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 One of the effective approaches to quality improvement is the 

application of statistical science within the framework of Total Quality 

Management (TQM). Statistical Process Control (SPC), as a key 

component of TQM, utilizes tools such as control sheets, histograms, 

Pareto charts, cause-and-effect diagrams, defect concentration charts, 

correlation diagrams, and control charts to detect and prevent defective 

products. This study focuses on control charts as instruments for 

identifying variations and out-of-control conditions in process means. 

In traditional methods, there is usually a delay between the occurrence 

of a process change and its detection on Shewhart control charts. This 

research aims to minimize such delay by proposing the use of adaptive 

control charts based on Markov chain models, which enhance the 

capability of rapid detection of assignable causes. To evaluate the 

proposed approach, one of the machines in a tea bag production 

company-characterized by a two-stage production process—was 

selected for case analysis. Sampling was conducted in two modes: once 

with fixed sample sizes and intervals, and again using adaptive 

sampling with variable sizes and intervals, to compare the efficiency of 

the proposed method. 
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1.Introduction 

One of the major issues that developing countries face is the absence of a healthy and competitive 

market. In these countries, the products manufactured do not encounter significant obstacles due 

to the lack of market saturation, and they are often sold regardless of the quality. As the quality 

expert Dr. Juran states, "In times of scarcity, the first thing to be sacrificed is quality." This 

principle is particularly evident in countries that lack a healthy competitive market [8,9]. Quality 

 
⁎ Corresponding author. 

   E-mail addresses: k_fathi@iau-tnb.ac.ir (K. Fathi Vajargah) 

 
 

 

https://doi.org/10.22124/cse.2025.30676.1106 

© 2024 Published by University of Guilan  

https://cse.guilan.ac.ir/
mailto:k_fathi@iau-tnb.ac.ir
https://doi.org/10.22124/cse.2025.30676.1106


270 K. Fathi Vajargah, H. Eslami Mofid Abadi / Computational Sciences and Engineering 4(2) (2024) 269-282  

 

is a key competitive characteristic in today's world, and control charts, as one of the most 

important and widely used tools in statistical process control (SPC), play a crucial role in 

enhancing process quality by monitoring and identifying changes that occur within them. Control 

charts, in a way, are central to the quality process. Fortunately, in recent years, with the shift in the 

mindset of organizations and individuals involved in production, it has become increasingly 

evident that improving quality does not only avoid increased costs but can also contribute to cost 

reduction. In every production process, despite proper design or maintenance, a certain degree of 

inherent variability exists. This inherent variability or disturbance is caused by the accumulation 

of numerous small, unavoidable deviations. Variability in key quality characteristics typically 

stems from three sources: incorrect machine settings, operator errors, and defective raw materials. 

One of the main objectives of statistical process control is to quickly detect the presence of 

special-cause variations or changes in the process mean, so that corrective actions can be taken 

before a large number of defective products are produced. The goal of SPC is to eliminate 

variation in the process mean. While it is impossible to eliminate all process variability, control 

charts can serve as an effective tool to reduce process variation [13]. 

A control chart is a method of presenting a quality characteristic, measured or calculated based on 

the chart's data, in terms of sample number or time. There is a strong connection between control 

charts and hypothesis testing. Essentially, a control chart is a hypothesis test used to assess 

whether a process is in statistical control.To monitor the process, mean, the Shewhart X̅ control 

chart was developed for easier implementation and has been widely used in industrial projects. 

However, until today, Shewhart X̅ control charts have mostly monitored processes in which equal-

sized samples are taken at regular time intervals. They are often slow to detect small to moderate 

changes in the process mean, or in some cases, they may fail to detect these changes. As a result, 

several alternative solutions have been proposed and developed in recent years to improve the 

performance of Shewhart control charts. One such method to enhance detection capability is to 

use variable sample size (VSS) or variable sample intervals (either in combination or separately) 

rather than fixed sample size or fixed sample intervals as used in the traditional approach. 

Whenever there are signs that a process parameter may have changed, the subsequent sample 

should be larger or the sample interval should be shorter. Conversely, if no indication of change in 

a parameter is observed, the subsequent sample should be smaller or the sample interval should be 

larger [17]. 

In many previous studies, it was assumed that only single-stage processes were involved, while 

many of the current production processes are multi-stage dependent processes. The goal of this 

research is to provide statistical solutions to minimize the drawbacks of traditional methods and to 

more efficiently utilize new two-stage control charts in practice. Furthermore, the research aims to 

demonstrate the differences in results obtained from these new control charts compared to 

traditional ones and to present the implications of these differences for production managers [7-9]. 

2. Theoretical Framework of the Study 

Statistics comprises a set of powerful and effective techniques that can significantly assist in 

decision-making related to a process or population, based on the analysis of data derived from a 

representative sample. Statistical methodologies play a pivotal and foundational role in quality 

improvement initiatives. These methods provide the essential principles for designing sampling 

schemes, conducting statistical tests, evaluating results, and utilizing the acquired data to monitor 
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and enhance production processes. Within the field of quality management, it is widely 

acknowledged by experts that quality cannot be incorporated into the final product merely through 

inspection and testing. The product must be manufactured correctly from the very beginning. This 

concept underscores the necessity for a stable production process, wherein all stakeholders 

involved—including machine operators, process engineers, quality assurance personnel, and 

managerial staff—must consistently aim to improve process performance and minimize variability 

in critical process parameters.Statistical Process Control (SPC) during manufacturing represents 

the principal tool to achieve such objectives. Among SPC tools, control charts are regarded as one 

of the simplest yet most effective instruments for real-time process monitoring. Adaptive control 

charts have emerged as viable alternatives to conventional Shewhart control charts, especially in 

dynamic production environments. Nevertheless, several practical challenges hinder the 

implementation of adaptive charts-particularly those developed for monitoring process mean 

values. Despite their proven advantages, such as significant reductions in detection time and 

monitoring costs compared to fixed-parameter control charts, resistance to their deployment often 

persists among operational staff and, by extension, quality control management.A comprehensive 

review of the literature reveals that, with few exceptions, the majority of existing studies have 

overlooked the practical implementation of adaptive control charts. Most real-world applications 

in quality control revolve around the detection of assignable causes, which induce shifts in the 

statistical parameters of processes that are otherwise considered to be in control.The present study 

endeavors to address these practical limitations by statistically modeling the interrelationships 

among subprocesses and leveraging estimation techniques to mitigate, and if possible, eliminate 

current inefficiencies. Furthermore, the research aims to empirically demonstrate the superior 

operational efficiency of novel two-stage control charts over their traditional counterparts, thereby 

providing valuable insights for process improvement and strategic decision-making in quality 

management [17,18]. 

3. Research Methodology   

In this article, using samples taken from a tea packaging machine with two dependent stages, the 

time difference in detecting the process being out of control is monitored and examined in two 

traditional and adaptive control charts. In the first phase, historical data are analyzed to determine 

whether the process is under statistical control. Simultaneously, process control parameters are 

estimated. In the second phase, the control charts established in the previous phase are monitored 

to identify and detect deviations in statistical parameters. Additionally, the proposed control charts 

with variable sample size (VSS) and variable sampling interval (VSI) are also monitored [2]. 

3.1. Two-Stage Process Monitoring with Adaptive Chart 

We examine a two-stage process with two dependent stages. It is assumed that X is the 

measurable quality characteristic from the first stage of the process, which follows a normal 

distribution with a mean of μ.X and a standard deviation of σ.X. The process initially starts under 

statistical control. Also, assume that Y is the measurable quality characteristic from the second 

stage of the process and follows a similar distribution as X.After the initial sampling, the 

normality of the obtained samples from both stages is examined using a probability plot. Then, to 

discover the relationship between the variables X and Y, a scatter plot is used. Monitoring 

continues if our assumption about normality and the existence of a linear relationship between the 
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variables is correct. In this case, the second stage of the process is influenced by the first stage, 

and the relationship between X and Y is expressed as follows [2]: 

Y|X = f(x) + ε0 

 

ε₀: Error variation when the process is under control and follows a normal distribution. To monitor 

the X and Y charts, the effect of X on Y must first be eliminated. To achieve this, the model Ŷ|X, 

which is a paired observation model (x, y) constructed using the least squares error method, is 

calculated. The residuals are then obtained as follows[2]: 

e = Y|X − Ŷ|X 

 

After calculating the residuals, we proceed to monitor the X and e charts instead of the X and Y 

charts.To calculate the average changes in the mean of the first stage of the process (δ₁ ≠ 0) that 

causes the process mean to shift from μₓ to μₓ + δ₁σₓ, and also the average changes in the mean of 

e (δ₂ ≠ 0) that shifts 0 to δ₂σₑ, we use the historical process data [2]. 

Assume that Tᵢ is the time until the occurrence of the specific event i (causing a justified deviation 

in the mean), where i = 1, 2. Also, assume that Tᵢ follows an exponential distribution given by the 

following formula[15]: 

f(Ti) = λi ∙ e
−λi∙Ti 

Here, λᵢ represents the average rate at which the specific event occurs during the process[15]. 

(ti) = λi exp(−λiti)  ,        ti > 0  , 𝑖 = 1,2, 
 
1

λi
  is the average time during which the i-th stage of the process remains within a statistically 

controlled region. The analysis of a controlled region based on the intersection of control charts 

ASSI ZX̅ and ASSI ASSI Ze̅  can only be valid under the assumption that no shift in the process 

mean occurs at the initial time in either stage one or two, but rather, such a shift takes place at 

some future time. Samples with variable sizes are taken from both stages of the controlled process. 

The standardized sample means ZX̅ and Ze ̅ are expressed as follows[15]: 

ZX̅ =
X̅−μX
σX

√nj

                     Ze̅ =

e̅

σε

√nj
 

 

In control charts with warning limits in the form of ±WX̅ and ±We̅, and action limits in the form 

of ±KX̅ and ± Ke̅ (where 0 ≤ WX̅ < KX̅ and 0 ≤ We̅ < Ke̅), for the first and second stages of the 

process, assume that sample points are plotted on a standard X̅ chart and an e̅ chart. The search for 

determining the cause starts when the sample mean points (ZX̅) fall outside the range (-KX̅, KX̅), or 

when the sample mean points (Ze̅) fall outside the range (-Ke̅, Ke̅). This search is conducted 

whenever the control charts (ZX̅ and Ze̅) generate a signal (indicator). When there is no change in 

the process mean during either stage one or stage two, any signal generated is considered a false 

alarm. Conversely, when there is a shift in the sample mean during both stages of the process, the 

generated signal is regarded as a true alarm.  In the case of a non-continuous (intermittent) process, 

whether the signal is true or false, the process is halted for investigation and elimination of 

assignable causes, and then restored to a statistically controlled state [15]. 
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UCLZX̅ = KX̅                                UCLZe̅ = Ke̅ 

UWLZX̅ = WX̅                             UWLZe̅ = We̅ 

CLZX̅ = 0                                     CLZe̅ = 0 

LWLZX̅ = −WX̅                           LWLZe̅ = −We̅ 

LCLZX̅ = −KX̅                             LCLZe̅ = −Ke̅ 

 

The position of the sample mean points obtained from the current sample in each chart determines 

the sample size and the next sampling time. We have divided the proposed control charts ASSIZX̅ 

and ASSIZe̅ into the following regions[15]: 

IX̅1 = [−WX̅,WX̅]                                         Ie̅1 = [−We̅,We̅] 

IX̅2 = (−KX̅, −WX̅) ∪ (WX̅, KX̅)                 Ie̅2 = (−Ke̅, −We̅) ∪ (We̅, Ke̅) 

IX̅3 = (−∞,−Ke̅) ∪ (Ke̅, ∞)                      Ie̅3 = (−∞,−KX̅) ∪ (KX̅, ∞) 

 

If the sample mean point ZX̅ falls within the range I(X̅1) and the sample mean point Ze̅ falls within 

the range I(e̅1), then the next sample should be small (n1) and should be taken after a long-time 

interval t3. If the sample mean point ZX̅ and Ze̅ fall within the ranges I(X̅1) and I_(e̅2) or I(X̅2) and 

I(e̅1), then the next sample should be of average size (n2) and taken after an average sampling 

interval t2. If the sample mean point ZX̅ and Ze̅ fall within the range I(X̅2) and I_(e̅2), then the next 

sample should be large (n3) and taken after a short sampling interval t1. The relationship between 

the next sample size, sampling interval (t(j), n(j), j=1,2,3), and the location of the taken sample 

statistic (Ze̅, ZX̅) is expressed as follows [15]: 

(t(j), n(j)) =

{
 
 

 
 
(t3, n1)   if   ZX̅,i−1 ∈ IX̅1 ∩ Ze̅,i−1 ∈ Ie̅1
(t2, n2)   if   ZX̅,i−1 ∈ IX̅1 ∩ Ze̅,i−1 ∈ Ie̅2
(t2, n2)   if   ZX̅,i−1 ∈ IX̅2 ∩ Ze̅,i−1 ∈ Ie̅1
(t1, n3)   if   ZX̅,i−1 ∈ IX̅2 ∩ Ze̅,i−1 ∈ Ie̅2

 

 

The first sample size is randomly selected precisely at the start of the process. If the selected 

sample has a large size (n₃), then the next sampling should be carried out after a short time interval 

(t₁). If the selected sample has a medium size (n₂), then sampling should occur after a medium 

time interval (t₂). If the selected sample has a small size (n₁), then sampling should take place after 

a long time interval (t₃). During in-control processes, all samples - including the first one - must 

follow the probability distribution as follows: a probability P₀ of being small, a probability P₁ of 

being medium, and a probability 1− P₀−P₁ of being large, where P₀ and P₁ are defined as follows 

[15]: 

P0 = Pr(|ZX̅| < WX̅‖ZX̅| < KX̅) ∗ Pr(|Ze̅| < We̅‖Ze̅| < Ke̅ ) 

P1 = Pr(|ZX̅| < WX̅‖ZX̅| < KX̅) ∗ (1 − Pr(|Ze̅| < We̅‖Ze̅| < Ke̅ ))+ 

(1 − Pr(|ZX̅| < WX̅‖ZX̅| < KX̅ )) ∗ Pr(|Ze̅| < We̅‖Ze̅| < Ke̅), 
ZX̅~N(0,1)            Ze̅~N(0,1) 

 

To facilitate the calculation of performance metrics, W̅X, K̅X, W̅e, and K̅e are defined within a 

specified range such that the probability of sample points falling into the warning zone, while the 

process is in control, remains the same for both control charts Z̅X and Z̅e. Accordingly [15]: 

Pr(|ZX̅| < WX̅‖ZX̅| < KX̅) = Pr(|Ze̅| < We̅‖Ze̅| < Ke̅) 
KX̅ = Ke̅ = K           WX̅ = We̅ = W 
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When W̅X = W̅e = 0 and n₁ = n₂ = n₃ = n₀ and t₁ = t₂ = t₃ = t₀, the joint control charts Z̅X and Z̅e 

utilize a fixed sample size of n₀ and a constant sampling interval t₀. These charts are referred to as 

FSSI Z̅X and FSSI Z̅e. When n₁ = n₂ = n₃ = n₀ and t₁ < t₀ < t₂ < t₃, the sample size remains constant 

at n₀, while the sampling interval varies. Thus, the joint charts ASSI Z̅X and ASSIZ̅e are known as 

ASI Z̅X and ASI Z̅e. When t₁ = t₂ = t₃ = t₀ and n₁ < n₂ < n₀ < n₃, the sampling interval is fixed at t₀ 

and the sample size varies. Accordingly, the joint charts ASSI Z̅X and ASSI Z̅e are referred to as 

ASS Z̅X and ASS Z̅e [15]. 

3.2. Comparison of Sample Size and Sampling Interval in Fixed and Proposed Control 

Charts [15-17]: 

Here we compare two different sampling schemes under identical conditions. Specifically, the 

average sample size and average sampling interval should be calculated while the process is in-

control, as follows [15-17]: 

E[n(j)|δ1 = 0, δ2 = 0, |ZX̅| < 𝐾, |Ze̅| < 𝐾] = n0 

E[t(j)|δ1 = 0, δ2 = 0, |ZX̅| < 𝐾, |Ze̅| < 𝐾] = t0 

 

As can be observed, the above conditional expectation is computed under the assumption of no 

shift in the mean, i.e., δ₁ = 0, δ₂ = 0. Based on the above equations, the following formulas are 

derived[15-17]: 

n1 ∗ P(ZX̅,i−1 ∈ IX̅1|δ1 = 0, δ2 = 0) ∗ P(Ze̅,i−1 ∈ Ie̅1|δ1 = 0, δ2 = 0)+ 

n2 ∗ P(ZX̅,i−1 ∈ IX̅1|δ1 = 0, δ2 = 0) ∗ P(Ze̅,i−1 ∈ Ie̅2|δ1 = 0, δ2 = 0)+ 

n2 ∗ P(ZX̅,i−1 ∈ IX̅2|δ1 = 0, δ2 = 0) ∗ P(Ze̅,i−1 ∈ Ie̅1|δ1 = 0, δ2 = 0)+ 

n3 ∗ P(ZX̅,i−1 ∈ IX̅2|δ1 = 0, δ2 = 0) ∗ P(Ze̅,i−1 ∈ Ie̅2|δ1 = 0, δ2 = 0)+ 

0∗P (false alarms) = n0(2Φ(K) − 1)
2 

 

Simply put, we have: 

 

4 Φ(w)2[n1 − 2n2 + n3] + 4Φ(w)[−n1 + 2n2Φ(K) + n2 − 2n3Φ(K)] = 

n0(2Φ(K) − 1)
2 − n1 + 4n2Φ(K) − 4n3(Φ(K))

2 

 

Where Φ(.) represents the standard normal distribution function (Φ(Z) = ∫
1

√2π

z

−∞
e
−u2

2 du), which 

can be obtained from the standard normal distribution table. The calculation of the warning limits 

using the values n1, n2, and n3 is as follows [15-17]: 

W=Φ−1(
−4B1±√16B1

2−16A1C1

8A1
) 

A1 = n1 − 2n2 + n3 

B1 = −n1 + 2n2Φ(K) + n2 − 2n3Φ(K) 
C1 = −[n0(2Φ(K) − 1)

2 − n1 + 4n2Φ(K) − 4n3(Φ(K))
2] 

 

Similarly, the warning limits can be calculated using the values t1, t2, and t3 as follows [15-18]: 



 K. Fathi Vajargah, H. Eslami Mofid Abadi / Computational Sciences and Engineering 4(2) (2024) 269-282 275 

 

W=Φ−1(
−4B2±√16B2

2−16A2C2

8A2
) 

A2 = t1 − 2t2 + t1 

B2 = −t3 + 2t2Φ(K) + t2 − 2t1Φ(K) 
C2 = −[t0(2Φ(K) − 1)

2 − t3 + 4t2Φ(K) − 4t1(Φ(K))
2] 

 

Prabhu, Montgomery, and Runger (1994) stated that the selected sample size for obtaining the 

warning limit W should be rounded to the nearest integer to prevent approximation errors. 

herefore, two out of the three parameters t3, t2, and t1 must be determined. Since the minimum 

sampling interval often depends on the type of inspection and sampling method, and the values of 

t1 must be less than t0, we determine t2 and t1 based on the residuals. Using the obtained W and 

the determined t2 and t1, the last parameter t3 is obtained according to the following equation [15-

18]: 

t3 =
−4(Φ(w))2(−2t2 + t1) − 4Φ(w)(2Φ(K)t2 + t2 − 2Φ(K)t1) + t0(2Φ(K) − 1)

2 + 4Φ(K)t2 − 4(Φ(K))
2t1

−4(Φ(w))2 − 4Φ(w) + 1
 

 

With the parameters specified and the control limits determined, a comparison between the ASSI 

and FSSI schemes is conducted. To clearly demonstrate this comparison, a numerical example is 

provided. 

 
Figure 1. Expressing the performance of adaptive control charts [15-18]. 

 

3.3. Statement of the Performance of Adaptive Control Charts: 

Typically, as shown in the figure below, from the moment when the process goes out of control 

(causing fluctuations in the mean), until the moment when an alert appears on the Shewhart 

control chart, some time will pass. Here, the aim is to minimize this time by using proposed 

adaptive control charts and leveraging the rules governing Markov chains, thus allowing for a 

faster identification of the causes of the process being out of control [1-3]. 

The average time from when the process goes out of control until the signal is received. The 

average duration from the start of the process until the signal is received.  

By default, the following table is considered as the table of possible states of the process. In this 

table, the probability of transitioning from one state to another is determined according to the rule 

of the Markov chain random walk, and the probability of moving from one state to another only 

depends on the current state and does not depend on any of the previous states [4,5]. 
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Table 1. Process Control Data 

Sample 

Ze̅ 

Statistic 

Is the out-of-control 

signal received from 

the second stage of 

the process? 

Has a shift in the 

mean occurred 

in the (e)̅ chart? 

Sample 

Z_X̅ 

Statistic 

Is the out-of-control 

signal received from 

the first stage of the 

process? 

Has a shift in 

the mean 

occurred in 

the (X)̅ chart? 

Component 

𝐼1 No message No 𝐼1 No message No 1 

𝐼1 No message Yes 𝐼1 No message No 2 

𝐼1 No message No 𝐼1 No message Yes 3 

𝐼1 No message Yes 𝐼1 No message Yes 4 

𝐼1 No message No 𝐼2 No message No 5 

𝐼1 No message Yes 𝐼2 No message No 6 

𝐼1 No message No 𝐼2 No message Yes 7 

𝐼1 No message Yes 𝐼2 No message Yes 8 

𝐼2 No message No 𝐼1 No message No 9 

𝐼2 No message Yes 𝐼1 No message No 10 

𝐼2 No message No 𝐼1 No message Yes 11 

𝐼2 No message Yes 𝐼1 No message Yes 12 

𝐼2 No message No 𝐼2 No message No 13 

𝐼2 No message Yes 𝐼2 No message No 14 

𝐼2 No message No 𝐼2 No message Yes 15 

𝐼2 No message Yes 𝐼2 No message Yes 16 

 

 

Markov Chain Transition Probabilities and ATC Calculation 

These probabilities form a square matrix of order 16 as follows: 

P  im (tj,nj): The probability matrix from the previous component i to the current component m  

with sample size nj and tj, determined by the previous component i. 

i = 1, 2, …, 16         m = 1, 2, …, 16         j = 1, 2, 3  

 

For example, the transition probability from the first component to the sixth component is 

calculated as follows: 

P1,6(t3, n1)= P[−K < ZX̅ < −𝑊 ∪𝑊 ≤ ZX̅ < 𝐾] ∗ 𝑃[|Ze̅| < W|δ2]* e−λ1t3 * (1 −  e−λ2t3) 

 

The formula for Average Time to Change (ATC) calculation is as follows [5,6]: 

ATC=b́(I − φ)−1t 
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[𝑃0, 0,0,0,
𝑃1
2
, 0,0,0,

𝑃1
2
, 0,0,0, 𝑃2, 0, … ,0] [

1 − 𝑃11 0 − 𝑃12 …                     0 − 𝑃1 16 
⋮ ⋮                    ⋮

0 − 𝑃16 1 1 − 𝑃16 2 0 − 𝑃16 3    …   1 − 𝑃16 16

]

−1

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑡3
𝑡3
𝑡3
𝑡3
𝑡2
𝑡2
𝑡2
𝑡2
𝑡2
𝑡2
𝑡2
𝑡2
𝑡1
𝑡1
𝑡1
𝑡1]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Probability Vector and Transition Matrix 

b: The initial probability vector for components 1 to 16.  

When the first sample has a probability P0 of being small (or component 1 with probability P0),  

a probability P1/2 of being medium (or components 5 and 9 with probability P1/2), and a 

probability P2 of being large (or component 13 with probability P2). 

I: The identity matrix of order 16. 

φ: The transition probability matrix, consisting of elements that indicate the transition probabilities 

as shown in the default table. 

P_im(tj, nj): The transition probability from transient state i = 1, 2, …, 16 to transient state m = 1, 

2, …, 16. 

t: The sampling interval vector for components 1 to 16 after calculating ATC from the following 

formula AATS [1-3]. 

We obtain: 

AATS=ATC−
1

𝜆1+𝜆2
 

 

4-Research Findings 

An Example: A sampling process from a tea bag production machine has been carried out.  

In this example, the structure of the proposed control charts ASSI(ZX̅) and ASSI(Ze̅) is illustrated 

and compared with the FSSI (ZX̅) and FSSI (Ze̅) charts in terms of mean shift detection speed. 

Values: 

X =Weight of tea in each small tea bag from the first stage of the process. 

Y =Weight of a tea bag canister containing 25 tea bags from the second stage of the process. 

Each sampling consists of a sample size of 5.  
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Paired observations are measured as (Xi, Yi) for i = 1, 2, 3, …, nj. 

The average time under control for the first stage of the process (T1) follows an exponential 

distribution with parameter λ1 = 0.033. 

The average time under control for the second stage of the process (T2) follows an exponential 

distribution with parameter λ2 = 0.043. 

Initially, five samples are taken every hour (n0 = 5, t0 = 1). Based on previous data analysis, both 

variables X and Y follow a normal distribution.  

However, to ensure the normality of the two variables, an initial sampling of 20 samples of size 5 

from each stage of the process, at one-hour intervals, was conducted. The normality of the two 

variables was tested using the Kolmogorov-Smirnov (K-S) test  with the help of Minitab software 

[1-7]. 

 

 
Figure 2. Probability plot of Ave of Y Normal 

 

 

 
Figure 3. Probability plot of Ave of X Normal 

 

In this test, the null hypothesis states that the distribution of the data X and Y is normal, while the 

alternative hypothesis states that the data is not normally distributed. Given that the p-value is 

greater than 0.01, we accept the null hypothesis of normality. The variables X and Y are not 

independent, indicating that there is a relationship between them. An statistical relationship 

between two variables is most clearly represented in scatterplots. In this example, the sample 

points in the scatterplot appear as an elliptical cloud, indicating the presence of a linear 

relationship between the variables X and Y. The model is expressed as follows [1-7]: 

Ŷ|X = β0 + β1X 

 

The parameters β₀ and β₁ are calculated as follows: 
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β1=
∑ (Xi−X̅)
n
i=1 (Yi−Y̅)

∑ (Xi−X̅)
2n

i=1

                       β0 = Y̅ − β1X̅ 

Ŷ|X = 47.10 + 1.30 × X 

 

Therefore, the residual (e) is obtained as follows: 

e=Y|X − Ŷ|X 

 

The estimated mean and standard deviation of the variables x and e are given as follows, 

respectively: 

μ̂X = 2.011       σ̂X = 0.110            μ̂e = 0           σ̂e = 1.657 

 

These are given as follows when both stages of the process are in control and with a fixed sample 

size n0: 

X̅~N(μ̂X , (
 σ̂X

√n0
)2)                                 e̅~N(μ̂X , (

 σ̂X

√n0
)2) 

 

Shewhart control charts based on samples collected at fixed intervals are constructed for X̄ and ē 

as follows: 

 

 
Figure 4. Shewhart control charts based on samples collected at fixed intervals 

 

 
Figure 5. Shewhart control charts based on samples collected at fixed intervals 

 

During or alongside the fixed sampling, a variable sampling scheme has also been conducted to 

compare the proposed design with the traditional one. For out-of-control processes, the estimated 

mean shift in the first stage is δ1σ̂𝑋, whereδ̂1 = 0/25, and the estimated mean shift in the second 

stage of the process is δ2σ̂𝑋, where δ̂1 = 0/5. Furthermore, for the first stage of the out-of-control 

process, we have [1-7]: 
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X̅~N(μ̂X + σ̂X ∗0/25, (
 σ̂X

√n0
)2) 

 

The second stage is out of control 

e̅~N(μ̂e + σ̂e ∗ 0/5, (
 σ̂e

√n0
)2) 

 

 

Using Z̅_X and Z̅_e with Variable Sample Size and Interval 

Here, we use Z̅X and Z̅e with a variable sample size and variable sampling interval according to 

the following procedure: 

Step 1: Assume K=3 (It is better to use K=3 to reduce the Type I error). 

Step 2: Determine: 

n1=2, n2=3, n3=20 

t1=0.01, t2=0.7 

Step 3: Calculate W and t3: 

W=0.88, t3=1.74 

 

With the designed parameter settings, the combined control charts Z̄X and Z̄e can be used for 

monitoring the two-stage process of tea bag production. When a process begins, according to the 

randomized decision-making method, the initial sample size and the first sampling interval are 

planned with t = 0.7 hours and a sample size of 3. Three pairs of observations (Xi, Yi) are: (51.13, 

2.10), (49.99, 2.00), and (49.33, 1.92). The sample statistics (X̄, ē) from the first sample are (0.44, 

2.01). The corresponding (Z̄X, Z̄e) values are (0.46, -0.09). The sample statistic Z̄_e falls in the 

central region, while Z̄_X falls in the warning region. As a result, the next sample should be taken 

at time 0.7 + 0.7 = 1.4 hours with a sample size of 3. The three observed data points (Xi, Yi) are 

(48.19, 2.05), (50.26, 2.21), and (49.52, 2.09) [1-7]. 

Zx̅ =
X̅ − μX
σX
√nj

                         Ze̅ =

e̅
σe

√nj
 

 

The values of (Z̄X, Z̄e) = (-0.55, 1.67), where both Z̄X and Z̄e fall within the central region, 

indicate that the next sample will be taken at time 2.78 = 1.04 + 1.74 with a sample size of 2. The 

process continues similarly, producing values of (-0.09, -0.55), (0.80, 1.17), (-1.27, 3.04), (-0.13, -

0.08), and (1.65, -1.01), which are obtained from the sample results for (Z̄X, Z̄e) and plotted on the 

control charts. As shown in the figure, at time 4.56 after the start of the process, a point outside the 

control limits is observed on the Z̄X chart. At this point, the process is stopped to investigate the 

cause of being out of control [1-7]. 
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Figure 6. The combined control charts Z̄X and Z̄e 

 

 
Figure 7. The combined control charts Z̄X and Z̄e 

5. Conclusion 

As the evidence suggests, the feedback from this operation indicated that adaptive control charts 

detect the out-of-control state of the process more quickly at lower levels of mean shifts. This can 

be highly beneficial for quality control engineers and, consequently, for manufacturing plants. In 

the Shewhart control charts shown in Figures (4) and (5), which use fixed sampling and 

correspond to two working days of machine data, no out-of-control signals were observed. 

However, according to Figures (6) and (7), on the first of those two days, less than five hours after 

the process began, a sign of the process being out of control appeared. This allows for an earlier 

investigation into the cause of the process deviation and the possibility of promptly correcting the 

defects if necessary. The ASSI scheme improves the sensitivity of the combined control charts Z̅X 

and Z̅e. Based on recent calculations, it appears that for detecting a change in the process mean, 

the AATS (Average Adjusted Time to Signal) of the combined charts Z̅X and Z̅e is shorter than 

that of the fixed scheme [1-7]. 
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