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Abstract. Designing an efficient intrusion detection system involves several phases, with feature selec-
tion being one of the most important. In this paper, a fixed-structure learning automata has been applied
for the feature selection phase. The introduced method includes the exploration and exploitation phases
of an optimization method to find the significant features of the network events to detect intrusions. The
count of the selected features in the proposed method is a pre-defined number, as the feature selection
is a multi-objective problem, and one of its objectives is the feature count. The learning automata-
based method uses reward and penalty operators to explore the problem’s search space. The proposed
method enhances the intrusion detection accuracy rate, another significant objective for a feature selec-
tion method. Two well-known intrusion detection datasets called NSL-KDD and UNSW-NB15 have
been used in this paper to evaluate the proposed method. The evaluation results indicate the acceptable
performance of the proposed method compared with some of the existing ones.
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1 Introduction

Various optimization algorithms have been proposed to solve optimization problems in recent years.
Having several common characteristics, these algorithms are not general approaches for all optimization
problems. Each of these algorithms has weaknesses that prevent it from reaching optimal solutions. One
of the main issues with these algorithms is the failure to improve the solutions in different iterations
and the problem of getting stuck in the local optimum. The general operational pattern of optimization
algorithms is the discovery of solutions in the early iterations of the algorithm by performing a complete
scan of the problem search space. However, in the last iterations, these algorithms change their strategy
to search around the solutions found in the previous steps to reach the global optimal solution. The

∗Corresponding author
Received: 2 February 2025 / Revised: 11 May 2025 / Accepted: 6 June 2025
DOI: 10.22124/jmm.2025.29713.2656

c© 2025 University of Guilan http://jmm.guilan.ac.ir

https://doi.org/10.22124/jmm.2025.29713.2656
http://jmm.guilan.ac.ir


790 K. Asghari

mentioned phases in various literature are called exploration and exploitation, respectively. The time
to change between the exploration and exploitation phases and how to manage this issue is significant
for an optimization algorithm, which makes the algorithm work better. Controlling the balance between
exploration and exploitation is performed by some variable parameters of the algorithm, which change
during the learning process. These parameters direct the optimization algorithm to explore the problem’s
search space in the first iterations. But at the ending iterations and during the exploitation, they navigate
the algorithm to perform a local search around the best-found solutions of the exploration phase. In ideal
conditions, the algorithm should generate diverse solutions with long moves in the search space at the
beginning and gradually converge to near-optimal solutions in the final iterations.

The growing use of network applications and web services has increased the risk of intrusion attacks
in different networks. Thus, designing accurate and reliable Intrusion Detection Systems (IDS) is a
significant task for secure networks. Various types of IDSs have been introduced so far. One of the
well-known categorizations is the anomaly-based and signature-based systems, and the second category
is investigated in this paper. One of the significant phases of designing an IDS is selecting the important
features for checking. These features are applied to build a minimal, quick, and accurate event classifier.
Various feature selection methods have been proposed in the literature so far [12]. The application of
fixed-structure learning automata for solving the feature selection problem of designing an IDS has been
presented in this paper. The naive Bayesian network has been employed as a classifier to evaluate the
selected features of the proposed algorithm and other compared methods. During the iterations of the
learning process, the automata interact with the environment and improve their actions by employing the
penalty and reward mechanisms.

2 Related works

A brief explanation of the learning automata tool, its types, and the feature selection problem in devel-
oping IDSs has been presented in this section.

2.1 Feature selection in IDSs

The IDSs must spend a lot of energy and time classifying a network packet as an intrusion or a normal
event. The reason is the formation of each packet from tens of features, where some of them are dupli-
cated or useless. Researchers have introduced various feature selection methods for designing efficient
and rapid IDSs [12]. Malik et al. [14] have modified the PSO algorithm to apply to feature selection in
IDSs. The applied PSO algorithm has a binary solution structure and uses the random forest as the event
classifier, including a group of decision trees. For every input record, all the decision trees perform the
classification, and the ultimate decision of the random forest method is the decision that the majority of
trees announce. The Cuttlefish optimization algorithm has been employed by Eesa et al. [7] for feature
selection, where some decision trees have been used as event classifiers and KDD-Cup99 as the dataset.
Selvakumar and Muneeswaran [27] have applied the Firefly algorithm for the feature selection process
in IDSs. They have employed the KDD-Cup99 dataset. Acharya and Singh [1] have introduced a feature
selection method for IDS using the Intelligent Water Drops (IWD) optimization algorithm. They em-
ployed the Support Vector Machine (SVM) as a classifier to evaluate the selected feature subset by the
IWD. The applied IDS dataset has been the KDD-CUP99. A wrapper-based feature selection method
to build IDSs has been introduced by Alazzam et al. [2], which applies the pigeon-inspired optimization
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algorithm. They investigated two binary revisions of their algorithm, where UNSW-NB15, NSL-KDD,
and KDD-Cup99 are employed as the intrusion detection datasets. Naseri and Gharehchopogh [20] have
modified the Farmland Fertility algorithm to a binary algorithm for selecting features in IDSs. The
NSL-KDD and UNSW-NB15 have been applied as datasets, and SVM, decision tree, AdaBoost, random
forest, K-Nearest Neighbor (KNN), and naive Bayesian have been investigated as intrusion classifiers.

Pan et al. [24] have introduced an improved Gray Wolf Optimization (GWO) method to select op-
timized feature subsets in high dimensional datasets and fix the stagnation problem of GWO. The in-
troduced algorithm improves the initialization phase of the search process for feature selection in IDSs.
Ghanbarzadeh et al. [9] have presented the application of the Horse herd Optimization Algorithm (HOA)
for selecting an effective feature subset to build a network IDS. They have discretized and binarised the
HOA and developed a quantum-inspired HOA to improve the horse herd’s social behaviors. The result-
ing algorithm has been transformed into a multi-objective method and employed for feature selection.
The KNN classifier has also been applied to evaluate the selected features using the NSL-KDD and CSE-
CIC-IDS2018 intrusion detection datasets. Jayalatchumy et al. [11] have used an improved Crow search
algorithm to select features in IDSs. They have applied some data-denoising approaches to eliminate
imbalances and deficiencies in intrusion detection datasets. An ensemble classifier for evaluating the
features has also been employed with the UNSW-NB15 and NSL-KDD datasets.

2.2 The learning automaton

A learning automaton is an abstract learning tool, implementable in different ways and usable for various
applications. During the learning process, it interacts with a random environment to identify the envi-
ronment’s internal specifications. The learning automaton tries to find out the probabilistic relationship
between its actions and the environment’s feedback. Thus, it selects different actions to find the optimal
solution with the guidance of the environment.

There are various classifications for learning automata, one of which is the fixed and variable struc-
tures. The probability of changing actions and transitions between the automaton’s states is a fixed value
in the fixed structure. In contrast, in the variable structure learning automata, the mentioned probabili-
ties are updated considering the environment’s feedback [19]. The fixed-structure learning automata are
convenient for solving problems with small and well-defined search spaces. It has low computational
overhead and requires less memory and simpler hardware to implement, which makes it appropriate for
IoT devices or microcontrollers with limited processing power and resource constraints. Fixed-structure
learning automata have been used to solve many optimization problems like the join ordering problem of
database queries [15], the total weighted tardiness scheduling problem [5], the Hamiltonian cycle prob-
lem [6], and the software clustering problem. The common characteristic of these problems is a solution
structure containing a permutation of elements. New solutions are obtained by selecting each element
from a limited number of elements. The selection of different permutations is performed by using the
actions of the fixed-structure learning automata. For example, each member of the solution array is a
join operator in database queries for the join ordering problem. The elements are several jobs that are
scheduled to execute in the total weighted tardiness scheduling problem. The fixed-structure learning au-
tomata have also been used as chromosomes of the genetic algorithm for several optimization problems,
resulting in a hybrid optimization algorithm [16]. They make decisions quickly and efficiently and man-
age the balance of controlled random exploration and deterministic exploitation through their reward and
penalty mechanisms. The fixed-structure learning automata can obtain a permutation of the best features
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to solve the feature selection problem in intrusion detection systems and build a near-optimal classifier
of network events. The object migration learning automata, as a fixed-structure type, have been used in
this paper to solve the feature selection problem in IDSs [23].

The learning automaton is defined formally by the quintuple of {φ ,α,β ,F(·, ·),H(·, ·)}, where φ is
a set of internal states (φ = {φ1,φ2, ...,φs}), α is a set of automaton actions (α = {α1,α2, ,αr}), and β

is a set of environment responses (β = {β1,β2, ,βm}). The finite-type state-output automata have been
employed in this paper to select features in IDS because the φ , α , and β sets are finite. The state,
action, and response of the environment for the learning automaton at the moment of t is represented
by φ(t), α(t), and β (t), respectively. The environment responses set can be finite or infinite, which is
β = {0,1} for the proposed method. The 0 means an unfavorable response or penalty, while 1 means
a favorable response or reward from the environment. F(·, ·) is a state transfer function, which gets the
current state and environment response and returns the next state (F(·, ·) : φ ×β → φ ). Finally, H(·, ·)
is a function for determining the current action with the current environment response and current state
(H(·, ·) : φ ×β → α)) [19]. Each learning automaton in the learning automata has a finite set of states. It
selects and returns an action in each iteration considering its current state. The interaction of the learning
automata with the working environment is illustrated in Figure 1.

Figure 1: The interaction between the learning automata and the environment.

The automaton selects a feature as its action (αi), which plays the role of environment input. For
every action, the environment returns feedback (βi). The feedback from the environment in moment n,
which can be a reward (β (n) = 1) or penalty(β (n) = 0), updates the state of the current action (φi). The
probability of selected action (αi) increases by the learning automaton for a reward from the environment.
Instead, for a penalty response, the selected action’s probability is decreased [19].

Learning automata have various applications in different fields like pattern recognition, neural and
Bayesian network optimization [3], network routing [25], job scheduling [26], query optimization [4],
data compression, and solving NP problems.

3 The fixed-structure learning automata for feature selection

A fixed-structure type of learning automata tool is proposed in this section to find a near-optimal solution
for the feature selection problem in designing IDSs. The proposed method uses the penalty and reward
mechanisms to obtain a selected feature set, which is employed to build an IDS classifier. The selected
feature set represents all features in the network packet, which is minimal and has no duplicate informa-
tion. Thus, the classifier constructed using the selected features can inspect the input network packet to
identify the intrusions from normal network events. The naive Bayesian network [18] is employed as a
simple and easy-to-implement classifier to evaluate the selected features of the fixed structure learning
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automata-based algorithm and other existing methods. Artificial neural networks and other classifiers can
also be used to evaluate the solution, but this paper focuses on the feature selection phase. The flowchart
in Figure 2 demonstrates the working procedure of the proposed method. To use an intrusion detection
dataset, a pre-processing of features to convert named fields to numbers and discretize the continuous
field values is necessary, which has been performed by the Weka software.
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Figure 2: The fixed structure learning automata-based model for the feature selection problem.

3.1 Solution representation for the proposed algorithm

A demonstration of the fixed-structure learning automata for selecting eight features has been presented
in Figure 3. The n learning automata are needed for the selection of n features, where each automaton has
k states (k = 5 in Figure 3). The selected features are represented in the proposed method by the actions
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of the automata or objects. Thus, each learning automaton is responsible for selecting one feature as its
action. During the iterations of the proposed algorithm, the actions of automata may remain unchanged or
be changed, which causes the selection of another feature from the feature set. The action change process
of each automaton is repeated to have a non-repetitive and distinct set of selected features. This method
of using fixed-structure learning automata is also known as object migration learning automata [23]. A
random feature is selected and dedicated as the action of each automaton at the beginning of the proposed
algorithm, where the action has a boundary state at the beginning. The states numbered 5 in Figure 3
in all automata are boundary states. The penalty and reward mechanisms change the state of actions of
the learning automata during the learning process. The selected features by the fixed-structure learning
automata are employed to construct a classifier using the naive Bayesian network. The classifier is trained
with the training part of the intrusion detection dataset. Then, the trained classifier is used to classify the
test part of the dataset. If the accuracy rate of the classifier increases compared to the previous iteration,
the learning automata is rewarded by reducing the state number of the current actions. Figure 4 illustrates
the rewarding mechanism for the actions of the learning automata of Figure 3.

Figure 3: The fixed-structure learning automata for feature selection.

Figure 4: The reward for fixed-structure learning automata for feature selection.

If the accuracy rate of the classifier decreases compared to the previous iteration, the learning au-
tomata is penalized by increasing the state number of the current actions. Figure 5 depicts the penalizing
mechanism for the actions of the learning automata of Figure 3. Features F4 and F27 in Figure 3, which
were in the boundary state of the learning automata, have been replaced with F6 and F25 features in
Figure 5 by the penalty mechanism.



Application of fixed structure learning automata 795

Figure 5: The penalty for fixed-structure learning automata for feature selection.

3.2 Implementation of the proposed algorithm

The fixed structure learning automata-based algorithm is a global search, which includes the exploration
and exploitation phases. In the initial iterations of the proposed algorithm, the exploration phase is
performed, where all the actions of automata or selected features are in the boundary state and may
change frequently. After some iterations and finding some promising solutions, the state numbers of
selected features are decreased due to the rewards from the environment. Then, only the features on
boundary states change repetitively, and the exploitation phase is performed. The proposed method
balances the exploration and exploitation operations to find the near-optimal solution. The pseudo-code
of the introduced approach for the feature selection problem of IDS is presented in Algorithm 1.

In Algorithm 1, an integer array for the currently selected features, called SF , is created first. Then,
the learning automata are constructed based on the number of selected features. The ARBest variable
represents the best accuracy rate found so far, and the Iter defines the current iteration number of the
algorithm. In the first f or loop of the algorithm, the learning automata select the features related to their
actions. For each iteration of the algorithm in the while loop, a naive Bayesian network classifier named
CurrentClassi f ier is constructed using the selected features in the SF array. The CurrentClassi f ier
is trained in the next step by the training part of the intrusion detection dataset. Then, it is evaluated
by classifying the test part of the intrusion detection dataset to calculate the accuracy rate. Next, the
accuracy rate of the CurrentClassi f ier is analogized with ARBest . The learning automata are rewarded if
the current accuracy rate exceeds the ARBest . Otherwise, learning automata are penalized by decreasing
their current state numbers. If the automaton’s current state is a boundary one, the related selected feature
is randomly changed. The BestSelectedFeatures are returned after the last iteration of the algorithm. The
single solution structure of the proposed method makes it a fast and effective approach compared to the
population-based optimization algorithms.

Implementing and using the fixed structure learning automata-based feature selection algorithm in
real-world IDSs has several advantages. This algorithm can be used in IDSs to process network packets
in real-time. The learning automata continuously adjust the decision-making process based on live feed-
back (e.g., from attack labels, system administrator feedback, or system responses). Few data structures
and related functions are required to implement the fixed-structure learning automata tool. Given the
simplicity, lightweight nature, and low resource usage of the learning automata-based tool, the proposed
algorithm can also work well on low-power software and hardware platforms without significantly reduc-
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Algorithm 1 Pseudo-code of the proposed fixed structure learning automata-based approach
1: Define SF[i]; (Currently Selected Features array, where 1≤ i≤ Count of Selected Features)
2: Create FSLAi (ith Fixed-Structure Learning Automaton, where 1≤ i≤ Count of Selected Features);
3: ARBest = 0; Iter = 1;
4: Define BestSelectedFeatures[i]; (1≤ i≤Count Of Selected Features);
5: for i = 1 to Count O f Selected Features do
6: FSLAi.Action = Select a feature from all features set randomly, which has not been selected be-

fore;
7: SF [i] = FSLAi.Action;
8: end for
9: while Iter < Maximum Iterations do

10: CurrentClassifier = Construct an intrusion detection naive Bayesian classifier using SF;
11: Train CurrentClassifier using the training part of the intrusion detection dataset;
12: ARCurrent = Classify the test part of the intrusion detection dataset with CurrentClassifier and

calculate the accuracy rate;
13: if ARCurrent > ARBest then
14: {Rewarding automata}
15: ARBest = ARCurrent ;
16: BestSelectedFeatures = SF;
17: for i = 1 to Count o f Selected Features do
18: if FSLAi.CurrentState ! = 1 then
19: FSLAi.CurrentState = FSLAi.CurrentState−1;
20: end if
21: end for
22: else
23: {Penalizing the automata}
24: for i = 1 to Count o f Selected Features do
25: if FSLAi.CurrentState is a boundary state then
26: FSLAi.Action= Select a feature randomly that is not in SF;
27: SF [i] = FSLAi.Action;
28: else
29: FSLAi.CurrentState = FSLAi.CurrentState+1;
30: end if
31: end for
32: end if
33: Iter++;
34: end while
35: Return BestSelectedFeatures;

ing the system performance. This characteristic also makes such a system independent of cloud systems.
The proposed algorithm can be used in host-based and network-based IDSs. A network event classifier
is built from the selected features by the proposed algorithm. When the relevant event is recognized as
a true positive attack, the learning automata actions are rewarded, which indicates that the appropriate
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features are selected. If a false positive attack has occurred or an attack has occurred but has not been
detected, the actions of the automata are penalized. To do that, by changing the states of each action, the
selected features are changed in subsequent iterations, and the classifier structure is reconstructed. An-
other advantage of using the fixed-structure learning automata tool in IDSs is that it does not necessarily
need a large-sized offline training dataset before starting to work. Of course, using such a dataset, as has
been done in the experiments of this paper, improves the system performance even in the initial iterations
and increases the system accuracy. On the other hand, at the beginning of the proposed algorithm, the
convergence of the algorithm to the optimal selected features may be slow, and this is due to the fixed
structure of the learning automata actions for selecting features.

3.3 The computational complexity of the proposed algorithm

The computational complexity of the proposed algorithm has been evaluated in this section. The pro-
posed algorithm has been compared with several metaheuristic algorithms, most of which have limited
memory consumption. Considering the use of a population of solutions in the compared algorithms and
only one solution for the proposed one, it is clear that the memory consumption of the proposed algo-
rithm is lower than that of the others. However, regarding time complexity, different algorithms have
different behaviors, and algorithms with lower computational complexity perform better. For the pro-
posed algorithm, the number of automata actions or the number of selected features (n), the time to create
the classifier, the time to train the classifier, the time to classify events, and the maximum number of iter-
ations (t) are involved in the computational complexity. In the first iteration of the proposed algorithm, a
set of fixed-structure learning automata is created, which has the computational complexity of O(n). For
each automaton’s action, a feature is selected randomly, and the selected features by the algorithm must
be used and evaluated to build an event classifier. Creating a nave Bayesian classifier has the computa-
tional complexity of O(m×n) for m training records. For classifying events with k test records and two
attack and non-attack classes for events, there is a time complexity of O(k×2×n), equal to O(k×n). In
each iteration of the proposed algorithm, after building the classifier using the selected features, if the ac-
curacy rate of the classifier decreases compared to previous iterations, the automata actions are penalized
with complexity O(n). If an action reaches its boundary state, it randomly changes its selected feature
with complexity O(n). The newly selected feature must be rechecked to ensure that other automata ac-
tions havenot chosen it before. Therefore, the maximum time complexity of the penalty operation is
2×O(n), equal to O(n). If the classifier accuracy rate increases, the automata actions with complexity
O(n) are rewarded, stabilizing the selected features for the subsequent iterations. Eq. (1) shows the time
complexity of the feature selection algorithm based on the fixed-structure learning automata.

Time Complexity =O(t× [O(Constructing automata)+O(Constructing a classi f ier and training it)

+O(Classi f ying events)+O(Penalizing or rewarding actions o f automata)])

Time Complexity = O(t× [O(n)+O(m×n)+O(k×n)+O(n)])

= O((t×n)+(t×n×m)+(t× k×n)+(t×n))

= O((2tn)+ tn(m+ k)) = O(tn(m+ k))
(1)
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4 Results of experiments

An attack is a situation where attackers exploit weaknesses in a computer network to gain unauthorized
access, disrupt services, steal data, or cause other damage. The proposed algorithm has been evaluated
using the NSL-KDD [21], [22], and UNSW-NB15 [17] datasets, where the NSL-KDD is an improved
and newer version of KDD CUP99. These two datasets include attacks like DOS, probing, user to root,
remote to local, worms, Shellcode, Reconnaissance, Analysis, Fuzzers, Exploits, etc. In the proposed
approach of this paper, the attack detection is performed by a classifier built with the features found by
the proposed algorithm, and the final intrusion detection system is signature-based. Thus, the proposed
method of this paper could be employed for any identifiable attack type by a pattern of feature values.
The Matlab 2024a software over a Macintosh OS installed MacBook Pro computer with 8 gigabytes of
RAM and Intel core i5 CPU have been applied to perform the experiments.

4.1 The NSL-KDD intrusion detection dataset

The NSL-KDD is a well-known intrusion detection dataset, an updated version of the KDD99 dataset.
Most of the problems in the KDD CUP99 dataset like the duplicate records and defects are updated and
fixed in NSL-KDD. This dataset includes 41 independent features for network event specifications and
one dependent feature as the target class. The record types and counts in the NSL-KDD dataset are
indicated in Table 1.

Table 1: Content of the NSL-KDD dataset.

Type Full name Attack types Train records Test records
Normal Normal event – 67343 9711
DOS Denial Of Service Teardrop, Neptune Smurf 45927 7458
Probe Probing attack Satan, Saint, Portsweep 11656 2421
U2R User to Root Rootkit, Loadmodule, Buffer overflow 995 533
R2L Remote to Local Xsnoop, Password, Httptunnel 52 2421
Total count 125973 22544

4.2 The UNSW-NB15 intrusion detection dataset

The second well-known intrusion detection dataset, which has been used in the evaluations of this paper
and contains newer attack types, is the UNSW-NB15. This dataset has nine attack types, and each record
includes 42 features. Table 2 demonstrates the content details of the UNSW-NB15 dataset.

4.3 Evaluation criteria

All methods in this paper have been compared to obtain a set of selected features to build a network
event classifier. Several measures, such as the accuracy rate, detection rate, and false positive rate, can be
used to evaluate the classifier; most of them are calculated using the confusion table of Table 3 [13]. The
first measure for evaluating the classifier is the Accuracy Rate (AR), which distinguishes normal events
from intrusions. The AR must be as high as possible, which can be computed by Eq. (2). Intrusion
Detection Rate (DR), which can be calculated by Eq. (3), is the second evaluation parameter for the
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Table 2: Content of the UNSW-NB15 dataset.

Attack types Train records Test records
DOS 12264 4089
Generic 18871 40000
Worms 130 44
Shellcode 1133 378
Reconnaissance 10491 3496
Analysis 2000 677
Backdoors 1746 583
Fuzzers 18184 6062
Exploits 33393 11132
Normal 56000 37000
Total count 175341 82332

Table 3: Confusion table.

Estimated type of current event Intrusion Normal
Real type of Normal False Positive (FP) True Negative (TN)
current event Intrusion True Positive (TP) False Negative (FN)

IDSs. The DR indicates the rate of network packets that are suspicious of being an intrusion and are
correctly recognized. The False Positive Rate (FPR) is the third measure, which can be computed by
Eq. (4). The FPR indicates the rate of network packets identified as an intrusion, but related to normal
events. A well-designed intrusion detection classifier should achieve high accuracy and detection rates,
along with a low false positive rate.

AR =
T N +T P

T P+FN +FP+T N
(2) DR =

T P
FN +T P

(3) FPR =
FP

FN +T P
(4)

The AR of the created classifier by the selected features has been employed in this paper as the
fitness function for the proposed and compared algorithms. Several classification methods have been
proposed in the literature, such as Bayesian and neural networks [28], which can be applied to construct
an intrusion detection classifier. As a simple technique, the naive Bayesian network has been employed
in this paper to build a classifier and evaluate the selected features of the compared algorithms. The
proposed fixed structure learning automata-based algorithm has been compared with the improved crow
search [11], particle swarm optimization [14], secretary bird optimization [8], and the genetic algo-
rithm [10] for solving the feature selection problem. A set of integers representing the selected feature
numbers constitutes the solution structure of the proposed and the genetic algorithm [10] implemented
for the comparisons. The solution structure of the other compared algorithms contains a set of real num-
bers, where each number in the solution indicates the importance of the related feature, and the higher
amounts are candidates for selection. The implemented algorithms in this paper evolve the solutions dur-
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ing the iterations by exploring the feature selection problems search space. The features related to higher
numbers in the solutions are used to build an intrusion detection classifier, which is employed to train
with the training part of the intrusion detection dataset. The next phase is classifying the test part of the
intrusion detection dataset using the trained classifier. The number of selected features is also significant,
where on one side, the processing load of the IDS increases with more features. On the other side, the
AR of the system may decrease with duplicated or unimportant features. Considering these issues, the
feature selection problem needs a multi-objective algorithm, and one of the objectives must be the feature
count. The count of selected features has been predetermined to be 5, 8, 15, and 20, for the simplicity
of the performed experiments in this paper. The count of search agents for the compared algorithms has
been 20, where 500 iterations for the executions of the algorithms have been considered. In the first ex-
periment, the convergence of the proposed learning automata-based method to the best-obtained results
in the first 100 iterations is illustrated in Figure 6 for the records of the NSL-KDD dataset.
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Figure 6: Convergence diagram of the proposed method for the NSL-KDD dataset.

The charts of Figure 6 indicate that the proposed algorithm explores the problem search space in the
early iterations with sudden moves. In contrast, in the last iterations, the algorithm tries to converge to
the best-found solutions of the previous iterations. Thus, the proposed algorithm effectively balances the
exploration and exploitation phases. As a result of the second experiment, the comparison of the AR for
the investigated algorithms on the NSL-KDD intrusion detection dataset has been presented in Table 4
and Figure 7. The results demonstrate that the fixed structure learning automata-based method delivers
a higher AR for 15 selected features in contrast with the existing algorithms. However, the accuracy rate
of the proposed algorithm is lower than the others for 5, 8, and 20 features. Nevertheless, the proposed
algorithm has obtained the highest accuracy rate.
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Table 4: Obtained AR values for 5, 8, 15, and 20 features of the NSL-KDD dataset.

Feature count
Algorithm 5 8 15 20
Fixed-structure learning automata 90.31 91.39 92.57 90.14
Crow search algorithm 90.4 91.76 87.92 91.44
Secretary bird optimizer 90.79 89.69 92.46 91.32
Particle swarm optimization 86.91 88.81 88.31 91.1
Genetic algorithm 87.23 87.9 91.12 88.21

Figure 7: Compairing AR values for 5, 8, 15, and 20 features of the NSL-KDD dataset.

The next experiment has been performed on the UNSW-NB15 dataset to compare the AR of the
investigated algorithms. Table 5 and Figure 8 present the results. For five features of the UNSW-NB15
dataset records, the proposed method obtains an AR lower than the crow search and the secretary bird
optimizer algorithm. For eight features, the algorithm’s results are lower than the secretary bird and
higher than the other algorithms. However, the obtained AR of the learning automata-based algorithm is
the highest value for 15 and 20 selected features.
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Table 5: Obtained AR values for 5, 8, 15, and 20 features of the UNSW-NB15 dataset.

Feature count
Algorithm 5 8 15 20
Fixed-structure learning automata 89.9 91.5 93.74 92.92
Crow search algorithm 91.08 90.49 93.63 92.62
Secretary bird optimizer 90.45 92.3 89.98 91.15
Particle swarm optimization 88.56 88.61 92.58 90.38
Genetic algorithm 87.11 89.72 89.52 91.82

Figure 8: Compairing AR values for 5, 8, 15, and 20 features of the UNSW-NB15 dataset.

Table 6 and Figure 9 demonstrate the DR of the compared algorithms for the NSL-KDD dataset.
They indicate that the fixed structure learning automata-based method does better again for the DR. The
secretary bird optimizer algorithm obtains the highest DR for five features, whereas the crow search
algorithm does the same for eight features. For 20 features, as Table 6 and Figure 9 show, the secretary
bird optimizer has the highest DR value. The DR value of the fixed structure learning automata-based
algorithm, as the maximum value of Table 6, is higher than the others when the feature count is 15.

The obtained DR values of the compared algorithms for the UNSW-NB15 dataset are presented
in Table 7 and Figure 10. Again, for eight and fifteen selected features of the UNSW-NB15 dataset,
the proposed algorithm exhibits the highest performance for DR, as Figure 10 illustrates. For the five
and twenty selected features, the DR values of the crow search and the secretary bird optimizer are
the highest, respectively. The obtained results for the PSO and genetic algorithm indicate their lower
performance for DR.
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Table 6: Obtained DR values for 5, 8, 15, and 20 features of the NSL-KDD dataset.

Feature count
Algorithm 5 8 15 20
Fixed-structure learning automata 93.21 94.68 96.9 94.27
Crow search algorithm 92.65 94.81 94.24 93.51
Secretary bird optimizer 93.23 94.79 96.31 95.25
Particle swarm optimization 91.13 92.34 89.31 90.24
Genetic algorithm 89.9 91.78 89.13 89.24

Figure 9: Compairing DR values for 5, 8, 15, and 20 features of the NSL-KDD dataset.

Table 7: Obtained DR values for 5, 8, 15, and 20 features of the UNSW-NB15 dataset.

Feature count
Algorithm 5 8 15 20
Fixed-structure learning automata 92.71 94.92 97.26 94.83
Crow search algorithm 93.48 94.41 94.83 93.32
Secretary bird optimizer 92.34 93.78 97.08 95.1
Particle swarm optimization 89.11 91.82 90.31 91.49
Genetic algorithm 91.25 92.35 91.47 91.38
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Figure 10: Compairing DR values for 5, 8, 15, and 20 features of the UNSW-NB15 dataset.

Table 8 and Figure 11 depict the FPR value of the investigated algorithms for the NSL-KDD intru-
sion detection dataset. As mentioned in the previous sections, an efficient feature selection algorithm
must result in a classifier with a low FPR value in IDSs. Table 8 and Figure 11 show the desirable per-
formance of the proposed algorithm for the FPR value. The secretary bird optimizer has obtained the
lowest value for the five selected features. The crow search algorithm has the lowest FPR for 8 and 20
features, whereas the fixed structure learning automata-based algorithm has obtained the lowest value for
15 features. The lowest value of Table 8 belongs to the proposed method, too.

The FPR values of the compared methods for the UNSW-NB15 dataset have been presented in Table
9 and Figure 12. For the UNSW-NB15 dataset, the lowest FPR value has been obtained by the crow
search algorithm for five and eight selected features. For fifteen selected features, the lowest FPR value
has been achieved by the learning automata-based algorithm, where the secretary bird optimizer has the
lowest value for twenty features.

The results of the compared algorithms in all experiments indicate that 15 is a reasonable number
for the count of selected features. The proposed fixed structure learning automata-based algorithm has
offered an acceptable performance in the experiments for 15 selected features, where its results are
competitive with the other compared methods.
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Table 8: Obtained FPR values for 5, 8, 15, and 20 features of the NSL-KDD dataset.

Feature count
Algorithm 5 8 15 20
Fixed-structure learning automata 20.04 16.62 11.37 15.24
Crow search algorithm 20.89 13.53 12.83 13.63
Secretary bird optimizer 19.84 15.38 12.51 14.82
Particle swarm optimization 20.51 15.29 14.09 14.78
Genetic algorithm 23.91 17.54 13.78 15.79

Figure 11: Compairing FPR values for 5, 8, 15, and 20 features of the NSL-KDD dataset.

Table 9: Obtained FPR values for 5, 8, 15, and 20 features of the UNSW-NB15 dataset.

Feature count
Algorithm 5 8 15 20
Fixed-structure learning automata 19.92 17.24 10.96 16.38
Crow search algorithm 18.75 14.81 11.91 14.83
Secretary bird optimizer 20.61 16.36 14.67 13.47
Particle swarm optimization 19.73 15.29 12.74 15.34
Genetic algorithm 24.28 17.93 14.02 14.69
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Figure 12: Compairing FPR values for 5, 8, 15, and 20 features of the UNSW-NB15 dataset.

5 Conclusion

A fixed structure learning automata-based algorithm has been introduced in this paper to tackle the
feature selection problem in IDSs. The evaluations have shown that the proposed method produces
competitive results compared to the other methods. The proposed method’s high performance is due to
establishing a proper balance between exploration and exploitation in the problem’s search space. The
exploitation is done with only a state change as a reward or penalty for an action. The exploration is
performed when the penalties of an action of an automaton change the state of the action to a boundary
state, and the selected feature of that action changes. In this way, the set of features changes during the
learning process, and the near-optimal selected set of features is achieved. Proposing a hybrid method of
fixed-structure learning automata and a discrete optimization approach can be considered as future work
of this paper.
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