

Dedekind N-group and uniform N-group in near-rings

Tahereh Roudbarylo $^{\dagger *},$ Mahdieh Sadeghi Ghougheri ‡

[†]Department of mathematics, Kerman Branch, Islamic Azad University, Kerman, Iran [‡] Department of Mathematics, University of Nobonyad, Sirjan, Iran Emails: taherehroodbarylor@iauk.ac.ir, mah.sadeghi1983@gmail.com

Abstract. In this paper the authors have defined Dedekind N-groups, prime N-groups, uniform N-groups in near rings and have found the relationship between them. For example they have showed the notions uniform N-group and Dedekind N-group in near rings are equivalent.

Keywords: Dedekind N-group, Prime N-group, Uniform N-group. AMS Subject Classification 2010: 65F05, 46L05, 11Y50.

1 Introduction

In this paper the word near ring N, means a commutative near ring with 1, and M is an unitary N-group. It should be noted that all near rings are right near rings. A right (left) near-ring is a non-empty set N together with two binary operations "+" and "." such that

- (a) (N,+) is a group (not necessarily abelian),
- (b) (N, \cdot) is a semigroup,

(c)
$$(n_1 + n_2)n_3 = n_1n_3 + n_2n_3(n_1(n_2 + n_3)) = n_1n_2 + n_1n_3), \forall n_1, n_2, n_3 \in \mathbb{N}$$
 [6].

Let (M, +) be a group with zero and N be a near ring. Consider the map $\mu : N \times M \longrightarrow M$ such that $\mu(n, m) = nm$, $\forall n \in N$, $\forall m \in M$. Then M is called right (left) N-group if M satisfies the following conditions:

(i) (n+n')m = nm + n'm (m(n+n') = mn + mn'),

(ii)
$$(nn')m = n(n'm)(m(nn') = (mn')n), \forall n, n' \in N, \forall m \in M$$
 [3].

*Corresponding author

Received: 18 June 2023/ Revised: 22 January 2025/ Accepted: 30 May 2025 DOI: 10.22124/JART.2025.24773.1541

If M is the left and right N-group, then M is N-group. It is written N^M for the N-group above. Let M be a group. Then $N^g = \{N^M | N \text{ is a near ring}\}.$

 $N^M \in N^g$ is called unitary, if $\forall m \in M : 1 \cdot m = m$.

A subgroup Δ of N-group M with, $N\Delta \subseteq \Delta$ is said to be an N-subgroup of M (notation: $\Delta \leq_N M$).

A normal subgroup I of (N, +) is called ideal of N $(I \leq N)$ if

- (i) $IN \subseteq I$,
- (ii) $n(n'+i) nn' \in I, \ \forall n, n' \in N, \ \forall i \in I.$

The normal subgroup R of (N, +) with (i) is called the right ideal of $N(R \leq_r N)$, while normal subgroup L of (N, +) with (ii) is said to be the left ideal $(L \leq_l lN)$.

A normal subgroup Δ of N-group M is called ideal of M ($\Delta \leq_N M$), if Δ satisfies in $n(m + \delta) - nm \in \Delta$; $\forall m \in M$, $\forall n \in N$. Let N be a near ring and I be an ideal of N. Then in [4], authors defined addition and multiplication of these N/I as follows: (n + I) + (n' + I) = (n + n') + I, $(n + I) \cdot (n' + I) = n \cdot n' + I$, for each $n, n' \in N$.

An N-homomorphism is a mapping h of N-group M to N-group M' such that:

(i)
$$h(m_1 + m_2) = h(m_1) + h(m_2),$$

(ii)
$$h(nm_1) = nh(m_1), \ \forall m_1, m_2 \in M, \ \forall n \in N$$
 [3].

Let N, N' be near rings. We say that, N is embedded in N', if there exists an monomorphism $N \to N'$, and write $N \hookrightarrow N'$.

Let M be an N-group, N be a near ring and S be a closed subset of (N, \cdot) . An N-group M_S is called an N-group left (right) fraction of M if

- (a) $M_S \in N^g$ is unitary,
- (b) $M \hookrightarrow M_S$,
- (c) s is invertible in $(N, \cdot), \forall s \in S$,
- (d) $\forall q \in M_S \quad \exists s \in S, \exists m \in M \text{ such that } q = h(m)s^{-1}(q = s^{-1}h(m))$ [5].

Let M be an N-group, N be a near ring and S be a closed subset of (N, \cdot) . An N-group M_S is called an N-group left (right) fraction of M if

- (a) $M_S \in N^g$ is unitary,
- (b) $M \hookrightarrow M_S$,
- (c) s is invertible in $(N, \cdot), \forall s \in S$,
- (d) $\forall q \in M_S \quad \exists s \in S, \quad \exists m \in M \text{ such that } q = h(m)s^{-1}(q = s^{-1}h(m))$ [3].

Let M be an N-group, N be a near ring and S be a closed subset of (N, \cdot) . In [3], authors defined an equivalence relation \sim on $M \times S$ by $(m, s) \sim (m', s') \Leftrightarrow \exists s_1, s_2 \in S$ such that $ms_1 = m's_2$ and $ss_1 = s's_2$. [m, s] denoted the equivalence relation class of (m, s) and M_S denoted the set of equivalence relation class. Also, in [3] authors defined addition and multiplication of these fractions as follows:

$$(m,s) + (m',s') = (ms_1 + m's_2, ss_1), \ n \cdot (m,s) = (nm,s);$$

 $m,m' \in M, \ n \in N, s, s' \in S, \ (\exists s_1, s_2 \in S).$

Let N be a near-ring and S be a subsemigroup of (N, \cdot) . A near-ring N_s is called a quotient left (right) of N if

- (a) $N_s \in \eta_1$,
- (b) $N \hookrightarrow N_S$,
- (c) $\forall s \in S: s \text{ is invertible in } (N_S, \cdot),$
- (d) $\forall q \in N_S \quad \exists s \in S, \quad \exists n \in N \text{ such that } q = h(n)s^{-1}(q = s^{-1}h(n))$ [4].

Let N be an near ring, S be a closed subset of (N, \cdot) . In [5], authors defined an equivalence relation \sim on $N \times S$ by $(n, s) \sim (n', s') \Leftrightarrow \exists (n_1, s_1) \in (N \times S)$ such that $ss_1 = s'n_1$ and $ns_1 = n'n_1$. The equivalence relation class of (n, s) is denoted by [n, s] and the set of equivalence relation classes is denoted by N_S . Also, in [2], authors defined addition and multiplication of these quotient as follows:

$$(n,s) + (n',s') = (ns_1 + n'n_1, ss_1), \ (n,s) \cdot (n',s') = (n'n_1, ss_1);$$

 $n,n' \in N, \ s,s' \in S, \ (\exists s_1, s_2 \in S, \ n_1 \in N).$

Let N be a near-ring and S be sub-semigroup of (N, \cdot) . Then N is called the left ore condition, if $\forall (s, s') \in S \times S$ then there exists $(t_1, t_2) \in S \times S$ such that $st_2 = s't_1$ [4]. Let P be an N-subgroup of M. Then $(P : M) = \{x \in N | xM \subseteq P\}$. (0 : M) is called the annihilator of M if $(0 : M) = \{x \in N | xm = 0, \forall m \in M\}$.

Let P be an N-subgroup of M. Then $(P:M) = \{x \in N | xM \subseteq P\}$. (0:M) is called the annihilator of M if $(0:M) = \{x \in N | xm = 0, \forall m \in M\}$.

A near ring N is called integral if N has no non-zero divisors of zero [1].

Let N be a near-ring. N is called prime near-ring if xNy = 0, for each $x, y \in N$, then x = 0 or y = 0 [1].

Theorem 1. [3] Let M be an N-group. If P and P' are N-subgroups of M. Then

- (i) $(P + P')_S = P_S + P'_s$,
- (*ii*) $(P \cap P')_S = P_S \cap P'_s$.

2 Dedekind *N*-group in near-ring

In this section, the notions of Dedekind N-group, prime N-group and uniform N-group will be introduced. Our purpose is to find the relation between Dedekind N-group, prime N-group, uniform N-group in near ring. Also, we prove some theorems.

Definition 1. A non-zero N-subgroup K of M is called invertible if K'K = M, where $K' = \{x \in M_S | x \cdot K = K \cdot x \subseteq M\}$.

Definition 2. Let M be a non-zero N-group. Then M is called Dedekind N-group if each non-zero N-subgroup of M is invertible.

Lemma 1. Let N be a near-ring and S be a subsemigroup of (N, \cdot) , we define $T = \{t \in S | tm \neq 0, \forall 0 \neq m \in M\}$. Then T is a closed subset of (N, \cdot) .

Proof. Let $t_1, t_2 \in T$ such that $t_1m \neq 0, t_2m \neq 0$, for each $m \in M$. $(t_1 \cdot t_2)m = t_1(t_2m) \neq 0, \forall m \in M$. Then T is a closed subset of (N, \cdot) .

Example 1. Let $N = \left\{ \begin{pmatrix} \bar{a} & \bar{0} \\ \bar{b} & \bar{c} \end{pmatrix} \middle| \bar{a}, \bar{b}, \bar{c} \in Z_2 \right\}$ with addition and multiplication of Matrices be a near-ring and $M = N^N$ be an N-group. We show that M is a Dedekind N-group. By simple calculation we see that

$$\begin{split} M_{S} &= \left\{ \frac{\begin{pmatrix} \bar{0} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix}}{\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{1} & \bar{1} \end{pmatrix}}, \frac{\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix}}{\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix}}, \frac{\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{1} & \bar{0} \end{pmatrix}}{\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{1} & \bar{0} \end{pmatrix}}, \frac{\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix}}{\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix}}, \frac{\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix}}{\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix}}, \frac{\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix}}{\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix}}, \frac{\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{1} & \bar{1} \end{pmatrix}}{\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix}}, \frac{\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix}}{\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix}}, \frac{K_{1} = \left\{ \left(\begin{array}{c} \bar{0} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix}, \left(\begin{array}{c} \bar{0} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix} \right), \left(\begin{array}{c} \bar{0} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix} \right\}, \\ K_{2} = \left\{ \left(\begin{array}{c} \bar{0} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix}, \left(\begin{array}{c} \bar{1} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix} \right), \left(\begin{array}{c} \bar{0} & \bar{0} \\ \bar{1} & \bar{0} \end{pmatrix} \right), \left(\begin{array}{c} \bar{1} & \bar{0} \\ \bar{1} & \bar{0} \end{pmatrix} \right), \\ K_{3} = \left\{ \left(\begin{array}{c} \bar{0} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix}, \left(\begin{array}{c} \bar{1} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix} \right), \left(\begin{array}{c} \bar{0} & \bar{0} \\ \bar{1} & \bar{0} \end{pmatrix} \right), \left(\begin{array}{c} \bar{0} & \bar{0} \\ \bar{1} & \bar{0} \end{pmatrix} \right), \left(\begin{array}{c} \bar{1} & \bar{0} \\ \bar{1} & \bar{0} \end{pmatrix} \right), \\ K_{4} = \left\{ \left(\begin{array}{c} \bar{0} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix}, \left(\begin{array}{c} \bar{0} & \bar{0} \\ \bar{1} & \bar{0} \end{pmatrix} \right), \left(\begin{array}{c} \bar{0} & \bar{0} \\ \bar{1} & \bar{0} \end{pmatrix} \right), \left(\begin{array}{c} \bar{0} & \bar{0} \\ \bar{1} & \bar{1} \end{pmatrix} \right), \\ \end{array} \right\}, \end{split} \right\}$$

and $M = N^N$ are the only non-zero N-subgroups of M. By Definition 1, we have $K'_1 = \{x \in M_S | xK_1 \subseteq M\}$ and for each $a \in K_1$, $x = \frac{r}{t} \in M_S$ implies that there exists $m_a \in M$ such that $ra = m_a t$. In the following we show that $K'_1 = M_S$

$$\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix} \cdot \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix} \cdot \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix}$$

$$\begin{pmatrix} \bar{0} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix} \cdot \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix} = \begin{pmatrix} \bar{0} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix} \cdot \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{1} & \bar{1} \end{pmatrix}$$

$$\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{1} & \bar{0} \end{pmatrix} \cdot \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix} \cdot \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{1} & \bar{1} \end{pmatrix}$$

$$\begin{pmatrix} \bar{0} & \bar{0} \\ \bar{1} & \bar{1} \end{pmatrix} \cdot \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix} = \begin{pmatrix} \bar{0} & \bar{0} \\ \bar{1} & \bar{0} \end{pmatrix} \cdot \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{1} & \bar{0} \end{pmatrix}$$

$$\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix} \cdot \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix} = \begin{pmatrix} \bar{0} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix} \cdot \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{1} & \bar{1} \end{pmatrix}$$

$$\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{1} & \bar{1} \end{pmatrix} \cdot \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{1} & \bar{0} \end{pmatrix} \cdot \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix}$$

Similarly, we get that $K'_{2} = K'_{3} = K'_{4} = M' = M_{S}$.

Therefore, K_1, K_2, K_3, K_4 and M are invertible N-subgroups. Thus M is a Dedekind N-group.

Proposition 1. Let M be a Dedekind N-group. Then every N-subgroup of M is a Dedekind N-group.

Proof. Let P be an N-subgroup of M and K be an N-subgroup of P. It is enough to show that K is an invertible N-subgroup. Consider $K' = \{x \in P_S | x \cdot K = K \cdot x \subseteq P\}$. It is clear that, $K'K \subseteq P$. We show that $P \subseteq K'K$. Since K is N-subgroup of M and M is a Dedekind N-group, we have K'K = M, P'P = M and therefore, K'K = P'P. Again have $1_{P'} \in P'$. Therefore, $P \subseteq P'P = K'K$. Hence P is a Dedekind N-group.

Theorem 2. Every image homomorphism of a Dedekind N-group is a Dedekind N-group.

Proof. Consider $\varphi : M \to M'$. We show that if M is a Dedekind N-group, then $\varphi(M)$ is a Dedekind N-group. Let M be a Dedekind N-group. If K is a non-zero N-subgroup of M, by Definition 1, there exists N-subgroup K' of M, such that $K' \cdot K = M$. Thus, $\varphi(K' \cdot K) = \varphi(M)$, i.e., $\varphi(K')\varphi(K) = \varphi(M) = M'$. Therefore, $\varphi(M) = M'$ is a Dedekind N-group. \Box

Lemma 2. Let P be an N-subgroup of M_S . Then there exists an N-subgroup K of M, such that $P = K_S$.

Proof. Let $K = \{x \in M | \exists t \in S, \text{ such that } \frac{x}{t} \in P\}$. Then the proof is clear.

Theorem 3. Let K, K' be N-subgroups of M. Then $(K' \cdot K)_S = K'_S \cdot K_S$.

Proof. By [3], \sim is an equivalent relation. We define the multiplication of this fraction as follows:

$$: M_S \times M_S \longrightarrow M_S,$$
$$(\frac{m}{s}, \frac{m'}{s'}) \longrightarrow \frac{m}{s} \cdot \frac{m'}{s'} = \frac{m's_2}{ss_1} \ (\exists s_1, s_2 \in S).$$

We show that this multiplication is well-define. If

$$\left(\frac{m}{s}, \frac{m'}{s'}\right) = \left(\frac{a}{t}, \frac{b}{t'}\right), \ \forall \frac{m}{s}, \frac{m'}{s'}, \frac{a}{t}, \frac{b}{t'} \in M_S,$$

then

$$\frac{m}{s} = \frac{a}{t} \Rightarrow \exists s_1, s_2 \in S \text{ such that } ms_1 = as_2, \ ss_1 = ts_2,$$
$$\frac{m'}{s'} = \frac{b}{t'} \Rightarrow \exists s_3, s_4 \in S \text{ such that } m's_3 = bs_4, \ s's_3 = t's_4,$$

therefore, we have the followings:

$$\begin{cases} ms_1 = as_2 \Rightarrow m = as_2s_1^{-1}, \\ ss_1 = ts_2 \Rightarrow s = ts_2s_1^{-1}, \\ m's_3 = bs_4 \Rightarrow m' = bs_4s_3^{-1}, \\ s's_3 = t's_4 \Rightarrow s' = t's_4s_3^{-1}. \end{cases}$$

Consider $(s', s) \in S \times S$ be the left ore condition, so there exists $(t_1, t_2) \in S \times S$ such that $s't_2 = st_1$. There has considering $((s_1, s_2, s_1^{-1}t_1))$

Then, by considering $((x = s_2 s_1^{-1} t_1), (z = s_4 s_3^{-1} t_2)),$

$$\frac{m}{s} \cdot \frac{m'}{s'} = \frac{m't_2}{st_1} = \frac{(bs_4s_3^{-1})t_2}{(ts_2s_1^{-1})t_1} = \frac{b(s_4s_3^{-1}t_2)}{t(s_2s_1^{-1}t_1)} = \frac{bz}{tx}.$$

Now, we show that

$$\frac{bz}{tx} = \frac{a}{t} \cdot \frac{b}{t'}.$$

Consider $(tx, tz) \in S \times S$. Since S is the left ore condition, there exists $(r_1, r_2) \in S \times S$ such that $txr_2 = tzr_1 \Rightarrow xr_2 = zr_1$, therefore,

$$\frac{a}{t} \cdot \frac{b}{t'} = \frac{br_2}{tr_1}.$$

Now, we show that

$$\frac{bz}{tx} = \frac{br_2}{tr_1}.$$

By considering $(r' = r_1, r'' = x)$, we get that

$$\begin{cases} (bz)r' = (br_2)r'', \\ txr' = tr_1r'' \Rightarrow xr' = r_1r''. \end{cases}$$

Therefore,

$$\frac{bz}{tx} = \frac{br_2}{tr_1}.$$

Then,

$$\frac{m}{s} \cdot \frac{m'}{s'} = \frac{a}{t} \cdot \frac{b}{t'}.$$

So the above multiplication is well-defined. Now, we show that $(K' \cdot K)_S = K'_S \cdot K_S$. Let $x \in (K'K)_S$ then there exists $y_i \in K'$, $t_i \in S$, $i \in N$ such that $x = \sum_{i=1}^n \left(\frac{y_i \cdot k_i}{t_i}\right)$. Without loss of generality, consider n = 2. let $x = \frac{y_1 \cdot k_1}{t_1} + \frac{y_2 \cdot k_2}{t_2} \in (K' \cdot K)_S$. Since $y_1, y_2 \in K'$, by Definition 1, there exists $m, m' \in M$, $t, t' \in S$ such that $y_1 = \frac{m}{t}$, $y_2 = \frac{m'}{t'}$. Thus,

$$x = \frac{y_1 \cdot k_1}{t_1} + \frac{y_2 \cdot k_2}{t_2} = \frac{\frac{m}{t} \cdot \frac{k_1}{1}}{t_1} + \frac{\frac{m'}{t'} \cdot \frac{k_2}{1}}{t_2}.$$

Also, consider $(1, t) \in S \times S$. Since S is the left ore condition, there exists $(s_1, s_2) \in S \times S$ such that $s_2 = ts_1$. Put $(1 \cdot t') \in S \times S$. Since S is the left ore condition, there exists $(s_3, s_4) \in S \times S$ such that $s_4 = ts_3$. Thus,

$$x = \frac{y_1 \cdot k_1}{t_1} + \frac{y_2 \cdot k_2}{t_2} = \frac{\frac{m}{t} \cdot \frac{k_1}{1}}{t_1} + \frac{\frac{m'}{t'} \cdot \frac{k_2}{1}}{t_2} = \frac{\frac{k_1 s_2}{ts_1}}{t_1} + \frac{\frac{k_2 s_4}{ts_3}}{t_2} = \frac{\frac{k_1 ts_1}{ts_1}}{t_1} + \frac{\frac{k_2 ts_3}{ts_3}}{t_2} = \frac{k_1}{t_1} + \frac{k_2}{t_2}.$$

Consider $(t_2, t_1) \in S \times S$. Since S is the left ore condition, there exists $(r_1, r_2) \in S \times S$ such that $t_2r_2 = t_1r_1$. Thus, $\frac{k_1}{t_1} + \frac{k_2}{t_2} = \frac{k_1r_1 + k_2r_2}{t_1r_1}$. It is enough to show that

$$\frac{k_1r_1 + k_2r_2}{t_1r_1} = \frac{1_{K'}}{1} \cdot \frac{k_1r_1 + k_2r_2}{t_1r_1} = \frac{k_1r_1 + k_2r_2}{t_1r_1}$$

Consider $(t_1r_1, 1) \in S \times S$. Since S is the left ore condition, there exists $(r_3, r_4) \in S \times S$ such that $t_1r_1r_4 = r_3$. We have $\frac{1_{K'}}{1} \cdot \frac{k_1r_1 + k_2r_2}{t_1r_1} = \frac{(k_1r_1 + k_2r_2)r_4}{r_3}$. We show that

$$\frac{k_1r_1 + k_2r_2}{t_1r_1} = \frac{(k_1r_1 + k_2r_2)r_4}{r_3}.$$

By choosing $(r'' = r_4^{-1}, r' = 1)$, we get that

$$\begin{cases} (k_1r_1 + k_2r_2)r' = ((k_1r_1 + k_2r_2)r_4)r''\\ t_1r_1r' = r_3r'' = t_1r_1r_4r'' \Rightarrow r' = r_1r_4r''. \end{cases}$$

Therefore,

$$\frac{k_1r_1 + k_2r_2}{t_1r_1} = \frac{1_{K'}}{1} \cdot \frac{k_1r_1 + k_2r_2}{t_1r_1} \in K'_S \cdot K_S.$$

Hence, $(K'K)_S \subseteq K'_S \cdot K_S$. Conversely, let $x \in K'_S \cdot K_S$ then there exists $K'_i \in K'$, $k_i \in K$, $t_i, t'_i \in S, i \in N$ such that $x = \sum_{i=1}^n (\frac{k'_i}{t'_i} \cdot \frac{k_i}{t_i}) \in K'_S \cdot K_S$, without loss of generality, consider n = 2. $(\frac{k'_1}{t'_1} \cdot \frac{k_1}{t_1}) + (\frac{k'_2}{t'_2} \cdot \frac{k_2}{t_2}) \in K'_S \cdot K_S$ thus, there exists $s_1, s_2, s'_1, s'_2 \in S$ such that $(\frac{k'_1}{t'_1} \cdot \frac{k_1}{t_1}) + (\frac{k'_2}{t'_2} \cdot \frac{k_2}{t_2}) = \frac{k_1 s_2}{t'_1 s_1} + \frac{k_2 s'_2}{t'_2 s'_1} = \frac{(k_1 s_2) s_3 + (k_2 s'_2) s_4}{(t'_1 s_1)} = \frac{1_{K'} \cdot ((k_1 s_2) s_3 + (k_2 s'_2) s_4)}{(t'_1 s_1) s_3} \in (K'K)_S$. Then, $(K' \cdot K)_S = K'_s \cdot K_S$.

Theorem 4. Let M be a Dedekind N-subgroup. Then M_S is a Dedekind N-group.

Proof. Let P be a non-zero N-subgroup of M_S . Therefore, by Lemma 2, there exists N-subgroup K of M, such that $P = K_S$. Since M is a Dedekind N-group, K is an invertible N-subgroup of M. Therefore, there exists K' such that KK' = M. By Theorem 3, $(KK')_S = K'_S \cdot K_S = M_S$. Thus, M_S is a Dedekind N-group.

Definition 3. The N-group M is called prime, if for every non-zero N-subgroup K of M, $ann_N(K) = ann_N(M)$.

Example 2. [2] Consider the near ring $(N, +, \cdot)$ where (N, +) is kleins, four group $\{0, a, b, c\}$ and " \cdot " defined as the following:

•	0	a	b	c
0	0	0	0	0
a	0	a	0	c
b	0	0	0	0
c	0	a	0	c

By simple calculation we see that $I = \{0, a\}, J = \{0, 2\}, K = \{0, c\}$, and $M = N^N$ are the only non-zero N-subgroups of M. We see that

 $ann_N(I) = \{x \in N | xi = 0, \forall i \in I\} = \{0, b\},$ $ann_N(J) = \{x \in N | xj = 0, \forall j \in J\} = \{0, b\},$ $ann_N(K) = \{x \in N | xk = 0, \forall k \in K\} = \{0, b\},$ $ann_N(M) = \{x \in N | xm = 0, \forall m \in M\} = \{0, b\}.$

Since $ann_N(I) = ann_N(J) = ann_N(K) = ann_N(M)$, M is a prime N-group.

Theorem 5. Let M be a Dedekind N-group. Then M is a prime N-group.

Proof. Let $a \in (0:M) \Rightarrow aM = \{0\}$. Let K is N-sub-group of M, so $aK = 0 \Rightarrow a \in (0:K)$. Therefore, $ann_N(M) \subseteq ann_N(K)$. Now we show that $ann_N(K) \subseteq ann_N(M)$. Since M is a Dedekind N-group, then $K \cdot K' = M$, for every non-zero N-subgroup K of M. Let $a \in ann_N(K)$. It means aK = 0, this implies that aM = a(KK') = (aK)K' = 0K' = 0. Therefore, $a \in ann_N(M)$. So $ann_N(K) \subseteq ann_N(M)$. Consequently, $ann_N(K) = ann_N(M)$. Dedekind N-group and uniform N-group in near-rings

Remark 1. If N is not a commutative near ring, then the above theorem may not be true. Considering Example 1, we see that M is a Dedekind N-group and N is not commutative, but M is not a prime N-group, because,

$$ann_N(K_1) = ann_N(K_2) = \left\{ \left(\begin{array}{cc} \overline{0} & \overline{0} \\ \overline{0} & \overline{0} \end{array} \right), \left(\begin{array}{cc} \overline{1} & \overline{0} \\ \overline{0} & \overline{0} \end{array} \right), \left(\begin{array}{cc} \overline{0} & \overline{0} \\ \overline{1} & \overline{0} \end{array} \right), \left(\begin{array}{cc} \overline{1} & \overline{0} \\ \overline{1} & \overline{0} \end{array} \right) \right\}.$$

and,

$$ann_N(K_3) = ann_N(M) = \left\{ \left(\begin{array}{cc} \bar{0} & \bar{0} \\ \bar{0} & \bar{0} \end{array} \right) \right\}.$$

So, $ann_N(K1) = ann_N(K2) \neq ann_N(K3) = ann_N(M)$.

Theorem 6. Let M be a Dedekind N-group. Then M_S is an N-simple N_S -group.

Proof. Let P be an N-subgroup of M_S such that $P \neq N0$, by Lemma 2, there exists N-subgroup K of M such that $P = K_S$. Since M is a Dedekind N-group, by Theorem 8, M_S is a Dedekind N-group. We know $K_S \subseteq M_S$, it is enough to show that $M_S \subseteq K_S$. Let $x \in M_S = K'_S \cdot K_S$ then there exists $k'_i \in K'$, $k_i \in K$, $t_i, t'_i \in S$, $i \in N$ such that $x = \sum_{i=1}^n (\frac{k'_i}{t'_i} \cdot \frac{k_i}{t_i}) \in K'_S \cdot K_S$. Without loss of generality, consider n = 2. Let $x = (\frac{k'_1}{t'_1} \cdot \frac{k_1}{t_1}) + (\frac{k'_2}{t'_2} \cdot \frac{k_2}{t_2}) \in K'_S \cdot K_S$. Thus, there exists $s_1, s_2, s'_1, s'_2 \in S$ such that $x = (\frac{k'_1}{t'_1} \cdot \frac{k_1}{t_1}) + (\frac{k'_2}{t'_2} \cdot \frac{k_2}{t_2}) = \frac{k_1 s_2}{t'_1 s_1} + \frac{k_2 s'_2}{t'_2 s'_1} = \frac{(k_1 s_2) s_3 + (k_2 s'_2) s_4}{(t'_1 s_1)} \in K_S$. Hence, $M_S \subseteq K_S$. Consequently, $P = K_S = M_S$. So, M_S is an N-simple N-group. Now, we show that M_S is a Dedekind N_S -group.

Let $\mu: N_S \times M_S \to M_S$ such that $\mu(\frac{n}{s}, \frac{m}{t}) = \frac{nm}{st}$ for each $\frac{n}{s} \in N_S$, $\frac{m}{t} \in M_S$. We show that this μ is well-defined. Let $\left(\frac{n}{s}, \frac{m}{t}\right) = \left(\frac{n'}{s'}, \frac{m'}{t'}\right)$.

$$\begin{cases} \frac{n}{s} = \frac{n'}{s'} \Rightarrow \exists (s_1, n_1) \in S \times N \text{ s.t } ss_1 = s'n_1, \ ns_1 = n'n_1 \\ \frac{m}{t} = \frac{m'}{t'} \Rightarrow \exists t_1, t_2 \in T \text{ s.t } mt_1 = m't_2, \ tt_1 = t't_2. \end{cases}$$

Since S is invertible in N, we have

$$\begin{cases} ss_1 = s'n_1 \Rightarrow s = s'n_1s_1^{-1} \\ ns_1 = n'n_1 \Rightarrow n = n'n_1s_1^{-1} \\ mt_1 = m't_2 \Rightarrow m = m't_2t_1^{-1} \\ tt_1 = t't_2 \Rightarrow t = t't_2t_1^{-1}. \end{cases}$$

Since $ss_1 = s'n_1$ we have $n_1s_1^{-1} = s'^{-1}s$. Now we show that

$$\left(\frac{n}{s} \cdot \frac{m}{t}\right) = \left(\frac{n'}{s'} \cdot \frac{m'}{t'}\right).$$

T. Roudbarylor, M. Sadeghi Ghougheri

 $\begin{array}{l} \text{Consider } \left(\frac{n}{s} \cdot \frac{m}{t}\right) = \frac{(n'n_1s_1^{-1})(m't_2t_1^{-1})}{(s'n_1s_1^{-1})(t't_2t_1^{-1})} = \frac{n'm'(n_1s_1^{-1}t_2t_1^{-1})}{s't'(n_1s_1^{-1}t_2t_1^{-1})} = \frac{n'm'(s'^{-1}st_2t_1^{-1})}{s't'(s'^{-1}st_2t_1^{-1})} = \frac{n'm'}{s't'} = \left(\frac{n'}{s'} \cdot \frac{m'}{t'}\right).\\ \text{Consequently, } \left(\frac{n}{s} \cdot \frac{m}{t}\right) = \left(\frac{n'}{s'} \cdot \frac{m'}{t'}\right) \text{ thus } \mu \text{ is well-defined. Now, we show that } M_S \text{ is an} \end{array}$

 N_S -subgroup.

- (i) $(M_S, +)$ is a group.
- (ii) We show that $N_S \cdot M_S \subseteq M_S$. $\sum_{i=1}^{n} \left(\frac{n_i}{s_i} \cdot \frac{m_i}{t_i}\right) = \sum_{i=1}^{n} \left(\frac{n_i \cdot m_i}{s_i \cdot t_i}\right) \subseteq M_S, \text{ for every } \frac{n_i}{s_i} \in N_T, \ \frac{m_i}{t_i} \in M_S. \text{ Then } M_S \text{ is } N_S \text{-group.}$

Definition 4. An N-group M is called a uniform N-group if for every non-zero N-subgroups of $M, P_1 \cap P_2 \neq 0$.

Example 3. Let $N = \left\{ \begin{pmatrix} \bar{0} & \bar{a} \\ \bar{0} & \bar{b} \end{pmatrix} \middle| \bar{a}, \bar{b} \in Z_2 \right\}$ with addition and multiplication of Matrices be a near-ring and $M = N^{N}$ be an N-group. Then M is a uniform N-group. Because,

$$M = \left\{ \left(\begin{array}{cc} \overline{0} & \overline{0} \\ \overline{0} & \overline{0} \end{array} \right), \left(\begin{array}{cc} \overline{0} & \overline{1} \\ \overline{0} & \overline{0} \end{array} \right), \left(\begin{array}{cc} \overline{0} & \overline{0} \\ \overline{0} & \overline{1} \end{array} \right), \left(\begin{array}{cc} \overline{0} & \overline{1} \\ \overline{0} & \overline{1} \end{array} \right) \right\},$$

and by simple calculation, we see that $I = \left\{ \begin{pmatrix} \bar{0} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix}, \begin{pmatrix} \bar{0} & \bar{1} \\ \bar{0} & \bar{0} \end{pmatrix} \right\}$, and $M = N^N$ are the only non-zero N-subgroups of M. Then $I \cap \dot{M} = I \neq 0$

Proposition 2. Let M be a Dedekind N-group and T satisfies in Lemma 2.3. Then M is a uniform N-group.

Proof. Let P, P' be two non-zero N-subgroups of M. We will show that $P \cap P' \neq 0$. Let $P \cap P' = 0$ and $0 \neq m \in P$ be such that $m \notin P'$. Now we show that, there exists $s \in T$ such that $sm \in P'$. Since M is Dedekind N-group hence, P' is invertible N-group of M, i.e. P''P' = M, where $P'' = \{x \in M_T | xP' \subseteq M\}.$

Since $m \in M$ there exists $p''_i \in P''$, $p'_i \in P'$ such that $x = \sum_{i=1}^n p''_i \cdot p'_i$. Without loss of generality, consider n = 2. Suppose that $m = p''_1 \cdot p'_1 + p''_2 \cdot p'_2$. Since $p''_1, p''_2 \in P''$ there exists $\frac{m_1}{t_1}, \frac{m_2}{t_2} \in M_T$ such that $p''_1 = \frac{m_1}{t_1}, p''_2 = \frac{m_2}{t_2}$ therefore,

$$m = p_1'' \cdot p_1' + p_2'' \cdot p_2' = \frac{m_1}{t_1} \cdot \frac{p_1'}{1} + \frac{m_2}{t_2} \cdot \frac{p_2'}{1}.$$

So, (there exists $s_1, s_2, s_3, s_4, r, r' \in T$) such that

$$\frac{m_1}{t_1} \cdot \frac{p_1'}{1} + \frac{m_2}{t_2} \cdot \frac{p_2'}{1} = \frac{p_1's_2}{t_1s_1} + \frac{p_2's_4}{t_2s_3} = \frac{p_1's_2r + p_2's_4r'}{t_1s_1r}$$

By choosing $(s = t_1 s_1 r)$ we have

$$sm = p_1's_2r + p_2's_4r' \in P'$$

Since P is an N-subgroup, $sm \in P$. Thus, sm = 0 and m = 0 is a contradiction. Hence for each non-zero N-subgroup P, P' of $M, P \cap P' \neq 0$. **Proposition 3.** If $ann_{N_S}(m) = P_S$, for each non-zero $m \in M$, then $ann_N(m) = P$.

Proof. Let $x \in ann_N(m)$, then $\frac{x}{1} \in ann_{N_S}(m) = P_S$. Therefore, $\frac{x}{1} \in P_S$. Then there exists $\frac{p_1}{t_1} \in P_T$ such that $\frac{x}{1} = \frac{p_1}{t_1}$. So, there exists $s_1, s_2 \in S$ such that $xs_1 = p_1s_2, s_2 = t_1s_2$. Thus $x = p_1s_2s_1^{-1} \in P$. then $x \in P$. So $ann_N(m) \subseteq P$.

Let $x \in P$, then $\frac{x}{1} \in P_S$. Therefore, $\frac{x}{1} \in ann_{N_S}(m)$, then for each $m \in M$, $(\frac{x}{1})m = 0$ So, $\frac{xm}{1} = xm = 0$. Hence, $x \in ann_N(m)$. Consequently, $P \subseteq ann_N(m)$.

Theorem 7. Let every N-subgroup of M be an ideal of M and M be a Dedekind N-group. Then for each non-zero $m \in M$, $ann_N(m) = ann_N(M)$ and $ann_N(M)$ is a prime ideal of N.

Proof. It is clear that for each non-zero $m \in M$, $ann_N(m) = ann_N(M)$. We show that $ann_N(M)$ is a prime ideal of N. Let $0 \neq m \in M$, by Theorem 6, since M is Dedekind N-group. Then M_S is a N-simple N_S -group. Therefore, there exists a maximal ideal K of N_S such that $ann_{N_S}(m) = K$. We know that $K = P_S$ for some prime ideal P. Thus $ann_{N_S}(m) = P_S$. Consequently, by Proposition 3, $ann_N(m) = P$. Since for each $m \in M$, $ann_N(m) = P$, Then $ann_N(m) = ann_N(M) = P$.

Theorem 8. Let every N-subgroup of M be an ideal of M and M be a Dedekind N-group. Then $N/ann_N(M)$ is a prime near-ring.

Proof. Since M is a Dedekind N-group, therefore by Theorem 5, M is a prime N-group. We show that $N/ann_N(M)$ is a prime near-ring. Let $(x + ann_N(M)) \cdot (N/ann_N(M)) \cdot (y + ann_N(M)) = ann_N(M)$ for each $x + ann_N(M)$, $y + ann_N(M) \in N/ann_N(M)$.

For all $n + ann_N(M) \in N/ann_N(M)$ we have $(x + ann_N(M)) \cdot (n + ann_N(M)) \cdot (y + ann_N(M)) = ann_N(M))$. So, $(xny + ann_N(M)) = ann_N(M)$. Therefore, $xny \in ann_N(M)$. By Theorem 7, $ann_N(M)$ is a prime ideal of N.

Thus, $x \in ann_N(M)$ or $y \in ann_N(M)$. Therefore, $(x + ann_N(M)) = ann_N(M)$ or $(y + ann_N(M)) = ann_N(M)$. Hence, $N/ann_N(M)$ is a prime near-ring.

Lemma 3. Every prime near-ring is an integral domain.

Proof. It is clear.

Corollary 1. Let every N-subgroup of M be ideal of M and M be a Dedekind N- group. Then N/annN(M) is an integral domain.

Proof. The proof is clear by Lemma 3 and Theorem 8.

Theorem 9. Let M and M' be Dedekind N-groups. Then $M \cap M'$ is a Dedekind N-group.

Proof. Suppose P is a non-zero N-subgroup of $M \cap M'$. Now we show that P is invertible. Consider $P' = \{x \in (M \cap M')_S | xP \subseteq (M \cap M')\}$. It is clear that $PP' \subseteq M \cap M'$. It is enough to show that $M \cap M' \subseteq P'P$. Suppose $x \in M \cap M'$. So, $x \in M$ and $x \in M'$. Since M, M' are Dedekind N-groups, there exist P', P'' such that P'P = M, P''P = M'. Therefore, $x \in P'P$, $x \in P''P$. So, $x \in P'P \cap P''P \subseteq P'P$. Consequently, $M \cap M' \subseteq P'P$ is a Dedekind N-group.

Proposition 4. Every uniform N-group is a Dedekind N-group.

Proof. Let M be a uniform N-group and P be a non-zero N-subgroup of M. Then we show that P is an invertible N-subgroup. Consider $P' = \{x \in M_S | xP \subseteq M\}$, it is clear that $P'P \subseteq M$. Let $0 \neq x \in M$, since M is a uniform N-group, there exists an N-subgroup P of M such that $x \in P \cap M$, since $1_{P'} \in P'$ therefore, $x = 1 \cdot x \in P'(P \cap M)$. Therefore, $P'P \subseteq M$. Consequently, M is a Dedekind N-group.

Corollary 2. Every uniform N-group is a prime N-group.

Proof. The proof is clear by Proposition 4 and Theorem 5.

Acknowledgments

The authors would like to thank the referee for careful reading.

References

- E. Khodadadpour and T. Roodbarylor, Valuation near rings, Journal of algebra and related topics, (2) 9 (2021), 95–100.
- [2] M. Khoramdel and S. Dolati Pish Hesari, Some notes on dedekind modules, Hacettepe Journal of Mathematics and Statistics, 5 (2011), 627–634.
- [3] G. Pilz, *Near-Rings*, North Holland, Amsterdam, (1983).
- [4] M. G. Rinaldi, On the near rings whose proper ideas are prime, San Benedetto del toronto, (1981), 197–200.
- [5] M. Sadeghi gougheri and T. Roodbarylor, The construction of fraction N-subgroups in near rings, Italean Journal of pure and applied mathematics, 46 (2021), 272-282.
- [6] S. Yamamuro, A note on near rings of mapping, J. Austral. Math. soc., 16 (1973).