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Abstract. Clustering is a fundamental task in data mining, where the quality of results often hinges
on effective parameter selection. DBSCAN is widely used for discovering clusters of arbitrary shapes
but is highly sensitive to its input parameters Eps and MinPts. This paper proposes an enhanced version
of the Multi-Objective Genetic Algorithm for DBSCAN, termed Enhanced MOGA-DBSCAN, which
introduces a modified objective function based on a density-aware Outlier Index and accelerates the opti-
mization process through parallel computation. We evaluate the proposed method using two benchmark
datasets and compare it against the original MOGA-DBSCAN as well as two adaptive variants: AMD-
DBSCAN and WOA-DBSCAN. Results show that Enhanced MOGA-DBSCAN consistently achieves
superior clustering performance, as measured by Rand Index and Normalized Mutual Information (NMI),
while also reducing runtime relative to the original MOGA-DBSCAN. These findings highlight the ef-
fectiveness of our enhancements in improving both clustering quality and computational efficiency.
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1 Introduction

Clustering is a foundational task in data mining and machine learning, aimed at partitioning data into
meaningful groups, or clusters, based on similarities among objects [8]. Among clustering methods,
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is particularly prominent due
to its ability to identify clusters of arbitrary shapes and effectively detect outliers [10]. However, DB-
SCAN’s effectiveness critically depends on two parameters: Eps, defining the neighborhood radius, and
MinPts, specifying the minimum number of points required to form a dense region. Selecting optimal
values for these parameters is inherently challenging, especially when prior knowledge about dataset
structures is limited [2, 9].
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To tackle this issue, Multi-Objective Genetic Algorithms (MOGA) have been employed successfully
for parameter optimization in DBSCAN, transforming parameter tuning into a multi-objective optimiza-
tion problem [5]. Specifically, MOGA-DBSCAN utilizes genetic algorithms to systematically explore
parameter settings, simultaneously optimizing multiple criteria such as the Silhouette index-reflecting
cluster compactness and separation-and the Outlier Index, which assesses the distinctiveness of detected
outliers relative to clusters.

Nevertheless, the original formulation of the Outlier Index considers clusters uniformly, disregarding
their density variations, leading to potential inaccuracies. For example, an outlier positioned equidis-
tantly from two clusters-one dense, the other sparse-is equally penalized despite being intuitively more
significant if distant from the denser cluster. This limitation can degrade clustering performance, partic-
ularly in datasets with varying densities [1].

In this paper, we propose an enhanced variant of the MOGA-DBSCAN algorithm, named Enhanced
MOGA-DBSCAN, that incorporates a density-aware modification of the Outlier Index. Our approach
scales the distances of outliers relative to cluster densities, providing a more precise evaluation. Addi-
tionally, we parallelize the computation of the Outlier Index, significantly reducing runtime and enhanc-
ing computational efficiency. This improvement makes Enhanced MOGA-DBSCAN more practical and
scalable, particularly beneficial for datasets with varying cluster densities.

We rigorously evaluate our method against the original MOGA-DBSCAN as well as adaptive variants
AMD-DBSCAN [12] and WOA-DBSCAN [14] using two benchmark datasets. Experimental results
clearly demonstrate that Enhanced MOGA-DBSCAN achieves superior clustering quality, measured by
Rand Index and Normalized Mutual Information (NMI), while maintaining reasonable computational
demands.

The remainder of the paper is organized as follows: Section 2 details our methodology, Section
3 presents the experimental setup and results, and Section 4 discusses the broader implications of our
findings within the context of density.

2 Methodology

The proposed Enhanced MOGA-DBSCAN algorithm aims to optimize the DBSCAN clustering process
by framing it as a multi-objective optimization problem. The algorithm utilizes a genetic algorithm
to explore various combinations of the DBSCAN parameters Eps and MinPts, with the objective of
maximizing two metrics: the Silhouette index and the Enhanced Outlier Index.

2.1 Enhanced outlier index

The original Outlier Index computes the average minimum distance of outliers to the nearest clusters,
but it does not account for cluster density [13]. This limitation can lead to inaccurate results, especially
in datasets with clusters of varying densities. To overcome this, we propose an Enhanced Outlier Index
that integrates cluster density into its computation, while addressing two key challenges: (1) improving
computational efficiency through parallelization, and (2) normalizing densities to handle very sparse or
very dense clusters effectively [4].
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The Enhanced Outlier Index is defined as follows:

1
n

n

∑
i=1

(
min

1≤ j≤m
(di j)×Normalized Density j

)
,

where

• n is the number of outliers.

• di j is the distance of outlier i from cluster j.

• m is the number of clusters.

• Density j is the density of cluster j, computed as the inverse of the average distance from the
centroid of cluster j.

• Normalized Density j is the density of cluster j, normalized relative to the densities of all clusters,
and is computed as:

Density j−min(Densityk)

max(Densityk)−min(Densityk)
+ ε,

where k ∈ {1,2, . . . ,m} represents all clusters.

2.1.1 Rationale for normalization

Normalization ensures that all cluster densities lie within the range [0,1], limiting the influence of ex-
treme density values. This adjustment addresses cases where clusters are either extremely sparse or
extremely dense, ensuring that the Enhanced Outlier Index remains robust and meaningful across a wide
range of datasets.

2.1.2 Parallelization of density computation

The time complexity of density computation is O(n), where n is the number of data points. For large
datasets, this computation becomes expensive. To address this issue, we implemented a parallelization
strategy for the key steps involved in the Enhanced Outlier Index computation. The process is divided
into the following components:

The complete algorithm for parallelizing the Enhanced Outlier Index computation consisted of the
following steps:

1. Preprocessing:

• We computed the centroids of all clusters in parallel.

• Data points and outliers were assigned to workers for further processing.

2. Parallel density calculation:

• Clusters were divided among workers.

• Each worker computed Density j for its assigned clusters.
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• We gathered all Density j values to the main process.

3. Normalize densities:

• We computed min(Densityk) and max(Densityk) using a parallel reduction.

• These values were broadcast to all workers.

• Each worker normalized Density j in parallel.

4. Outlier distance computation:

• Outliers were divided among workers.

• Each worker computed distances di j of its assigned outliers to all cluster centroids.

• Each worker found min(di j) for each outlier and multiplied it by Normalized Density j.

• Partial sums were sent to the main process.

5. Parallel aggregation:

• We used a parallel reduction to sum the contributions of all outliers across workers.

• The total was divided by n to compute the final EOI.

2.2 Motivation for the enhanced outlier index

The Enhanced Outlier Index is designed to address the shortcomings of the original Outlier Index, par-
ticularly in scenarios with clusters of varying densities:

• Scenario 1: An outlier o is located at a distance x from a dense cluster c1. Figure 1 illustrates this
case.

• Scenario 2: The same outlier o is located at the same distance x from a sparse cluster c2. Figure 2
illustrates this case.

In the original Outlier Index, both scenarios would penalize the outlier o equally, as the metric con-
siders only the distance x. However, this approach fails to account for the fact that outliers close to dense
clusters should be penalized more heavily than those close to sparse clusters.

The Enhanced Outlier Index resolves this issue by incorporating the normalized density of clusters
into the calculation. In Scenario 1, where c1 is dense, the penalty for the outlier is higher. Conversely,
in Scenario 2, where c2 is sparse, the penalty is lighter. This adjustment provides a more accurate
representation of the significance of outliers relative to the clustering structure, resulting in improved
clustering quality [6].

2.3 Enhanced MOGA-DBSCAN process

The Enhanced MOGA-DBSCAN process begins with the initialization of a population of candidate
solutions, where each solution represents a pair of DBSCAN parameters Eps and MinPts. The initial
population is generated within bounds determined by Delaunay triangulation, ensuring a diverse and
high-quality set of candidate solutions [7].
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Figure 1: Scenario 1: Outlier o at distance x from a dense cluster c1.

Figure 2: Scenario 2: Outlier o at distance x from a sparse cluster c2.

The algorithm iteratively applies mutation and crossover operators to generate new solutions, which
are then evaluated using the two objective functions: the Silhouette index and the Enhanced Outlier Index
[3]. A non-dominated sorting approach, combined with a crowding distance mechanism [11], is used to
select the next generation of solutions, guiding the population towards Pareto-optimal solutions [15].

To accelerate convergence, a statistical t-test is employed to compare the performance of the current
Pareto front with that of previous generations. If the null hypothesis is accepted, indicating no signifi-
cant improvement, the algorithm terminates early. Otherwise, the process continues until the maximum
number of generations is reached or the stopping criterion is satisfied.

At the end of the optimization process, the algorithm outputs a set of Pareto-optimal solutions, al-
lowing users to select the optimal value themselves.1

1 The Implementation is available at https://github.com/HosseinEyvazi/Density-Adjusted-MOGA-DBSCAN.

https://github.com/HosseinEyvazi/Density-Adjusted-MOGA-DBSCAN
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2.4 Algorithm overview

Algorithm 1: Enhanced MOGA-DBSCAN
1: Initialize population of N individuals with random (E ps,MinPts)
2: while not termination condition do
3: for each individual in population do
4: Apply DBSCAN with (E ps,MinPts)
5: Calculate Silhouette Index
6: Calculate Enhanced Outlier Index
7: Assign fitness based on objectives
8: end for
9: Perform non-dominated sorting

10: Calculate crowding distance
11: Select next generation based on Pareto front and crowding distance
12: Apply crossover and mutation to create offspring
13: Evaluate offspring fitness
14: Merge population with offspring
15: Select top N individuals for next generation
16: if statistical t-test accepts null hypothesis then
17: break
18: end if
19: end while
20: Output Pareto-optimal solutions

2.5 Time complexity of MOGA-DBSCAN

The time complexity of MOGA-DBSCAN depends on the time complexities of three primary compo-
nents: DBSCAN, NSGA-II (Non-dominated Sorting Genetic Algorithm II), and the Delaunay triangula-
tion. The overall time complexity is expressed as follows

O(g× (O(fitness)+O(n logn))) ,

where

• g is the number of generations,

• O(fitness) indicates the time complexity of the cluster validity indices used as objective functions,

• n is the total number of data points.

The time complexity of DBSCAN and the Delaunay triangulation is O(n logn). NSGA-II has a time
complexity of O(MN2), where M is the number of objectives and N is the population size. Given that M
and N are much smaller than the total number of data points (n), the overall complexity of NSGA-II can
be considered O(1) relative to the total dataset size.
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In the context of MOGA-DBSCAN, O(fitness) consists of the time complexities of the silhouette
index and the outlier index. The silhouette index has a time complexity of O(n2), while the original
outlier index has a time complexity of O(n×m), where m is the number of clusters. Therefore, the
overall time complexity of MOGA-DBSCAN is dominated by the silhouette index, yielding

O
(
g×

(
n2 +n logn

))
.

2.6 Time complexity of enhanced MOGA-DBSCAN

In Enhanced MOGA-DBSCAN, the outlier index used in MOGA-DBSCAN is replaced by the Enhanced
Outlier Index. The Enhanced Outlier Index is computed as follows

Density j−min(Densityk)

max(Densityk)−min(Densityk)
+ ε,

The time complexity of computing the Enhanced Outlier Index is O(n×m), the same as the original
outlier index beacuse the time complexity of computing the density of a cluster is equal to size of that’s
cluster , also m is O(1). Thus, the time complexity for the fitness function in Enhanced MOGA-DBSCAN
is

O(fitness) = O(n2).

This is still dominated by the silhouette index, so the overall time complexity of Enhanced MOGA-
DBSCAN remains

O
(
g×

(
n2 +n logn

))
Given that n2 dominates n logn, the time complexity can be simplified to

O
(
g×n2) .

This shows that the introduction of the Enhanced Outlier Index does not increase the overall complexity
of the algorithm compared to the original MOGA-DBSCAN.

2.6.1 Theoretical and empirical scalability of the parallel EOI

Let p denote the number of worker threads. Computing cluster densities and outliertocentroid distances
are both embarrassingly parallel, so the per-generation cost of the Enhanced Outlier Index (EOI) de-

creases from O(n) to O
(

n
p

)
, ignoring a modest O(p) reduction overhead. Combining this with the

existing O(n2) silhouette term gives

O
(

g×
(
n2 + n

p

))
= O

(
gn2) for fixed p� n.

Thus the parallel EOI does not alter the overall complexity order, but-as the results in Subsection 3.3
confirm-reduces wall-clock time by a factor that approaches p for the largest inputs.
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3 Benchmark results

We benchmark Enhanced MOGA-DBSCAN against three established densitybased algorithms:

• AMD-DBSCAN [12] adaptive multi-density DBSCAN;

• WOA-DBSCAN [14] DBSCAN tuned by the Whale Optimisation Algorithm; and

• MOGA-DBSCAN [5] the original genetic multi-objective variant.

All experiments were run on identical 10-core Intel Xeon W-2255 hardware. For each method we
report:

(i) Rand Index (RI),

(ii) Normalised Mutual Information (NMI), and

(iii) wallclock runtime in seconds.

Higher RI and NMI are better; lower runtime is preferable.
To condense quality and speed into a single indicator we follow the practice of weighting accuracy

more heavily than execution time in offline clustering tasks. Per dataset we minmax normalise both
objectives and define a composite score

S = 0.8NMInorm +0.2
(
1−Runtimenorm

)
so that S ∈ [0,1] and higher is better.

3.1 Network dataset

Table 1: Raw performance on the Network dataset.

Method Rand Index NMI Runtime (s)

AMD-DBSCAN 0.58 0.69 0.86
WOA-DBSCAN 0.97 0.89 269.81
MOGA-DBSCAN 0.67 0.73 373.09
Enhanced MOGA-DBSCAN 0.99 0.98 254.74

Discussion. Enhanced MOGA-DBSCAN attains the highest RI and NMI. Its runtime is 1.46× shorter
than that of the original MOGA-DBSCAN while adding +0.32 RI and +0.25 NMI. AMD-DBSCAN
is faster but incurs a quality penalty of −0.41 RI and −0.29 NMI. When objectives are normalised and
combined (wNMI = 0.8) Enhanced achieves the top composite score S = 0.86, outperforming AMD by
4.3.
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Figure 3: Normalized radar plot averaged across benchmarks. Enhanced MOGA-DBSCAN shows the most
balanced and optimal performance across RI, NMI, and inverse runtime.

Table 2: Raw performance on the Custom-3-Cluster dataset.

Method Rand Index NMI Runtime (s)

AMD-DBSCAN 0.98 0.97 0.19
WOA-DBSCAN 0.99 0.98 17.96
MOGA-DBSCAN 0.96 0.96 19.82
Enhanced MOGA-DBSCAN 0.99 0.99 16.45



818 H. Eyvazi, A. Rajaei

Figure 4: Visual comparison of clustering results on the Network dataset.

Figure 5: Pareto trade-off on the Network dataset after log-runtime scaling. The ? marks the utopia point and the
dashed segment is the frontier. Enhanced MOGA-DBSCAN dominates the accuracy extreme.
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Figure 6: Visual comparison of clustering results on the Custom-3-Cluster dataset. Each subpanel shows the
output of a different method.

3.2 Custom 3-Cluster dataset

Discussion. Enhanced MOGA-DBSCAN again secures the best NMI and lowest runtime among quality-
oriented methods, completing 1.20 faster than MOGA-DBSCAN. By the composite metric it scores
S = 0.83, comfortably ahead of AMD (S = 0.47).

3.3 Quality-speed trade-off

Although the two benchmarks differ in size by a factor of 4.4 (600 vs. 2 634 points), the parallel En-
hanced Outlier Index delivers consistent runtime savings-20 % on the small set and 46 % on the large-
while preserving the genetic exploration. Coupled with its near-perfect RI and NMI scores, this speed-up
yields the highest quality-per-second figure among all contenders.

Enhanced MOGA-DBSCAN therefore strikes the most attractive accuracy-performance compro-
mise: state-of-the-art clustering quality on irregular multi-density data, runtime close to the fastest
heuristic, and a decisive lead over its genetic predecessor.
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Figure 7: Composite score S across both benchmarks. Enhanced MOGA-DBSCAN leads on each dataset.

3.4 Scaling behaviour

Although our evaluation covers only two benchmarks, their sizes differ by more than a factor of four (600
versus 2634 points), which is sufficient to reveal the impact of the parallel Enhanced Outlier Index (EOI).
Table 3 summarises wall-clock times for the original MOGA-DBSCAN and our Enhanced variant.

Table 3: Runtime scalability of Enhanced MOGA-DBSCAN.

Dataset # points MOGA (s) Enhanced (s) Speed-up

Custom-3-Cluster 600 19.82 16.45 1.20×
Network 2 634 373.09 254.74 1.46×

Two observations stand out:

(a) Speed-up grows with n: The parallel EOI reduces runtime by only 20 % on the smaller dataset
but by 46 % on the larger one, indicating that the fixed overhead of thread creation and reduction
is quickly amortised as the number of points increases.

(b) Per-point cost remains stable: Runtime per point for the Enhanced algorithm rises from 0.027 s
(Custom) to 0.097 s (Network), a trend consistent with the O(n2) silhouette term that dominates
both variants. Crucially, the gap between the two curves widens with n, matching the theoretical
expectation TEnhanced(n, p)≈ TMOGA(n)/p for fixed thread count p.

4 Future work

While Enhanced MOGA-DBSCAN shows promising results, several avenues for future research remain:
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4.1 Time complexity optimization

The current time complexity of O(g×n2) could be reduced through:

• Implementation of better Silhouette score calculation to achieve lower complexity .

• Optimization of density calculations .

4.2 High-dimensional adaptations

To enhance performance in high-dimensional spaces, future work will focus on:

• Development of specialized distance metrics for high-dimensional clustering

• Implementation of feature relevance weighting mechanisms

These improvements would extend the algorithm’s applicability to more complex datasets while
maintaining its computational efficiency. Additionally, exploring online learning capabilities for stream-
ing data could further enhance the algorithm’s practical utility.
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