
تعداد نشریات | 31 |
تعداد شمارهها | 792 |
تعداد مقالات | 7,554 |
تعداد مشاهده مقاله | 24,670,527 |
تعداد دریافت فایل اصل مقاله | 7,582,894 |
اثر پرایمینگ بذر با نانوذرات منیزیم بر بهبود شاخصهای عملکردی و محتوای روغن کاملینا (Camelina sativa) تحت تنش شوری | ||
علوم و تحقیقات بذر ایران | ||
دوره 11، شماره 4، دی 1403، صفحه 31-45 | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/jms.2024.8797 | ||
نویسندگان | ||
محمد حقانی نیا1؛ علی نجفی فر2؛ فریدون سلیمانی3؛ امیر میرزائی3؛ عبدالله جوانمرد* 4 | ||
1پژوهشگر مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان ایلام، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایلام، ایران | ||
2دانشیار مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان ایلام، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایلام، ایران | ||
3استادیار مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان ایلام، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایلام، ایران | ||
4استاد گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه مراغه، آذربایجان شرقی، ایران | ||
چکیده | ||
تنش شوری یکی از چالشهای اساسی کشاورزی است که منجر به کاهش رشد و تولید محصولات زراعی میشود. اگرچه پرایمینگ بذر با نانوذرات بهعنوان روشی نوین برای کاهش اثرات تنشهای محیطی معرفی شده است، اطلاعات کمی در خصوص تأثیر نانوذرات منیزیم بر گیاه کاملینا (Camelina sativa) در شرایط تنش شوری وجود دارد. در این راستا، این پژوهش با هدف بررسی اثر پرایمینگ بذر با نانوذرات منیزیم بر رشد، ویژگیهای بیوشیمیایی و کیفیت بذر کاملینا تحت تنش شوری در گلخانه تحقیقاتی گروه مهندسی تولید و ژنتیک گیاهی دانشگاه مراغه انجام شد. آزمایش بهصورت فاکتوریل برپایه طرح کاملاً تصادفی با سه سطح تنش شوری) 0، ۱۰۰ و ۲۰۰ میلیمولار (NaCl و چهار غلظت نانوذرات منیزیم (۰، 100، 300 و 600 میلیگرم بر لیتر) اجرا گردید. نتایج نشان داد که تنش شوری موجب کاهش نسبت پتاسیم به سدیم، وزن هزار دانه، عملکرد دانه، محتوای روغن و تغییرات نامطلوب در ترکیب اسیدهای چرب شد. در مقابل، پرایمینگ بذر با نانوذرات منیزیم، بهویژه در غلظت 300 میلیگرم بر لیتر، باعث بهبود نسبت پتاسیم به سدیم، افزایش فعالیت آنزیمهای آنتیاکسیدانی، افزایش محتوای ترکیبات فنلی و فلاونوئیدی و کاهش پراکسیداسیون لیپیدی شد. این تیمار همچنین عملکرد دانه و محتوای روغن را بهترتیب 168 و 43 درصد افزایش داد و کیفیت روغن را با بهبود اسیدهای چرب غیراشباع و کاهش اسید پالمیتیک ارتقا بخشید. بطور کلی، نتایج این تحقیق نشان میدهد که پرایمینگ بذر با نانوذرات منیزیم، بهویژه در غلظت 300 میلیگرم بر لیتر، میتواند ویژگیهای کمی و کیفی بذر کاملینا را در شرایط شوری بهبود بخشد و با تکرار آن در شرایط مزرعهای و آزمایشات منطقهای بهعنوان یک استراتژی مؤثر برای تعدیل اثرات شوری و ارتقای بهرهوری تولید مورد استفاده قرار گیرد. | ||
کلیدواژهها | ||
پرایمینگ بذر؛ تنش شوری؛ فعالیت آنتیاکسیدانی؛ کاملینا؛ کیفیت روغن؛ نانوذرات | ||
مراجع | ||
Adil, M., Bashir, S., Bashir, S., Aslam, Z., Ahmad, N., Younas, T., Asghar, R. M. A., Alkahtani, J., Dwiningsih, Y. and Elshikh, M.S. 2022. Zinc oxide nanoparticles improved chlorophyll contents, physical parameters, and wheat yield under salt stress. Frontiers in plant science, 13, p.932861. https://doi.org/10.3389/fpls.2022.932861 (Journal)
Aebi, H. 1984. Catalase in vitro. Methods in Enzymology, 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3 (Book)
Ahmad, Z., Warraich, E.A., Iqbal, M. A., Barutcular, C., Alharby, H., Bamagoos, A., Cig, F. and El Sabagh, A. 2021. Foliage applied silicon ameliorates drought stress through physio-morphological traits, osmoprotectants and antioxidant metabolism of camelina (Camelina sativa L.) genotypes. Acta Scientiarum Polonorum Hortorum Cultus, 20(4), pp.43-57. https://doi.org/10.24326/asphc.2021.4.4 (Journal)
Alhammad, B.A., Ahmad, A., Seleiman, M. F. and Tola, E. 2023. Seed priming with nanoparticles and 24-epibrassinolide improved seed germination and enzymatic performance of Zea mays L. in salt-stressed soil. Plants, 12(4), p.690. https://doi.org/10.3390/plants12040690 (Journal)
Ali, S., Ulhassan, Z., Shahbaz, H., Kaleem, Z., Yousaf, M. A., Ali, S., Sheteiwy, M. S., Waseem, M., Ali, S. and Zhou, W. 2024. Application of magnesium oxide nanoparticles as a novel sustainable approach to enhance crop tolerance to abiotic and biotic stresses. Environmental Science: Nano, 11(8), pp.3250-3267. https://doi.org/10.1039/D4EN00417E (Journal)
Alsaeedi, A., El-Ramady, H., Alshaal, T., El-Garawany, M., Elhawat, N. and Al-Otaibi, A. 2019. Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiology and Biochemistry, 139, pp.1-10. https://doi.org/10.1016/j.plaphy.2019.03.008 (Journal)
Alsamadany, H., Alharby, H. F., Ahmad, Z., Al-Zahrani, H. S., Alzahrani, Y.M. and Almaghamsi, A. 2024. Improving alkaline stress tolerance in maize through seed priming with silicon nanoparticles: a comprehensive investigation of growth, photosynthetic pigments, antioxidants, and ion balance. Silicon, 16(5), pp.2233-2244. https://doi.org/10.1007/s12633-023-02833-5 (Journal)
Amin, M. A. A., Abu-Elsaoud, A.M., Nowwar, A.I., Abdelwahab, A.T., Awad, M. A., Hassan, S. E. D., Boufahja, F., Fouda, A. and Elkelish, A. 2024. Green synthesis of magnesium oxide nanoparticles using endophytic fungal strain to improve the growth, metabolic activities, yield traits, and phenolic compounds content of Nigella sativa L. Green Processing and Synthesis, 13(1), p.20230215. https://doi.org/10.1515/gps-2023-0215 (Journal)
Amirfakhrian, Z., Abdossi, V., Mohammadi Torkashvand, A., Weisany, W. and Ghanbari Jahromi, M. 2024. Co-applied magnesium nanoparticles and biochar modulate salinity stress via regulating yield, biochemical attribute, and fatty acid profile of Physalis alkekengi L. Environmental Science and Pollution Research, 31(22), pp.31806-31817. https://doi.org/10.1007/s11356-024-33329-3 (Journal)
Bahcesular, B., Yildirim, E. D., Karaçocuk, M., Kulak, M. and Karaman, S. 2020. Seed priming with melatonin effects on growth, essential oil compounds and antioxidant activity of basil (Ocimum basilicum L.) under salinity stress. Industrial Crops and Products, 146, p.112165. https://doi.org/10.1016/j.indcrop.2020.112165 (Journal)
Bates, L. S., Waldren, R. P. and Teare, I. D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060 (Journal)
Batool, S. U., Javed, B., Sohail, Zehra, S.S., Mashwani, Z. U. R., Raja, N. I., Khan, T., ALHaithloul, H. A. S., Alghanem, S. M., Al-Mushhin, A. A. and Hashem, M. 2021. Exogenous applications of bio-fabricated silver nanoparticles to improve biochemical, antioxidant, fatty acid and secondary metabolite contents of sunflower. Nanomaterials, 11(7), p.1750. https://doi.org/10.3390/nano11071750 (Journal)
Bazvand, F., Eisvand, H. R., Daneshvar, M., Rahimi-Moghaddam, S. and Paravar, A. 2024. Can exogenous application of putrescine and priming modulate salinity stress in Camelina sativa L. Industrial Crops and Products, 222, p.119711. https://doi.org/10.1016/j.indcrop.2024.119711 (Journal)
Beauchamp, C. and Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical biochemistry, 44(1), pp.276-287. https://doi.org/10.1016/0003-2697(71)90370-8 (Journal)
Chance, B. and Maehly, A. C. 1955. Assay of catalases and peroxidases. (Book)
Chang, C. C., Yang, M. H., Wen, H. M. and Chern, J. C. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis, 10(3). https://doi.org/10.38212/2224-6614.2748 (Journal)
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017 (Journal)
El Sabagh, A., Hossain, A., Barutçular, C., Iqbal, M. A., Islam, M. S., Fahad, S., Sytar, O., Çig, F., Meena, R. S. and Erman, M. 2020. Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: an outlook of arid and semi-arid regions. Environment, climate, plant and vegetation growth, pp.503-533. https://doi.org/10.1007/978-3-030-49732-3_20 (Journal)
El-Badri, A. M., Batool, M., Wang, C., Hashem, A. M., Tabl, K. M., Nishawy, E., Kuai, J., Zhou, G. and Wang, B. 2021. Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress. Ecotoxicology and Environmental Safety, 225, p.112695. https://doi.org/10.1016/j.ecoenv.2021.112695 (Journal)
Faiz, S., Yasin, N. A., Khan, W. U., Shah, A. A., Akram, W., Ahmad, A., Ali, A., Naveed, N. H. and Riaz, L. 2022. Role of magnesium oxide nanoparticles in the mitigation of lead-induced stress in Daucus carota: modulation in polyamines and antioxidant enzymes. International Journal of Phytoremediation, 24(4), pp.364-372. https://doi.org/10.1080/15226514.2021.1949263 (Journal)
Fatemeh, R., Hadi, A. and Latifeh, P. 2020. Effects of foliar application of ZnO nanoparticles on secondary metabolite and micro-elements of camelina (Camelina sativa L.) under salinity stress. Journal of Stress Physiology & Biochemistry, 16(4), pp.54-69. (Journal)
Fatemi, A., Moaveni, P., Daneshian, J., Mozafari, H. and Ghaffari, M. 2022. Magnesium nanoparticles improve grain yield, oil percentage, physiological, and biochemical traits of sunflower (Helianthus annuus L.) under drought stress. Journal of Agricultural Science and Technology, 24(3), pp.665-678. http://jast.modares.ac.ir/article-23-44376-en.html (Journal)
Forozan Bakyani, M. R., Alinia, M., Abdolreza Kazemeini, S., Abadia Bayona, J. and Dadkhodaie, A. 2022. Foliar application of melatonin improves the salt tolerance, ion and redox homeostasis and seed oil fatty acid profile in Camelina sativa. https://doi.org/10.3390/plants11223113 (Journal)
Gautam, A., Sharma, P., Ashokhan, S., Yaacob, J. S., Kumar, V. and Guleria, P. 2023. Inhibitory impact of MgO nanoparticles on oxidative stress and other physiological attributes of spinach plant grown under field condition. Physiology and Molecular Biology of Plants, 29(12), pp.1897-1913. https://doi.org/10.1007/s12298-023-01391-9 (Journal)
Ghasempour, S., Ghanbari Jahromi, M., Mousavi, A. and Iranbakhsh, A. 2024. Seed priming with cold plasma, iron, and manganese nanoparticles modulates salinity stress in hemp (Cannabis sativa L.) by improving germination, growth, and biochemical attributes. Environmental Science and Pollution Research, pp.1-13. https://doi.org/10.1007/s11356-024-35590-y (Journal)
Ghassemi-Golezani, K. and Farhangi-Abriz, S. 2018. Changes in oil accumulation and fatty acid composition of soybean seeds under salt stress in response to salicylic acid and jasmonic acid. Russian Journal of Plant Physiology, 65, pp.229-236. https://doi.org/10.1134/S1021443718020115 (Journal)
Ghassemi-Golezani, K. and Farhangi-Abriz, S. 2021. Biochar-based metal oxide nanocomposites of magnesium and manganese improved root development and productivity of safflower (Carthamus tinctorius L.) under salt stress. Rhizosphere, 19, p.100416. https://doi.org/10.1016/j.rhisph.2021.100416 (Journal)
Gogna, M., Choudhary, A., Mishra, G., Kapoor, R. and Bhatla, S.C. 2020. Changes in lipid composition in response to salt stress and its possible interaction with intracellular Na+-K+ ratio in sunflower (Helianthus annuus L.). Environmental and Experimental Botany, 178, p.104147. https://doi.org/10.1016/j.envexpbot.2020.104147 (Journal)
Haghaninia, M., Javanmard, A., Kahrizi, D., Bahadori, M. B. and Machiani, M.A. 2024a. Optimizing oil quantity and quality of camelina (Camelina sativa L.) with integrative application of chemical, nano and bio-fertilizers under supplementary irrigation and rainfed condition. Plant Stress, 11, p.100374. https://doi.org/10.1016/j.stress.2024.100374 (Journal)
Haghaninia, M., Javanmard, A., Mahdavinia, G. R., Shah, A. A. and Farooq, M. 2023. Co-application of biofertilizer and stress-modulating nanoparticles modulates the physiological, biochemical, and yield responses of camelina (Camelina sativa L.) under limited water supply. Journal of Soil Science and Plant Nutrition, 23(4), pp.6681-6695. https://doi.org/10.1007/s42729-023-0152 (Journal)
Haghaninia, M., Rasouli, F., Javanmard, A., Mahdavinia, G., Azizi, S., Nicoletti, R., Murariu, O. C., Tallarita, A. V. and Caruso, G. 2024b. Improvement of physiological features and essential oil content of thymus vulgaris after soil amendment with chitosan nanoparticles under chromium toxicity. Horticulturae, 10(6), p.659. https://doi.org/10.3390/horticulturae10060659 (Journal)
Heath, R. L. and Packer, L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. https://doi.org/10.1016/0003-9861(68)90654-1 (Journal)
Huang, P., He, L., Abbas, A., Hussain, S., Hussain, S., Du, D., Hafeez, M. B., Balooch, S., Zahra, N., Ren, X. and Rafiq, M. 2021. Seed priming with sorghum water extract improves the performance of camelina (Camelina sativa (L.) crantz.) under salt stress. Plants, 10(4), p.749. https://doi.org/10.3390/plants10040749 (Journal)
Kabiri, R., Shamsaddin-Saied, M. and Hasanzadeh-Tajarogh, B. 2024. Assessment of germination indices and early growth of Camelina (Camelina sativa) seedlings in response to osmotic and salinity stresses. Iranian J. Seed Res. 11(1), 21-41. https://doi.10.61186/yujs.11.1.21 (In Persian) (Journal)
Kanjana, D. 2020. Foliar application of magnesium oxide nanoparticles on nutrient element concentrations, growth, physiological, and yield parameters of cotton. Journal of Plant Nutrition, 43(20), pp.3035-3049. https://doi.org/10.1080/01904167.2020.1799001 (Journal)
Khan, I., Raza, M. A., Awan, S. A., Shah, G. A., Rizwan, M., Ali, B., Tariq, R., Hassan, M.J., Alyemeni, M. N., Brestic, M. and Zhang, X. 2020. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant physiology and biochemistry, 156, pp.221-232. https://doi.org/10.1016/j.plaphy.2020.09.018 (Journal)
Khoraki, M. and Farhoudi, R. 2020. Effect of halopriming on germination and seedling growth of single cross 704 corn seeds under salinity stress condition, Iranian Journal of Seed Sciences and Research, 7(4), pp. 447-461. https://doi.org/10.22124/jms.2020.4642 (In Persian) (Journal)
Kokebie, D., Enyew, A., Masresha, G., Fentie, T. and Mulat, E., 2024. Morphological, physiological, and biochemical responses of three different soybean (Glycine max L.) varieties under salinity stress conditions. Frontiers in Plant Science, 15, p.1440445. https://doi.org/10.3389/fpls.2024.1440445 (Journal)
Mahdy, A. M., Sherif, F. K., Elkhatib, E. A., Fathi, N. O. and Ahmed, M. H. 2020. Seed priming in nanoparticles of water treatment residual can increase the germination and growth of cucumber seedling under salinity stress. Journal of Plant Nutrition, 43(12), pp.1862-1874. https://doi.org/10.1080/01904167.2020.1750647 (Journal)
Matthees, H. L., Thom, M. D., Gesch, R. W. and Forcella, F. 2018. Salinity tolerance of germinating alternative oilseeds. Industrial Crops and Products, 113, pp.358-367. https://doi.org/10.1016/j.indcrop.2018.01.042 (Journal)
Mazhar, M. W., Ishtiaq, M., Maqbool, M. and Akram, R. 2022. Seed priming with Calcium oxide nanoparticles improves germination, biomass, antioxidant defence and yield traits of canola plants under drought stress. South African Journal of Botany, 151, pp.889-899. https://doi.org/10.1016/j.sajb.2022.11.017 (Journal)
Mirrani, H. M., Noreen, Z., Usman, S., Shah, A. A., Mahmoud, E. A., Elansary, H. O., Aslam, M., Waqas, A. and Javed, T. 2024. Magnesium nanoparticles extirpate salt stress in carrots (Daucus carota L.) through metabolomics regulations. Plant Physiology and Biochemistry, 207, p.108383. https://doi.org/10.1016/j.plaphy.2024.108383 (Journal)
Mohamed, I. A., Shalby, N., El-Badri, A., Saleem, M. H., Khan, M. N., A. Nawaz, M., Qin, M., Agami, R. A., Kuai, J., Wang, B. and Zhou, G. 2020. Stomata and xylem vessels traits improved by melatonin application contribute to enhancing salt tolerance and fatty acid composition of Brassica napus L. plants. Agronomy, 10(8), p.1186. https://doi.org/10.3390/agronomy10081186 (Journal)
Moradbeygi, H., Jamei, R., Heidari, R. and Darvishzadeh, R., 2020. Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. plant under salinity stress. Scientia Horticulturae, 272, p.109537. https://doi.org/10.1016/j.scienta.2020.109537 (Journal)
Mukherjee, S. P. and Choudhuri, M. A. 1983. Implications of water stress-induced changes in the levels of endogenous plant hormones and leaf growth in soybeans. Physiologia Plantarum, 58(2), 307-313. https://doi.org/10.1111/j.1399-3054.1983.tb04162.x (Journal)
Naheed, R., Aslam, H., Kanwal, H., Farhat, F., Gamar, M. I. A., Al-Mushhin, A. A., Jabborova, D., Ansari, M. J., Shaheen, S., Aqeel, M. and Noman, A. 2021. Growth attributes, biochemical modulations, antioxidant enzymatic metabolism and yield in Brassica napus varieties for salinity tolerance. Saudi Journal of Biological Sciences, 28(10), pp.5469-5479. https://doi.org/10.1016/j.sjbs.2021.08.021 (Journal)
Saadat, H. and Sedghi, M. 2024. The effect of priming on seed germination indices and antioxidant enzyme activity in chickpea seedlings (Cicer arietinum L.) under salinity stress. Iranian Journal of Seed Sciences and Research, 11(1), pp. 15-29. https://doi.org/10.22124/jms.2024.8036 (In Persian) (Journal)
Sadak, M. S., Abd El-Hameid, A. R., Zaki, F. S., Dawood, M. G. and El-Awadi, M.E. 2020. Physiological and biochemical responses of soybean (Glycine max L.) to cysteine application under sea salt stress. Bulletin of the National Research Centre, 44, pp.1-10. https://doi.org/10.1186/s42269-019-0259-7 (Journal)
Sanehkoori, F. H., Pirdashti, H. and Bakhshandeh, E. 2021. Quantifying water stress and temperature effects on camelina (Camelina sativa L.) seed germination. Environmental and Experimental Botany, 186, p.104450. https://doi.org/10.1016/j.envexpbot.2021.104450 (Journal)
Sen, A., Islam, M. M., Zaman, E., Ghosh, U. K., Momtaz, M. B., Islam, M. A., Urmi, T. A., Mamun, M. A. A., Rahman, M. M., Kamal, M.Z.U. and Rahman, G.M. 2022. Agro-Morphological, yield and biochemical responses of selected wheat (Triticum aestivum L.) genotypes to salt stress. Agronomy, 12(12), p.3027. https://doi.org/10.3390/agronomy12123027 (Journal)
Singh, A., Rajput, V. D., Sharma, R., Ghazaryan, K. and Minkina, T. 2023. Salinity stress and nanoparticles: Insights into antioxidative enzymatic resistance, signaling, and defense mechanisms. Environmental Research, p.116585. https://doi.org/10.1016/j.envres.2023.116585 (Journal)
Singleton, V. L. and Rossi, J.A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), pp.144-158. https://doi.org:10.5344/ajev.1965.16.3.144 (Journal)
Stasnik, P., Vollmann, J., Großkinsky, D. K. and Jonak, C. 2024. Leaf carbohydrate metabolic enzyme activities are associated with salt tolerance and yield stability in the climate-resilient crop Camelina sativa. Plant Stress, 14, p.100629. https://doi.org/10.1016/j.stress.2024.100629 (Journal)
Subramanyam, K., Du Laing, G. and Van Damme, E. J. 2019. Sodium selenate treatment using a combination of seed priming and foliar spray alleviates salinity stress in rice. Frontiers in plant science, 10, p.116. https://doi.org/10.3389/fpls.2019.00116 (Journal)
Teimoori, N., Ghobadi, M. and Kahrizi, D. 2023. Improving the growth characteristics and grain production of camelina (Camelina sativa L.) under salinity stress by silicon foliar application. Agrotechniques in Industrial Crops, 3(1), pp.1-13. https://doi.org/10.22126/atic.2023.8681.1081 (Journal)
Waraich, E. A., Ahmad, M., Soufan, W., Manzoor, M. T., Ahmad, Z., Habib-Ur-Rahman, M. and Sabagh, A.E. 2021. Seed priming with sulfhydral thiourea enhances the performance of Camelina sativa L. under heat stress conditions. Agronomy, 11(9), p.1875. https://doi.org/10.3390/agronomy11091875 (Journal)
Zafar, S., Hasnain, Z., Danish, S., Battaglia, M. L., Fahad, S., Ansari, M. J. and Alharbi, S. A. 2024. Modulations of wheat growth by selenium nanoparticles under salinity stress. BMC Plant Biology, 24(1), p.35. https://doi.org/10.1186/s12870-024-04720-6 (Journal) | ||
آمار تعداد مشاهده مقاله: 6 |