

Characterization of rings by some filters

Hassan Mouadi[†], Abdelkarim Boua^{‡*}

[†]Department of Mathematics and Informatics, University Ibn Zohr, Polydisciplinary Faculty, Lisima, Taroudant, Morocco

Emails: has san mouadi@hotmail.com, abdelkarimboua@yahoo.fr

Abstract. Let $R = \prod_{i \in I} R_i$ be the product of an infinite family of rings $\{R_i\}_{i \in I}$. In this study, we investigate the direct sum $\bigoplus_{i \in I} R_i$. Special attention is paid to the relationship between the ideal $\bigoplus_{i \in I} R_i$ and the \mathcal{F}_r Frechet filter in I, also we show a new characterization of $\bigoplus_{i \in I} R_i$ by the \mathcal{F}_r – lim.

Keywords: Direct product, Direct sum, Frechet filter, \mathcal{F}_r – lim. AMS Subject Classification 2010: 13A99, 14A05, 54D80.

1 Introduction

Consider a commutative ring R with an identity element. Let Max(R) and $\beta(I)$ represent the sets of all maximal ideals of R and the collection of ultrafilters on I, respectively. It is noteworthy that R is called a zero dimensional ring when all its prime ideals are maximal.

Now, let $\{R_i\}_{i\in I}$ be a nonempty family of rings, and their product denoted as $R = \prod_{i\in I} R_i$. Previous research has focused on characterizing the prime ideals of R using algebraic or logical methods (refer to [5], [7]). In the article [6], the authors have explored the correlation between ultrafilters on I and maximal ideals in the product of $\{R_i\}_{i\in I}$.

In the article [7], the authors provide a characterization of the ideals of Spec $(\prod_{i\in I} R_i)$ through \mathcal{F} -limit and establish a connection between the elements of Spec (R_i) and Spec $(\prod_{i\in I} R_i)$ using \mathcal{F} -limit. They conclude by introducing a novel condition for a product of zero-dimensional rings to be itself zero-dimensional.

The paper is structured as follows: the first section presents properties of the \mathcal{F} -limit for a collection of subsets of a set A. Building upon the maximal ideals of rings R_i , a maximal ideal

Received: 05 June 2024/ Revised: 26 April 2025/ Accepted: 01 May 2025

DOI: 10.22124/JART.2025.27636.1676

[‡]Department of Mathematics, University Sidi Mohammed Ben Abdellah-Fez, Polydisciplinary Faculty, Taza, Morocco

^{*}Corresponding author

H. Mouadi, A. Boua

of $\prod_{i \in I} R_i$ is introduced. In the second section, a characterization of the direct sum $\bigoplus_{i \in I} R_i$ through the ideals of $\prod_{i \in I} R_i$ is provided, employing the Frechet filter.

2 Definitions and notations

We will be working in at least ZFC, that is, Zermelo-Frankel set theory with the axiom of choice. In certain cases we will use additional axioms.

We recall that \mathcal{F} is a filter on a set I if it is a subset of the power set of I that satisfies the following conditions:

1. $\emptyset \notin \mathcal{F}$ and $I \in \mathcal{F}$;

2

- 2. If $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$;
- 3. If $A \in \mathcal{F}$ and $A \subset A' \subset I$, then $A' \in \mathcal{F}$.

A filter \mathcal{F} on I is called an ultrafilter if \mathcal{F} is maximal with respect to being a filter, or equivalently, whenever $A \subset I$, then either $A \in \mathcal{F}$ or $I \setminus A \in \mathcal{F}$. If \mathcal{F} is an ultrafilter on an infinite set I and $J \in \mathcal{F}$, then $\mathcal{F}|J = \{J \cap F : F \in \mathcal{F}\}$ is an ultrafilter on J. An ultrafilter \mathcal{F} is called principal if there exists an element $i_0 \in I$ such that \mathcal{F} consists of all subsets of I that contain i_0 . Other ultrafilters are called non-principal. We denote the collection of all ultrafilters on a set I by $\beta(I)$.

Definition 1 ([2]). Let A be a set, S(A) be the set of all subsets of A and let I be an infinite set. Let $\{S_i\}_{i\in I}$ be a family of S(A), and \mathcal{F} be a filter on I, then we define the \mathcal{F} – \lim of $\{S_i\}_{i\in I}$ by:

$$\mathcal{F} - \lim_{i \in I} S_i := \{ a \in A : \{ i \in I : a \in S_i \} \in \mathcal{F} \} = \bigcup_{X \in \mathcal{F}} (\bigcap_{i \in X} S_i).$$

We note that the set $\mathcal{F} - \lim_{i \in I} S_i$ is a subset of A.

Let $\{R_i\}_{i\in I}$ be a nonempty family of rings, $\prod_{i\in I} R_i$ denotes their product. The elements of the product are frequently considered in two different ways. A more rigorous way is to consider $\prod_{i\in I} R_i$ as the set of all functions $a:I\to\bigcup_{i\in I} R_i$ such that $a_i\in R_i$ for each $i\in I$, with addition and multiplication defined pointwise: (a+b)(i)=a(i)+b(i) and (ab)(i)=a(i)b(i).

In the following definition, we give a construction of the ideals of $\prod_{i \in I} R_i$ starting from the ideals of R_i using the ultrafilters.

Definition 2. Let $R = \prod_{i \in I} R_i$, where I is an infinite set and each R_i is nonzero rings, recall that \hat{i} denotes the principal ultrafilter on I generated by $\{i\}$, we define for any ideal N_i of R_i the set $(\hat{i}, N_i) := \{r \in R : r_i \in N_i\}$.

It is easy to prove that (\hat{i}, N_i) is also an ideal of $\prod_{i \in I} R_i$. Notice that

$$(\hat{i}, N_i) = \{r \in R : \{j \in I : r_j \in N_j\} \in \hat{i}\}.$$

Let $\{R_i\}_{i\in I}$ be a family of rings and $\prod_{i\in I} R_i$ their product, the direct sum ideal of $\prod_{i\in I} R_i$ denoted by $\bigoplus_{i\in I} R_i$, is the set of $a\in \prod_{i\in I} R_i$ that are finitely nonzero.

Definition 3. Let I an infinite set. The Frechet filter \mathcal{F}_r on I consists of the co-finite sets of I, i.e. $\mathcal{F}_r := \{A \in \mathcal{P}(I) : I \setminus A \text{ is finite}\}.$

Remark 1. The Frechet filter is an example of a free filter that is not an ultrafilter. It is used in the literature to describe topological concepts (see [2-4]).

Example 1. Let \mathbb{R} be the set of real numbers, and let \mathbb{R}^+ and \mathbb{R}^-_* respectively be the subsets of the positive and negative stress numbers of \mathbb{R} . It is clear that $\mathbb{R}^+ \cap \mathbb{R}^-_* = \emptyset$ and $\mathbb{R}^+ \cup \mathbb{R}^-_* = \mathbb{R} \in \mathcal{F}_r$, but neither \mathbb{R}^+ nor \mathbb{R}^-_* belongs to \mathcal{F}_r .

Definition 4. Let $\{R_i\}_{i\in I}$ be a nonempty family of commutative unitary rings indexed by a set I and $R = \prod_{i\in I} R_i$. For $f \in R$, let $\mathcal{Y}(f) := \{i \in I : f(i) \in R_i \setminus U(R_i)\}$, where $U(R_i)$ denotes the set of all unit elements of R_i . For an ideal I of R, let $\mathcal{Y}(I) = \{\mathcal{Y}(f) : f \in I\}$.

3 General Properties

In this part, we give some basic properties of the \mathcal{F} – \lim of a collection of subsets.

Theorem 1. Let A be a set, $\{S_i : i \in I\} \subseteq S(A)$, where I is an infinite set, and \mathcal{F} an ultrafilter on I.

- 1. $\hat{k} \lim_{i \in I} S_i = S_k$ for each $k \in I$, with $\hat{k} = \{X \subseteq I : k \in X\}$.
- 2. If $J \in \mathcal{F}$, then $\mathcal{F} \lim_{i \in I} S_i = \mathcal{F} \mid_J \lim_{i \in J} S_i$.
- 3. Let Γ be an infinite set, and $\sigma: \Delta \to \Gamma$ be a surjective function. For each $j \in \Gamma$ put $T_j = S_i$ if $\sigma(i) = j$, then $\mathcal{F} \lim_{i \in \Delta} S_i = \mathcal{C} \lim_{j \in \Gamma} T_j$, where $\sigma(\mathcal{F}) = \{\sigma[F] : F \in \mathcal{F}\} = \mathcal{C}$.
- 4. $(\mathcal{F} \lim_{i \in I} S_i)^c = \mathcal{F} \lim_{i \in I} S_i^c$.

Proof. Using the definition 1, it is easy to show that (1) holds. Using a proof similar to that of Theorem 2.1 in [1], we can conclude that (2) and (3) hold.

(4) By definition 1, we have

$$\mathcal{F} - \lim_{i \in I} S_i^c = \{ a \in A : \{ i \in I : a \in S_i^c \} \in \mathcal{F} \}$$

If $a \in A$, then we can conclude that

$$\{i \in I : a \in S_i^c\} \in \mathcal{F} \Leftrightarrow \{i \in I : a \in S_i\} \notin \mathcal{F}$$

since \mathcal{F} is ultrafilter on I. Thus,

$$\mathcal{F} - \lim_{i \in I} S_i^c = A \setminus \{ a \in A : \{ i \in I : a \in S_i \} \in \mathcal{F} \}$$

which implies that

$$\left(\mathcal{F} - \lim_{i \in I} S_i\right)^c = \mathcal{F} - \lim_{i \in I} S_i^c$$

Corollary 1. Let $\{M_i\}_{i\in I}$ be a family of multiplicatively closed subsets of a commutative ring R and \mathcal{F} an ultrafilter in I, then $\mathcal{F} - \lim_{i\in I} M_i$ is a multiplicatively closed subset of R.

Proof. According to [7, Example 2.5], the \mathcal{F} – \lim of a collection of prime ideals is a prime ideal, and by applying Theorem 1 (4) we get the desired result.

The following proposition gives a simple characterization of the \mathcal{F} – lim.

Proposition 1. Let R be a set, I be an infinite set, and \mathcal{F} be an ultrafilter on I. Suppose $\{R_i: i \in I\} \subseteq S(R)$ such that $R_i \subseteq R_j$ or $R_j \subseteq R_i$ for all $i, j \in I$. Then, $\mathcal{F} - \lim_{i \in I} R_i$ is equal to either $\bigcap_{i \in A} R_i$ or $\bigcup_{i \in B} R_i$ for some $A, B \in \mathcal{F}$.

Proof. Clearly, one of the sets $A_1 = \{i \in I : \{j \in I : R_i \subset R_j\} \in \mathcal{F}\}$, $A_2 = \{i \in I : \{j \in I : R_i \subset R_j\} \in \mathcal{F}\}$, or $A_3 = \{i \in I : \{j \in J : R_i = R_j\} \in \mathcal{F}\}$ is in \mathcal{F} . Suppose $A = A_1 \in \mathcal{F}$, it is easy to see $\mathcal{F} - \lim_{i \in I} R_i = \bigcup_{i \in A} R_i$. Suppose that $A = A_3 \in \mathcal{F}$, it is simple to see that $\mathcal{F} - \lim_{i \in I} R_i = \bigcup_{i \in X} R_i = \bigcap_{i \in A} R_i$. Finally, we can assume that $A = A_2 \in \mathcal{F}$. We claim $\mathcal{F} - \lim_{i \in I} R_i = \bigcap_{i \in A} P_i$. This is obvious if we suppose that $a \in \mathcal{F} - \lim_{i \in I} R_i$. We have $Z = \{i \in I : a \in R_i\} \in \mathcal{F}$. Let $i \in A$ be fixed but arbitrary. So we know that $Y = \{j \in I : R_j \subset R_i\} \in \mathcal{F}$. Thus $Z \cap Y \in \mathcal{F}$ and hence, for any $j \in Z \cap Y$, we have $a \in R_j \subset R_i$ and so $a \in R_i$. Thus, $a \in \bigcap_{i \in A} R_i$.

The following result shows that collections of subrings closed under \mathcal{F} – \lim always have a maximum and a minimum.

Proposition 2. Let C be a collection of subrings of a ring R closed under \mathcal{F} – lim. Then, C has both maximal and minimal elements with respect to containment.

Proof. The application of Zorn's lemma shows that every non-empty subring T of C, which is linearly ordered by containment, has an upper bound within C.

Corollary 2. Let R be a subring of a ring T and let $\mathcal{Z}(R,T)$ be the set of all zero-dimensional subrings of T containing R such that $\mathcal{Z}(R,T) \neq \emptyset$, then $\mathcal{Z}(R,T)$ has maximal and minimal elements.

Proposition 3. Let $R = \prod_{i \in I} R_i$, where I is an infinite set and each R_i is a nonzero ring and M_i is a maximal ideal of R_i for each $i \in J$ for some $J \in \mathcal{F}$, then $\mathcal{F} - \lim(\hat{i}, M_i)$ is a maximal ideal of R.

Proof. Let $f \in \prod_{i \in I} R_i$ such that $f \notin \mathcal{F} - \lim(\hat{i}, M_i)$, then $\{i \in I : f(i) \in M_i\} \notin \mathcal{F}$, we set $X = \{i \in I : f(i) \notin M_i\}$, then $X \in \mathcal{F}$ and, consequently, we can find that for each $i \in X$ an $g(i) \in R_i$ such that $f(i)g(i) - 1 \in M_i$. Thus, $fg - 1 \in \mathcal{F} - \lim(\hat{i}, M_i)$, then $\mathcal{F} - \lim(\hat{i}, M_i)$ is a maximal ideal of $\prod_{i \in I} R_i$.

We know that the \mathcal{F} – lim of a family of prime ideals is a prime ideal, but this property is generally false for maximal ideals (see, [7, Remark 2.11]). Therefore, [7, Theorem 3.1] cannot hold for a family of maximal ideals, since, based on the above statement and the proof of [7, Theorem 3.1], we give the following theorem:

Theorem 2. Let $R = \prod_{i \in I} R_i$, where I is infinite and each R_i is nonzero commutative ring and M is a prime ideal of R, then there is an infinite set K and an ultrafilter \mathcal{E} on K such that for each $k \in K$, there are maximal ideals of R of the form $M_i = \mathcal{F}_k - \lim_{i \in I} (\hat{i}, M_{i,k})$, where \mathcal{F}_k is an ultrafilter on I and $M_{i,k}$ are maximal ideals in R_i , such that:

$$M = \mathcal{E} - \lim_{k \in K} M_k.$$

Proof. Just using the proof of [7, Theorem 3.1], but since M is maximal, we only need half of the above machinery, since by maximality one we have that $M \subseteq \mathcal{E} - \lim_{k \in K} M_k$, then they will be equal. Let T = M and let K be the set of all non-empty finites of T. For $k \in K$, consider the ideal (k) generated by $k \in R$. Using the above proposition and the proof of [7, Lemma 3. 2] we can find a maximal ideal $M_i = \mathcal{F}_k - \lim_{i \in I} (\hat{i}, M_{i,k})$, where \mathcal{F}_k is an ultrafilter on I and $M_{i,k}$ are maximal ideals in R_i such that $(k) \subseteq M_i$.

However, for $t \in T$, we put $\hat{t} = \{k \in K : t \in k\}$ and $G = \{\hat{t} : t \in T\}$. It is easy to see that G has f.i.p., so it can be extended to an ultrafilter \mathcal{E} on K.

Now let $x \in M$. So $x \in T$ and therefore $\hat{x} = \{k \in K : x \in k\} \in G$. Then for $k \in \hat{x}$ we get $x \in (k) \subseteq M_k$. So $\{k \in K : x \in M_k\} \in \mathcal{E}$ and $x \in \mathcal{E} - \lim_{k \in K} M_k$. Consequently, $M = \mathcal{E} - \lim_{k \in K} M_k$..

4 Characterization of the product of rings by the Frechet filter

Theorem 3. Let I an infinite set, an ultrafilter \mathcal{F} on I is free if and only if $\mathcal{F}_r \subset \mathcal{F}$, where \mathcal{F}_r is the Frechet filter on I.

The following lemma explains how the frechet filter characterizes this sum.

Lemma 1. Let $\{R_i\}_{i\in I}$ be a family of rings, and \mathcal{F}_r the Frechet filter on I, then:

$$\bigoplus_{i \in I} R_i = \mathcal{F}_r - \lim_{i \in I} (\hat{i}, 0).$$

Proof. By definition of $\bigoplus_{i \in I} R_i$ we have :

$$\bigoplus_{i \in I} R_i = \{ a \in \prod_{i \in I} R_i : \{ i \in I : a_i \neq 0 \} \text{ is finite} \}.$$

Which implies that

$$\bigoplus_{i \in I} R_i = \{ a \in \prod_{i \in I} R_i : \{ i \in I : a_i = 0 \} \text{ is } co-finite \}.$$

By Definition 3 and Definition 2, we can easily conclude that

$$\bigoplus_{i \in I} R_i = \mathcal{F}_r - \lim_{i \in I} (\hat{i}, 0).$$

H. Mouadi, A. Boua

Corollary 3. Let $R = \prod_{i \in I} R_i$, where I is infinite and each R_i is nonzero quasilocal rings, then a prime ideal P in R is contained in a unique maximal ideal if and only if $\bigoplus_{i \in I} R_i \subset P$.

Proposition 4. Let R be a ring and \mathcal{F}_r frechet filter in \mathbb{N} and let $R^{(n)} = \{a \in R^{\mathbb{N}} : a_{n+1} = a_{n+2} = a_{n+3} = ...\}$ then $\mathcal{F}_r - \lim_{n \in \mathbb{N}} R^{(n)} = R^{\mathbb{N}}$.

To prove this result, we need the following lemma.

Lemma 2. Let $A \subseteq \mathbb{N}$. Then $A \in \mathcal{F}_r$ if and only if there exists $p \in \mathbb{N}$ such that $\{p, p + 1, p + 2, ...\} \subseteq A$.

Proof of Proposition 4

Let $R^{\mathbb{N}}$ be a countable direct product of copies of a ring R. We consider $R^{(n)} = \{a \in R^{\mathbb{N}} : a_{n+1} = a_{n+2} = a_{n+3} = ...\}$ the subring of $R^{\mathbb{N}}$. By the definition of \mathcal{F} – lim, we have

$$\mathcal{F}_r - \lim_{n \in \mathbb{N}} R^{(n)} = \{ a \in R^{\mathbb{N}} : \{ n \in \mathbb{N} : a \in R^{(n)} \} \in \mathcal{F}_r \},$$

which implies that

$$\mathcal{F}_r - \lim_{n \in \mathbb{N}} R^{(n)} = \{ a \in R^{\mathbb{N}} : \{ n \in \mathbb{N} : a_{n+1} = a_{n+2} = a_{n+3} = \ldots \} \in \mathcal{F}_r \}.$$

By Lemma 2, $\{n \in \mathbb{N} : a_{n+1} = a_{n+2} = a_{n+3} = ...\} \in \mathcal{F}_r$ if and only if there exists $p \in \mathbb{N}$ such that $\{p, p+1, p+2, ...\} \subseteq \{n \in \mathbb{N} : a_{n+1} = a_{n+2} = a_{n+3} = ...\}$.

On the other hand, $\forall n \in \mathbb{N} \ \exists p = n+1 \ \text{such that} \ \{p, p+1, p+2, \ldots\} \subseteq \{n \in \mathbb{N} : \ a_{n+1} = a_{n+2} = a_{n+3} = \ldots\}.$ Then, $\forall a \in R^{\mathbb{N}} \ a \in \mathcal{F}_r - \lim_{n \in \mathbb{N}} R^{(n)}.$

Remark 2. $R^{\mathbb{N}} \subset \mathcal{F} - \lim_{n \in \mathbb{N}} R^{(n)}$, for each ultrafilter \mathcal{F} on \mathbb{N} .

We now present another connection between the Frechet filter and the direct sum of commutative rings.

Proposition 5. Let $\{R_i\}_{i\in I}$ be a family of rings and \mathcal{F}_r the Frechet filter on I, then $\mathcal{Y}(\bigoplus_{i\in I} R_i) = \mathcal{F}_r$.

Proof. By the definition 4, we have $\mathcal{Y}(\bigoplus_{i\in I} R_i) = \{\mathcal{Y}(f) : f \in \bigoplus_{i\in I} R_i\}$, then

$$F \in \mathcal{Y}(\bigoplus_{i \in I} R_i) \Leftrightarrow \exists f \in \bigoplus_{i \in I} R_i; F = \mathcal{Y}(f)$$

$$\Leftrightarrow \exists f \in \bigoplus_{i \in I} R_i; F = \{i \in I : f(i) \in R_i \setminus U(R_i)\}$$

$$\Leftrightarrow \exists f \in \bigoplus_{i \in I} R_i; I \setminus F = \{i \in I : f(i) \in U(R_i)\}$$

From the definition of $\bigoplus_{i\in I} R_i$, we obtain $I\setminus F$ is a finite set, hence $\mathcal{Y}(\bigoplus_{i\in I} R_i)$ is a frechet filter.

Lemma 3. Let $\{R_i\}_{i\in I}$ be a family of quasilocal rings and \mathcal{F}_r the frechet filter on I, then $\bigoplus_{i\in I} R_i$ is the unique largest ideal of $\prod_{i\in I} R_i$ such that $\mathcal{Y}(\bigoplus_{i\in I} R_i) = \mathcal{F}_r$.

Proof. Direct consequence of Proposition 5 and [7, Remark 2.1 (2)]

Acknowledgments

The authors would like to thank the referee for careful reading.

References

- [1] S. Garcia-Ferreira and L. M. Ruza-Montilla, The \mathcal{F} \lim of a sequence of prime ideals, Communications in Algebra, **39** (2011), 2532–2544.
- [2] S. Garcia-Ferreira and H. S. Pino-Villela, Characterizing filters by convergence (with respect to filters) in Banach spaces, Topology and its Applications, (4) **159** (2012), 1246–1257.
- [3] S. García-Ferreira and J. E. Rivera-Gómez, Comparing Fréchet-Urysohn filters with two preorders, Topology and its Applications, 225 (2017), 90 -102.
- [4] S. García-Ferreira and J. E. Rivera-Gómez, *Ordering Fréchet-Urysohn filters*, Topology and its Applications, **163** (2014), 128 -141.
- [5] R. Gilmer, Zero-dimensional extension rings and subrings, zero-dimensional commutative rings, zero-dimensional rings, Lecture Note in Pure and Applied Mathematics, 171 (1995), 27–39.
- [6] R. Gilmer and W. Heinzer, *Product of commutative rings and zero-dimensionality*, Transactions of the American Mathematical Society, **331** (1992), 663–680.
- [7] H. Mouadi and D. Karim, Characterization of prime and maximal ideals of product rings by $\mathcal{F} \lim$, Kyungpook Mathematical Journal, (4) **61** (2021), 823–830.