
تعداد نشریات | 31 |
تعداد شمارهها | 797 |
تعداد مقالات | 7,618 |
تعداد مشاهده مقاله | 29,079,784 |
تعداد دریافت فایل اصل مقاله | 7,671,707 |
Dimension reduction by identifying and removing redundant variables using copula function | ||
Journal of Mathematical Modeling | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 01 تیر 1404 اصل مقاله (241.88 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22124/jmm.2025.28169.2484 | ||
نویسندگان | ||
Kianoush Fathi Vajargah* 1؛ Hamid Mottaghi Golshan2؛ Fazel Badakhshan1 | ||
1Department of Statistics, Islamic Azad University, North Tehran Branch, Tehran, Iran | ||
2Department of Mathematics, Islamic Azad University, Shahriar Branch, Shahriar, Iran | ||
چکیده | ||
In today's world, rapid developments in science and engineering are increasingly adding up to larger amounts of data; as a result, numerous problems have emerged in the analysis of big data. Hence, data dimensionality reduction can accelerate data analysis and even yield better results without losing any useful data. A copula represents an appropriate model of dependence to compare multivariate distributions and better detect the relationships of data. Therefore, a copula is employed in this study to identify and delete noisy data from the original data. Then, it is compared to the principal component analysis to show its superiority. | ||
کلیدواژهها | ||
Gaussian copula function (normal)؛ Classification؛ Principal component analysis method (PCA)؛ Data Analysis؛ Parkinson’s Disease | ||
آمار تعداد مشاهده مقاله: 4 تعداد دریافت فایل اصل مقاله: 14 |