceptionally low (1.54%), demonstrating minimal misclassification of 

non-violent content. The false negatives (FN) account for 4.3%, suggesting rare misses in violence 

detection, which could stem from ambiguous motion patterns or lighting artifacts. Conversely, the 

true negative (TN) rate of 98.46% underscores the model's reliability in filtering out non-violent 

footage. This performance aligns with the reported metrics (F1-score: 97.06%, AUC: 0.9902), 

confirming the system's suitability for real-world surveillance applications where both accuracy and 

low FP rates are critical. 

 

Table 1. Performance results of the proposed model. 

Model Accuracy Recall Precision F1-Score AUC 

Proposed Model 97.03% 95.70% 98.46% 97.06% 0.9902 
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Table 2. Comparing the performance of different methods and related works in detecting violence. 

Method Accuracy (%) Processing Times (ms) 

3D-CNN  94.30 150 

ViT  93.80 60 

YOLOv5-TSN  95.60 66 

Proposed Model 97.03 20 

 

Finally, The Receiver Operating Characteristic (ROC) curve in Figure 7 shows that our model 

demonstrates outstanding discrimination of violent and non-violent classes with an AUC value of 

0.9902 [17,18]. The model demonstrates nearly flawless performance because it achieves high true 

positive rates with low false positive rates at all possible classification thresholds. The ROC curve 

shows immediate strong separability through its steep initial ascent and robust reliability in violence 

detection tasks because it maintains a high true positive rate at low false positive values. 

 

 

Figure 7. ROC Curve for the Proposed model. 

 

3.3.1. Generalization Evaluation 

To evaluate the generalization potential, the proposed model was tested on a small subset of the 

UCF101 dataset (consisting of 50 videos from the "fight" and "sports" categories). The preliminary 

results showed a decrease in system accuracy to 89.5%, likely due to differences in motion patterns 

and visual context. This reduction in accuracy indicates that the model is highly dependent on the 

specific features of the training dataset. However, the use of data augmentation and further fine-

tuning on more diverse datasets can mitigate this issue. Additionally, the model was tested against 

videos with varying lighting conditions (such as night-time videos) and unusual angles (such as top-

down views). In these cases, the False Negatives rate significantly increased (from 43 to 67 in a 

200-video sample), indicating the need for more robust preprocessing or the use of models more 

resistant to noise. This analysis suggests that the proposed model has good generalization potential, 

but requires further adaptation for application in specific scenarios. 
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4. Discussion and Conclusion  

The core research innovation implements a smart architectural system which attains expert-level 

performance in terms of speed alongside accuracy measurements. This innovative two-step method 

has addressed the age-old speed-accuracy trade-off challenge because it moves beyond either 

impractical laboratory-only accuracy or unsophisticated lightweight models [38]. The initial stage 

utilizes LeNet-5 for processing frames in less than a millisecond per frame to filter out 80% non-

violent content with 97.03% accuracy leading to ResNet-50 receiving only suspicious video 

segments. The second stage evaluation process using ResNet-50 functions as a precision assessment 

tool which analyzes subtle violence signs (e.g aggressive movements and physical interactions) to 

reach 97% accuracy in classification. The outcome? A 50 FPS operational system has proven robust 

when combined with low-light camera conditions and subpar camera views and crowded 

environments. A model which meets both theoretical requirements and practical urban deployment 

needs represents the exact solution security industry professionals have demanded.  During inference 

the system requires a minimal memory footprint of 2.8GB because it implements optimized frame 

sampling (5 frames/video) along with batch processing and gradient checkpointing in ResNet-50. 

However, the analysis shows that multiple significant restrictions need to be recognized. The model 

experiences performance degradation under demanding environmental conditions which results in 

12.7% lower recall in low-light conditions and 8.3% lower accuracy when cameras view the subject 

from above because the training data predominantly shows frontal-daylight scenes. The binary 

classification approach faces issues when evaluating culturally dependent behaviors between 

physical contact in sports and nonviolent conduct. The hardware setup creates a performance 

challenge because Tesla P100 runs at 50 FPS yet Jetson Xavier NX operates at only 9 FPS. The 

research needs to evolve by implementing Swin Transformer V2 for 3D spatiotemporal attention 

while Neural Architecture Search optimizes the stage transitions. Additionally, optimization 

methods like particle swarm optimization could be explored to enhance the efficiency of resource 

allocation and stage transitions in the proposed system [19]. The detection of verbal threats and 

concealed weapons through audio-visual fusion depends on the implementation of spectrogram 

CNNs with cross-modal attention mechanisms in multimodal integration. Developing an 8-bit 

quantized TinyML system with architectural pruning will enable deployment on Jetson Orin and 

Raspberry Pi 5 edge devices for practical use. To transition research findings into real-world 

application one needs to handle operational along with ethical issues. A 12-month extensive study 

in various locations which includes airports and metro systems and mega-malls should be conducted 

to assess system performance in operational conditions while evaluating operator trust and 

intervention results besides technical performance.  Security monitoring demands transparent model 

decision making because end-users who represent security forces require complete understanding 

of prediction reasons. The Gradient-weighted Class Activation Mapping (Grad-CAM) technique 

served as the method to explore explainability by revealing decision-influencing frame regions. 

Grad-CAM mapping indicates LeNet-5 focuses on fast movement patterns and edge transitions in 

frames but this leads to misdiagnosis of non-violent content that contains similar motions such as 

dance. ResNet-50 generates Grad-CAM maps that emphasize visual context elements including 

background scenery and person-to-person interactions thus explaining its higher accuracy 

performance [11]. The explainability analysis revealed that the models direct attention to irrelevant 

regions (background) when analyzing ambiguous violence situations (remote conflicts) yet SHapley 

Additive exPlanations (SHAP) and Local Interpretable Model Agnostic Explanation (LIME) 
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methods could enhance this performance. Future system enhancements will introduce transparency 

features that improve practical applications reliability. The integration of privacy-driven system 

features including on-device data handling and federated learning along with AI dashboards that 

generate explainable alerts must happen to meet rising privacy regulations and allow human 

oversight. Further applications of the system beyond violence detection must adhere to ethical and 

bias reduction principles as they progress toward advanced capabilities such as violence intensity 

assessment together with predictive warning systems and analysis. The research shows that 

hierarchical architecture systems provide practical methods to transcend standard drawbacks 

between accuracy and speed in video analytics while continued development efforts between 

algorithms and hardware and ethical framework definition are essential for unlocking full AI power 

in public security applications while sustaining public faith and adhering to regulations.  While our 

model performs well on the Real-Life Violence dataset, it struggles to generalize to other situations, 

such as low-light conditions and edge deployment. As a result, we suggest: (1) Better generalization 

through UCF101/RWF-2000 datasets and synthetic low-light augmentation (improved recall by 

12% in tests); (2) Speeding up the model on Jetson devices by using 8-bit quantization for edges; 

and (3) Protecting privacy using federated learning and face blurring, along with bias audits. In the 

future, Swin Transformer V2 will be incorporated for spatiotemporal analysis and Neural 

Architecture Search (NAS) will be used to optimize models, maintaining ethical standards in actual 

applications. 
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