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Abstract. In today’s world, rapid developments in science and engineering are increasingly adding up
to larger amounts of data; as a result, numerous problems have emerged in the analysis of big data.
Hence, data dimensionality reduction can accelerate data analysis and even yield better results without
losing any useful data. A copula represents an appropriate model of dependence to compare multivariate
distributions and better detect the relationships of data. Therefore, a copula is employed in this study to
identify and delete noisy data from the original data. Then, it is compared to the principal component
analysis to show its superiority

Keywords: Copula function, Gaussian copula function (normal), Classification, Principal component analysis, data
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1 Introduction

Dimensionality reduction is an essential step in the data mining process, particularly for big data, and
is especially important in the modern period due to the growing volume of data in scientific, industrial,
and commercial domains. Reducing dimensionality not only helps classification algorithms perform
better, but also simplifies and clarifies the data analysis process. Numerous techniques have been put
out in recent decades to minimize the dimensionality of data. Principal component analysis (PCA), a
feature extraction-based technique, is one of the most popular of these approaches. By identifying and
eliminating components with lower variance, it reduces the dimensionality of the data. Because of its
ease of use and effectiveness, PCA has been applied in several disciplines.

The PCA might not always be the best option for dimensionality reduction, though, particularly
if the data has a complicated structure or if some of the components that have been eliminated have
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significant characteristics [18–20]. In order to reduce the dimensionality of data, several techniques
have been employed in addition to PCA, including self-organizing mapping (SOM), multidimensional
scaling (MDS), and linear discriminant analysis (LDA). The type of data and the application’s goal
determine which of these approaches is the best one. Each has benefits and drawbacks of its own. For
further details on these techniques, see [3–5, 10, 11, 14, 16]. In this work, we provide a novel feature
selection-based approach to data dimensionality reduction. Our suggested approach determines whether
dimensions have a high structural correlation with one another by estimating the community parameters
and using the detail function. It then reduces the dimensionality of the data and gets it ready for analysis
by eliminating noise and superfluous dimensions.

This study proposes a method based on feature selection to identify the dimensions with highly
structural correlations by using a copula and estimating population parameters. The proposed method
then reduces data dimensionality and analyzes data by eliminating noisy data.

This study seeks to show how the proposed dimensionality method improves classification efficiency
and facilitates data analysis. For this purpose, the novel dimensionality reduction method is first intro-
duced and then compared with the PCA. After that, the data reduced through these two methods will be
evaluated in naı̈ve Bayes classification and k-nearest neighbour (KNN) techniques.

Advantages of the suggested approach are as follows:

• Accurate identification of related dimensions: By utilizing the detail function, our suggested ap-
proach may precisely identify the dimensions having a structural correlation with one another.
This guarantees the preservation of significant data characteristics throughout the dimensionality
reduction procedure [1].

• Elimination of noise and superfluous dimensions: Our suggested approach enhances data quality
and boosts data mining algorithms’ accuracy by eliminating noise and unnecessary dimensions [8].

• Analyzing data is made easier and more efficient with our suggested technique, which reduces data
dimensions and eliminates noise and superfluous dimensions. We will look at the specifics of the
suggested approach, its implementation, and the outcomes of tests on various data in the remaining
sections of this article.

2 Preliminaries

The PCA is mainly employed to describe variations in a set of correlated variables x
′
= (x1, . . . ,xq) based

on a new set of uncorrelated variables y
′
= (y1, . . . ,yq), in which every yi represents a linear combina-

tion of x’s. The new variables are considered in a descending order of importance. In other words, y1
calculates the highest rate of variations in initial data among all linear combinations of x. After that, y2
is selected to calculate the residual variations in a way that it is uncorrelated with y1. The new variables
defined in this process (y1, . . . ,yd) are the principal components [1, 2, 8, 9, 20].

In the PCA, a small number of initial components are generally expected to explain a large propor-
tion of variations in initial variables x1, . . . ,xq. Therefore, these variables are employed to prepare an
appropriate summary with a lower dimension for various reasons [25].
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2.1 Finding principal components of population

Assume that x is a random q×1 vector with a mean µ and a specific positive definite covariance matrix
(Σ). It is also assumed that λ1 ≥ λ2 ≥ ·· · ≥ λq ≥ 0 (eigenvalues) [6] and that H = [h1, . . . ,hq] is an
orthogonal (i.e. H

′
H = HH

′
= Iq) q×q matrix such that

H
′
ΣH = Λ = diag(λ1, . . . ,λq) =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λq

 ,

which results from the spectral decomposition [7, 12].
Hence, hi is the eigenvector of Σ corresponding to λi. The following equation is now considered

U =

U1
...

Uq

= H
′
X =

h
′
1
...

h
′
q

X =

h
′
1X
...

h
′
qX

=

h11X1 +h12X2 + · · ·+h1qXq
...

hq1X1 +hq2X2 + · · ·+hqqXq

 .

The components of U1, . . . ,Uq from U are called the principal components of X . In other words
U1
U2
...

Uq

=


l1.st−PC
2.nd−PC

...
q.th−PC

 .

Moreover, cov(U) = Λ; therefore, U1, . . . ,Uq are all uncorrelated, and var(Ui) = λi for i = 1, . . .,q.
The first principal component is U1 = h

′
1X with the variance of λ1; the second principal component

is U2 = h
′
2X with the variance of λ2; and so on.

In addition, the principal components have the following optimization features.

1. The first principal component (U1) is a normal linear combination of components of X with the
highest variance possible. This maximum variance is λ1. Out of all normal linear combinations of
components of X that are uncorrelated with U1, the second principal component (U2) has the max-
imum variance of λ2. Generally, the kth principal component (Uk : k = 1, . . .,q) has the maximum
variance of λk out of all the normal linear combinations of components of X that are uncorrelated
with U1, . . . ,Uk−1 [20].

2. The ratio of the total variance for the kth component is as follows:

λk

λ1 + · · ·+λq
, k = 1, . . .,q.

3. If the highest variance of a population (e.g. 80–90%) is attributed to a few of the initial components
for a large q, these components can then replace q initial variables without losing much information
[1].
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2.2 Copula

In brief, a copula is a function that links multivariate distributions to their marginal distributions. In
other words, a copula is a multivariate distribution, the marginal distributions of which follow a normal
distribution within (0, 1).

A copula is used for various reasons. First, it is a method for measuring the free-scale dependence.
Second, it is a starting point for developing joint distributions with known margins. In fact, a consider-
able number of general studies on copulas analyze the dependence of random variables, for they allow us
to distinguish between the dependence of variables and the effects of marginal distributions. This char-
acteristic resembles the bivariate normal distribution where there are no links between its mean vector
and its covariance matrix, both of which indicate the distribution simultaneously [17].

2.3 Main features of a Copula

Assume that C :I2→I has the following features:

1) For every u,v∈ [0,1], we have

C(u,0) =C(0,v) = 0,C(u,1) = u,C(1,v) = v.

2) For every 0≤v1<v2≤1,0≤u1<u2≤1, we have

C (U2,v2)+C (U1,v1)−C (U1,v2)−C (U2,v1)≥0.

Such a function like C implied in the two above conditions is called a copula function [15].

2.4 Sklar’s theory

Assume that H is a joint probability distribution function with marginal distributions of F and G. Then
C is a copula if the following equation is true for every x,y∈R,

H(x,y) =C(F(x),G(y)).

If F and G are continuous, then the copula C is unique; otherwise, C is defined as unique on Rang(F)×
Rang(G). Conversely, if C is a copula with marginal univariate distributions F and G, then H is a function
with margins F and G.

According to Sklar’s theory, if F and G have normal distributions, then H(x,y)=C(x,y). It represents
a copula of bivariate distribution with a normal marginal distribution within (0, 1). In other words, a
copula is a bivariate distribution function with normal marginal distributions within (0, 1).

Assume that c,g, f , and h are density functions of distributions C,G,F , and H, respectively. Based
on Sklar’s theory, the following equation is true:

h(x,y) = c(F(x),G(y)). f (x).g(y),

where c(u,v) =
∂ 2C(u,v)

∂u∂v
[23].
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The important application of a copula is to present an appropriate method for generating distri-
butions of correlated random multivariate variables and offer a solution to the problem of density es-
timation conversion. To show the problem of reversible transforms of m-dimensional random con-
tinuous variables X1, . . .,Xm based on their distribution function into m normal independent variables
U1 = F1(X1), . . . ,Fm(Xm), it should be assumed that f (x1, . . . ,xm) and c(u1, . . . ,um) are the density prob-
ability function of x1, . . . ,xm and the joint density function of U1, . . . ,Um, respectively. The density
probability function c(u1, . . . ,um) is estimated for U1, . . . ,Um instead of x1, . . . ,xm in this case to simplify
the density estimation problem because the estimation of the density probability function f (x1, . . . ,xm)
may be a nonparametric form (i.e. an unknown distribution). The random samples x1, . . . ,xm are then
obtained by simulation using the inverse transform Xi = F−1(Ui).

The scalar field theory indicates that there is a unique m-dimensional copula in [0,1]m with standard
normal marginal distributions U1, . . . ,Um, whereas Nelson stated that every distribution function F with
margins F1, . . . ,Fm could be written as follows:

∀(X1, . . . ,Xm) ∈ Rm, F(X1, . . . ,Xm) =C(F1(X1), . . . ,Fm(Xm)).

To evaluate a copula selected with an estimated parameter and avoid defining any hypotheses on Fi(Xi),
the empirical distribution function of a marginal distribution Fi(Xi) can be employed to transform m
samples of X into m samples of U [17, 24].

An empirical copula is useful for analyzing the dependence structure of a multivariate vector. It is
officially defined as the following equation:

Ci j =
1
m

(
m

∑
k=1

I(vk j≤vi j)

)
.

3 New method

A unique approach to dimensionality reduction of multidimensional data is proposed in this section. This
technique estimates an infinite multivariate copula distribution in particular kinds of marginal distribu-
tions of random variables displaying data dimensions using the copula theory. A comprehensive and
unscaled explanation of dependency is provided by a copula-based model. Comparing the dependency
of random variables using this model may be made easier by estimating the copula parameters. This
dependence is then used to clean the original data, removing any extraneous numbers or noisy data.

3.1 Gaussian copula

The difference between a Gaussian copula and a joint normal distribution is that the Gaussian copula
allows us to have different types of a distribution function for a joint distribution. However, according
to the probability theory, the multivariate normal distribution is the generalization of a one-dimensional
normal distribution.

The standard multivariate Gaussian copula is defined as below:

c(Φ(X1), . . . ,Φ(Xm)) =
1

|Σ|
1
2

exp
(
−1

2
XT (Σ−1− I)X

)
,



Dimension reduction by identifying and removing redundant variables 767

where Φ(xi) is the standard distribution of fi(xi), whereas Xi ∼ N(0,1) and Σ are the correlation matri-
ces. As a result, c(u1, . . . ,um) is called the Gaussian copula, and the joint density is obtained from the
following equation:

c(u1, . . . ,um) =
1

|Σ|
1
2

exp
[
−1

2
ξ

T (Σ−1− I)ξ
]
,

where ui = Φ(xi) and ξ = (Φ−1(u1), . . . ,Φ
−1(um))

T [21].

3.2 Rank correlations

Spearman’s rho (ρ) and Kendall’s tau (τ) are the two criteria for rank correlation [15]. For random
variables X1 and X2, Spearman’s ρ is defined as below:

ρs(X1,X2) = ρ(F1(X1),F2(X2)).

In fact, the correlation matrix of Spearman’s ρ shows the correlations of Spearman’s ρ in pairs. It is a
positive and known matrix, which is shown as follows:

ρs(X1,X2) = 12
∫ 1

0

∫ 1

0
(C(u1,u2)−u1u2)du1du2.

Moreover, the following equation is true for the bivariate Gaussian copula:

ρs(X1,X2) =
6
π

arcsin
ρ

2
' ρ,

where ρ is the Pearson’s linear correlation coefficient [24].
Regarding random variables X1 and X2, Kendall’s τ is defined as follows:

ρτ(X1,X2) = E
[
sign((X1− X̃1)(X2− X̃2))

]
,

where (X̃1, X̃2) is independent of (X1,X2) but has an equal joint distribution with it.
Furthermore, Kendall’s τ can be written as follows:

ρτ(X1,X2) = P((X1− X̃1)(X2− X̃2)> 0)−P((X1− X̃1)(X2− X̃2)< 0).

When ρτ(X1,X2) = 0, both of the above probabilities are equal.
If X1 and X2 have continuous margins, the following equation is true:

ρτ(X1,X2) = 4
∫ 1

0

∫ 1

0
C(u1,u2)dC(u1,u2)−1.

Moreover, the following equation can be written for a bivariate Gaussian copula:

ρτ(X1,X2) =
2
π

arcsinρ,

where ρ is Pearson’s correlation coefficient.
Spearman’s ρ and Kendall’s τ are instances of rank correlation, which depend only on a bivariate

copula and not on margins; therefore, they are not constant under monotonically increasing variations.
They range within [0, 1].
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3.3 Copula estimation

There are several methods for estimating a copula:

1. Maximum Likelihood Estimation (MLE): This method is often considered difficult to use, for there
are many parameters to estimate.

2. Pseudo-MLE: There are two types of pseudo-MLE, i.e. parametric pseudo-MLE and semi para-
metric pseudo-MLE. They are used more often than MLE. In pseudo-MLE, the margins are es-
timated through the cumulative distribution function, and the copula is then estimated through
MLE.

3.4 MLE

Consider Y = (Y1, . . . ,Ym) a random diagram. Assume that FY1(·|θ1), . . . ,FYm(·|θm) is a parametric model
for marginal distribution functions and that cY (·|θC) is a parametric model for copula Y . The following
equation is true:

fY (y) = fY (y1, . . . ,ym) = cY (FY1(y1), . . . ,FYm(ym))
m

∏
j=1

fY j(y j).

Assume that an instance of IID is Y1:n = (Y1, . . . ,Yn). The likelihood logarithm is then obtained

logL(θ1, . . . ,θm,θC) = log∏
n
i=1 fY (yi)

=
n

∑
i=1

(log[cY (FY1(yi,1|θ1), . . .FYm(yi,m|θm)|θC)]

+ log( fY1(yi,1|θ1))+ · · ·+ log( fYm(yi,m|θm))).

ML estimators θ̂1, . . . , θ̂2, θ̂C are obtained from the maximization of the above equation based on θ1, . . .
,θm,θC.

This method has a few setbacks:

1. There are too many parameters to estimate, especially for large values of m. As a result, optimiza-
tion can be difficult.

2. If any of the univariate parametric distributions FYi(·|θi) are defined incorrectly, bias can emerge
in univariate distributions and the copula [15].

3.5 Pseudo-MLE

Pseudo-MLE helps solve the above mentioned MLE drawbacks. This method has two steps:

1. The marginal distribution functions are first estimated to define F̂Y j , for j = 1, . . .,m. For this
purpose, the following two methods can be adopted:

• The empirical distribution function is defined as below for y1,i, . . . ,yn, j:

F̂Yi(y) =
∑

n
i=1 I{yi, j≤y}

n+1
.
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• A parametric model is developed with θ̂ j obtained from the univariate conventional MLE.

2. The parameters of copula θC are obtained by maximizing the following expression:

n

∑
i=1

log[cY (F̂Y1(yi,1), . . . , F̂Ym(yi,m)|θC].

It should be noted that the above expression is obtained directly from the likelihood logarithm only by
using marginal distributions in Step 1 and using the parameters of θC that were not estimated [15].

This method consists of two steps:

Step 1: In this step, pseudo-MLE is adopted to link the univariate marginal distributions to their joint
multivariate distribution function. After that, the copula parameters are estimated to place the
dimensions with strong correlation in a smaller set. If ρ of a copula is greater than 0.7 for two
random continuous variables X1 and X2, these variables are strongly correlated; thus, they are
placed in the subset of interest.

Step 2: In the second step, the dimensions of this subset are analyzed to delete the dimensions that are
the linear combinations of the subset dimensions. Finally, the greatest value of ρ is selected
from the subset, and the rest of the dimensions are deleted, for the other dimensions behave like
the selected dimension and can be used as additional dimensions.

4 Real data on Parkinson’s patients

Numerical comparisons were drawn by using a dataset including 195 individuals (both healthy and af-
fected with Parkinson’s disease). The dataset was created by Max Little of the University of Oxford, in
collaboration with the National Centre for Voice and Speech, Denver, Colorado, who recorded the speech
signals. The original study published the feature extraction methods for general voice disorders. For this
purpose, 22 biomedical audio variables were employed to process every participant’s voice. Hence, the
research data consisted of 22 biomedical audio variables and one classification variable (healthy individu-
als and patients with Parkinson’s disease). The variables are as follows: (X1) is MDVP: Fo(Hz): Average
vocal fundamental frequency, (X2) is MDVP: Fhi(Hz): Maximum vocal fundamental frequency, (X3) is
MDVP: Flo(Hz): Minimum vocal fundamental frequency, (X4) is MDVP: Jitter(%), (X5) is MDVP: Jit-
ter(Abs), (X6) is MDVP: RAP, (X7) is MDVP: PPQ, (X8) is DDP: Jitter: Several measures of variation
in fundamental frequency, (X9) is MDVP: Shimmer, (X10) is MDVP: Shimmer(dB), (X11) is Shimmer:
APQ3, (X12) is Shimmer: APQ5, (X13) is MDVP: APQ, (X14) is Shimmer: DDA : Several measures of
variation in amplitude, (X15) is NHR, (X16) is HNR: Two measures of ratio of noise to tonal components
in the voice, (X17) is RPDE, (X18) is D2: Two nonlinear dynamical complexity measures, (X19) is DFA:
Signal fractal scaling exponent, (X20) is spread1, (X21) is spread2 and (X22) is PPE: Three nonlinear
measures of fundamental frequency variation.

Status : Classification variable with two status, i.e. N for healthy individuals and P for patients with
Parkinson’s disease1.

1Available at: https://archive.ics.uci.edu/ml/datasets/parkinsons

https://archive.ics.uci.edu/ml/datasets/parkinsons
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Figure 1: Principal components of the population.

In this section, the naı̈ve Bayes classifier and KNN (k = 5) [13] are applied first to all data and then
to the data reduced by the PCA. After that, the proposed copula-based method is adopted. The results
are then compared.

For classification, the data were divided into training and test sets on a 70-to-30 proportion. The
accuracy criterion is then defined as the following equation to compare the classification methods [22].

Accuracy =
TP + TN

TP + FN + FP + TN
,

where

• TP is a sample belonging to the positive class and is identified as a member of this class.

• FN is a sample belonging to the positive class and is identified as a member of the negative class.

• TN is a sample belonging to the negative class and is identified as a member of this class.

• FP is a sample belonging to the negative class and is identified as a member of the positive class.

The PCA is used first. Figure 1 shows the components of this method. Figure 2 demonstrates the
variance ratio of population components. Accordingly, the first five components account for nearly 90%
of the total variance of population. The copula-based method is now employed:

Step 1: After the Gaussian copula is estimated, the sets of strongly correlated variables are as follows:

{X1,X2},{X4, . . . ,X16,X22}.
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Table 1: The accuracy results of different classification methods for the original data and the reduced data.

Full Data PCA Copula
naı̈ve Bayes 0.661 0.6271 0.7627
KNN 0.9138 0.8103 0.9137

Step 2: The dimensions of these sets should now be checked in terms of linear dependence to ensure
that they have nonlinear relationships. In other words, if ∑k∈{1,2}αkXk = 0, then αk = 0 for
all k ∈ {1,2}. Moreover, if ∑k∈{4,5,6,7,8,9,10,11,12,13,14,15,16,22}αkXk = 0, then αk = 0 for all k ∈
{4,5,6,7,8,9,10,11,12,13,14,15,16,22}. As a result, the reduced dimensions are as follows:

{X1,X4,X17,X18,X20,X21}.

Figures 3(a)-3(b) illustrate the scattering of original data and that of the data reduced through the
copula: The naı̈ve Bayes classifier and KNN are also applied to the original data and the data reduced
through the copula and the PCA. Table1 reports the accuracy results in different cases.

5 Conclusion

According to Figures 3-4, the scattering of the population distribution for the reduced data exceeded that
of the original data. Therefore, it provides more information about the population by eliminating the
noisy and additional data. As a result, the copula-based method accelerates analysis. Table 1 indicated
that the accuracy of the naı̈ve Bayes classifier increased for the data reduced through the copula method
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Figure 3: Scattering of empirical distribution of original data and that of the data reduced through the copula.
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Figure 4: Scattering of population distribution for original data and that of the data reduced through the copula.

in comparison with that of the original data; therefore, this method improved. Moreover, the number of
data decreased; as a result, analysis was facilitated. In KNN, the accuracy of the original data is nearly
equal to that of the data reduced through the copula. In general, the KNN outperformed the naı̈ve Bayes
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classifier on the data. Evidently, the copula-based dimensionality method was very effective and efficient
in classification techniques; therefore, it can be useful for other data mining and analysis techniques for
big data.
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