
A mixed integer linear programming model for vehicle
routing problem for non-complete graphs: Behshahr (Iran)

case study

Maria Afsharirad∗

Department of Mathematics, University of Science and Technology of Mazandaran, P.O. Box:
48518-78195, Behshahr, Iran

Email(s): m.afsharirad@mazust.ac.ir

Journal of Mathematical Modeling
Vol. 13, No. 4, 2025, pp. 747-761. Research Article JMM

�
�

�
�

�
�

�
�

Abstract. We consider Vehicle Routing Problem (VRP) for non-complete graphs. In order to avoid
converting all networks to complete graphs, as in travelling salesman problem, we model VRP for non-
complete graphs. Subtours are allowed in this model, since they are unavoidable in non-complete struc-
ture, while disconnected subtours are not allowed. Since disconnected subtour elimination constraints
are time-consuming, we provide a separation problem for these constraints and provide an extended
formulation based on this separation problem. This extended formulation turns to be equivalent to the
original model. In order to reduce the size of the graph, a blocking procedure is proposed in this paper.
In addition, we provide two types of valid inequalities to strengthen the formulation. Finally we test our
model on a real case study and compare it to the classical model for complete graphs.
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1 Introduction

The Vehicle Routing Problem (VRP) is a cornerstone of combinatorial optimization, focusing on the
optimal routing of a fleet of vehicles to service a set of customers. Traditionally, VRP is modeled on
complete graphs, where each pair of nodes is connected by an edge. However, many real-world applica-
tions involve non-complete graphs, necessitating specialized formulations and solution approaches.
Mixed integer formulations have been extensively employed to model VRPs. These formulations typi-
cally involve binary variables representing the presence of arcs in the solution and continuous variables
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for flow constraints. In the context of non-complete graphs, Mixed Integer Problem (MIP) must account
for the absence of certain arcs, which can complicate the model. The classical two-index vehicle flow
formulation, an extension of the Traveling Salesman Problem (TSP) formulation by Dantzig et al., [6],
has been adapted for VRPs. This formulation uses binary variables associated with each arc to indicate
whether it is traversed by a vehicle. However, in non-complete graphs, the absence of arcs requires
modifications to ensure feasibility and optimality. The main reason of assuming a complete graph as an
input is that, such a structure lets us to force the routes to visit every node exactly once, without being
concerned about infeasibilities. No subtours should be generated in this structures. However, subtour
elimination constraints are time consuming.

To the best of our knowledge, there is no mathematical model for VRP or even for TSP on non-
complete graphs. In this paper we provide an MIP for a directed non-complete graph. This structure
avoids solving several shortest path problems and reduces the graph size we are working with. Subtour
elimination constraints make our model infeasible. Therefore, we provide a separation problem in order
to find feasible routes in a non-complete directed graph and extend the model.

Extended formulations aim to represent combinatorial optimization problems more compactly by in-
troducing additional variables and constraints, potentially reducing the problem’s complexity. For VRPs
on non-complete graphs, extended formulations can capture the problem’s structure more effectively,
leading to improved solution methods. Research in [3] discusses the size of perfect formulations for
combinatorial optimization problems, providing insights into constructing efficient extended formula-
tions.

VRP was first stated in [6] to deliver gasoline to service stations. Afterwards, various versions of
VRP were extended, Capacitated VRP and VRP with Time Windows (VRPTW) are most applicable ver-
sions of the problem. Authors in [9] show that all versions of VRP are NP-hard. Various MIPs have been
proposed for different versions of VRP. For the most recent surveys on exact methods on VRP see [8]
and also [11]. Generally, there are two types of formulations in literature. In both types a complete graph
is given as an input. The first type is vehicle flow formulation, in which binary variables are associated
to arcs of a network representation of the problem. This type of formulation has a weak linear relaxation,
even if strengthening with valid inequalities and applying branch-and-cut method. Authors in [16] pro-
vide an integer linear programming for CVRP and eliminate subtours applying branch and cut algorithm.
The second type which provides a stronger linear relaxation is set partitioning formulation, with smaller
number of constraints, but huge number of variables with respect to vehicle flow formulation. Authors
in [12] show that both formulations are p-step formulations with particular choices of p. They also apply
column generation to solve a p-step formulation. See [5] for an elaborated review on branch-price and
cut algorithms on VRP.

According to NP-hardness of the problem, several heuristics and meta-heuristics are also applied in
literature to approximately solve VRP. Authors in [15] provide a heuristic-based parthenogenetic algo-
rithm (HPGA) to solve VRPTW. A heuristic method based on a variant of K-median problem is proposed
in [2]. A clustering-based heuristic is proposed in [1]. See [10] for the most recent review on heuristic
methods for VRP.

Matheuristics, which combine mathematical programming and metaheuristic approaches, have emerged
as a powerful framework for solving VRP. These hybrid techniques leverage the exactness of mathemat-
ical models and the flexibility of heuristics to tackle the complexity of VRP variants effectively. Recent
studies highlight the use of matheuristics in addressing large-scale and real-world VRPs, including dy-
namic and stochastic variations, through strategies such as decomposition, column generation, and local
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search, [7]. Prominent applications include the integration of branch-and-bound with heuristic methods
and the use of Lagrangian relaxation to guide heuristic search. This synergy has proven particularly
effective in scenarios involving tight constraints or high-dimensional decision spaces, enabling robust
solutions with improved computational efficiency, [13].

We model VRP for Non-complete Graphs (VRPNG). It is clear that VRP with a single vehicle with-
out capacity limitation would turn to the TSP. TSP is also defined on a complete graph. As far as we
know, the only research on TSP on non-complete graphs has been carried out by [14]. She studied six
algorithms in which a TSP tour and a subset of edges in the complete graph are given and the output
is a TSP tour that connects the same cities with a shorter length. All these algorithms are based on
approximate methods to generate near-optimal solutions.

This paper is organized as follows. Section 2 describes VRPNG and provides a MIP for that. Section
3 discusses an extended formulation for VRPNG. Section 4 provides a heuristic method to reduce the
network size and adjust the model for the reduced graph. Section 5 presents two valid inequalities.
Finally, section 6 reports the results of computational experiments on a real case study.

2 Problem statement

The problem addressed in this paper consists of designing efficient routes for K identical vehicles to
service a set of customers in a non-complete graph. This paper focuses on VRPNG, in which any vehicle
is allowed to visit a customer more than once but serving any customer is exactly done in one visit by
one vehicle.

2.1 MIP model

Now we provide an MIP for VRPNG. Consider a set of K identical vehicles U = {u1, . . . ,uK}, where
uk for k = 1, . . . ,K represents a vehicle of capacity C. Every vehicle starts its route from parking and
services a set of customers according to their demands and finally ends its route to terminal. Customers
are assumed in a directed non-complete graph G = (V,A), where V = {S,1, . . . ,n,T} is the set of nodes
and {1, . . . ,n} is the set of all customers with demand qi for customer i = 1, . . . ,n. S ∈V and T ∈V are
source and terminal nodes, respectively. Also, A ⊂ V ×V is the set of edges and ci j is the length of arc
(i, j) ∈ A. Any customer should be serviced exactly once by one vehicle, while it might be visited more
than once by several vehicles.

Despite existing VRP models for complete graphs, here we cannot eliminate subtours any more, since
it may lead to infeasiblity. Figure 1 shows a non-complete graph for 2 vehicles with 3 units of capacity,
in which subtour is unavoidable. Note that all arcs in Figure 1 are bi-directed. The first vehicle’s path
is (S,1,2,T ), and the second one’s is (S,1,3,5,4,3,1,2,T ), where (3,5,4,3) is a subtour in the second
route.

As a result, we should allow any node to be visited more than once but serving the node should be
done exactly once, also there should be a path from source node S to all other nodes, in any route. More
exactly subtours are allowed but disconnected ones are not. Figure 2 shows a disconnected subtour in
the graph which is not allowed in our model and should be eliminated. Solid and dotted directed arcs
show the first and the second route respectively. The second route is not allowed since it contains a
disconnected subtour. Moreover, it should be noted that in a non-complete directed graph, any arc (i, j)
may be passed more than once. Figure 3 is an example of this case.
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Figure 1: An example for non-complete graph

Figure 2: An example for disconnected subtour

Figure 3: Arc (1,2) must be passed twice

Table 1 summarizes notations of this paper.

Table 1: Summary of notations

U set of vehicles
V set of customers and source and terminal node
C capacity of each vehicle in one rout
uk the kth vehicle
S source node
T terminal node
i index for customer
qi demand of customer i

The considered VRPNG consists of designing a feasible set of routes with minimum total length such
that:
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• each customer i = 1, . . . ,n is serviced by exactly one vehicle.
• any route starts from node S and ends with node T .
• the maximum demand that a vehicle can serve is C;
• each customer might be visited several times by several vehicles.

Decision variables:

xk
i j number of times vehicle uk passes edge (i, j) ∈ A

ak
i j equals 1 if vehicle uk services node i while passing edge (i, j) ∈ A,

and 0 otherwise
wk

i equals 1 if vehicle uk visits node i, and 0 otherwise
yk,i

pq equals 1 if vehicle uk passes edge (p,q) ∈ A in its route from node S
to node i, and 0 otherwise

The following MIP is proposed:

min
K

∑
k=1

∑
(i, j)∈A

ci jxk
i j, (1)

s.t. ∑
j:(i, j)∈A

xk
i j = ∑

j:( j,i)∈A
xk

ji, ∀i 6= S,T,∀k = 1, . . . ,K (1a)

∑
j:(S, j)∈A

xk
S j = 1, ∀k = 1, . . . ,K, (1b)

∑
j:( j,T )∈A

xk
jT = 1, ∀k = 1, . . . ,K, (1c)

n

∑
i=1

∑
j:(i, j)∈A

qiak
i j ≤C, ∀k = 1, . . . ,K (1d)

ak
i j ≤ xk

i j, ∀k = 1, . . . ,K,∀(i, j) ∈ A (1e)
K

∑
k=1

∑
j:(i, j)∈A

ak
i j = 1, ∀i = 1, . . . ,n, (1f)

wk
i ≤M ∑

j:(i, j)∈A
xk

i j ∀i ∈V,∀k = 1, . . . ,K, (1g)

∑
j:(i, j)∈A

xk
i j ≤Mwk

i ∀i ∈V,∀k = 1, . . . ,K, (1h)

∑
q:(S,q)∈A

yk,i
Sq = wk

i , ∀i 6= S,∀k = 1, . . . ,K, (1i)

∑
q:(q,i)∈A

yk,i
qi = wk

i , ∀i 6= S,∀k = 1, . . . ,K, (1j)

∑
q:(p,q)∈A

yk,i
pq = ∑

q:(q,p)∈A
yk,i

qp, ∀p 6= S, i, ∀k = 1, . . . ,K,∀i ∈V, (1k)

yk,i
pq ≤ xk

pq, ∀(p,q) ∈ A,∀k = 1, . . . ,K, ∀i ∈V, (1l)

xk
i j ∈ Z+,ak

i j ∈ {0,1}, ∀(i, j) ∈ A, ∀k = 1, . . . ,K, (1m)
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yk,i
pq ∈ {0,1}, ∀(p,q) ∈ A, ∀k = 1, . . . ,K,∀i ∈V (1n)

wk
i ∈ {0,1}, ∀i ∈V, ∀k = 1, . . . ,K. (1o)

The objective function (1) minimizes the total distance. Constraints (1a) assure that the number of
arrivals to node i by vehicle uk is equal to the number of departures from node i. In other words, if
vehicle uk arrive at any non-source and non-terminal node i, it must leave it. By constraints (1b) and (1c)
any vehicle uk leaves node S and enters node T exactly once respectively. Constraint (1d) is the capacity
constraint. Serving node i by vehicle uk is possible only if it passes edge (i, j) ∈ A at least once, which is
declared by constraint (1e). All customers are serviced exactly once by exactly one vehicle according to
constraint (1f).

Based on the definition of variable wk
i we must have:

wk
i =

{
1, ∑ j∈V xk

i j > 0,
0 ∑ j∈V xk

i j = 0.

Constraints (1g) and (1h) define wk
i . Constraint (1i)-(1l) indicate that if node i is visited by vehicle uk,

then there should be a path from node S to node i: constraints (1i) and (1j) guarantee leaving node S and
entering node i, respectively, while constraint (1k) is the balance constraint. Constraint (1l) declares that
arc (p,q) is contained in this path, only if vehicle uk passes edge (p,q)∈ A. Finally constraints (1m)-(1o)
are domain constraints for decision variables of the model.
It is notable that the proposed model (1) involves O(n3K) decision variables and O(n3k) constraints,
where n denotes the number of customers and K is the number of vehicles. We refer the reader to [4] for
the classical model of VRP for complete graphs.

Example 1. Consider the graph G = (V,A) in Figure 4.

Figure 4: An example of a directed non-complete graph
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Model (1) leads to the following solution, in which underlined nodes, are serviced in the rout:

route1 :S−1−2−5−7−5−8−4−5−2−1−T,

route2 :S−1−2−5−6−5−2−1−T,

route3 :S−1−3−1−T.

The total cost is Z∗ = 702. The classical model for VRP in [4] converts the graph to the complete graph
by solving several shortest path problems. The following routes are achieved after solving VRP with the
total cost of Z∗C = 706:

route1 :S−7−8−4−T ;

route2 :S−2−6−5−T ;

route3 :S−1−3−T ;

Note that in the classical model, it is allowed to pass all arcs since the given graph is complete. For
example, there is no edge between nodes S and 7 in the original graph, but the classical model solve
several shortest path problems to achieve a complete graph, so there is an arc between S and 7 and its
length is equal to cS7 = cS1 + c12 + c25 + c57 = 116. Other routes found by the classical model, have the
same condition. The difference between Z∗ and Z∗C is arc (7,8). Note that c78 = 11. In the first solution,
although we have visited node 5 before, but we are allowed to pass the route7−5−8 with the cost of 7,
instead of direct arc (7,8) in the second solution, with the cost of 11.

Therefore converting the given graph to the complete one is not just time-consuming, but also elimi-
nates the chance of passing an indirect but shorter path instead of direct arc in incident nodes, which may
lead to visiting a node more that once.

3 Extended formulation

Disconnected subtour Elimination (DSE)constraints (1i)-(1l) are time consuming. In this section, we
eliminate DSE constraints and provide a separation problem for the relaxed model:

min
K

∑
k=1

∑
(i, j)∈Ē

ci jxk
i j, (2)

s.t. (1a)− (1h)

(1m), (1o).

Solving model (2) leads to solutions x̄k
pq, w̄k

i and āk
i j. First, note that for any node i ∈ V and any

vehicle uk, DSE constraints provide a flow from node S to node i with x̄k
i j as arc capacities. If vehicle

uk visits arc (p,q), then this arc is allowed to be included in the path from node S to node i. In other
words, if wk

i 6= 0, then there should be a flow from node S to node i. Therefore these constraints could be
separated by a maximum flow problem for any node i and vehicle uk. In the path from node S to node i
by vehicle uk, decision variables are:

f k,i
pq = amount of flow on arc (p,q),

f low(k, i) = maximum flow from node S to node i.
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For any i and vehicle k, we have the following maximum flow model with arc capacities x̄k
pq:

(SEPk,i) max f low(k, i), (3)

s.t. ∑
q:(S,q)∈A

f k,i
Sq = f low(k, i),

∑
q:(q,i)∈A

f k,i
qi = f low(k, i),

∑
q:(p,q)∈A

f k,i
pq = ∑

q:(q,p)∈A
f k,i
qp , ∀p 6= S, i

0≤ f k,i
pq ≤ x̄k

pq, ∀(p,q) ∈ A,

If there exist node i and vehicle uk for which f low∗(k, i) = 0, it means that there is no path from node S
to node i in routeof vehicle uk. So, node i is included in a disconnected subtour. As a result, constraints
(1i)-(1l) for the mentioned k and i are added to the relaxed model (2) and it is solved again. The procedure
is continued until f low∗(k, i)> 0 for any k, i.

Another approach is to add constraints of the separation problem to the relaxed model (2) to obtain an
extended formulation, in a way that extended formulation is feasible if and only if f low∗(k, i)> 0 for any
k, i. To do this, note that we do not need flow from node S to node i to be maximum, but we only need it
to be positive, if vehicle uk visits node i. So we can replace f low(k, i) with wk

i and add constraints to the
relaxed model (2). If we consider variables yk,i

pq exactly the same as f k,i
pq , then the extended formulation is

turned to be equivalent with the original model (1).
The strength of model (1) becomes evident by the end of this section, as it is equivalent to its extended
formulation. Therefore, the enhanced version of model (1), incorporating the valid inequalities intro-
duced in Section 5, will be utilized.

4 Blocking procedure

In spite of disregarding complete graphs, VRPNG, is still an NP-hard problem. So, we provide a blocking
procedure in order to reduce the size of the graph, in large size networks. In order to justify our procedure,
consider waste collection problem, in which waste vehicles, with a limited capacity have to collect waste
containers which are distributed according to a directed graph. Two types of aggregating nodes are
defined as follows. For the first type blocks, consider a one-way street, with µ consecutive containers. It
is clear that any vehicle arrives to the first container of this row, will continue its way up to the end of the
row, unless the capacity is over. Then we can consider all nodes associated with this row as one node,
and we call it chain-block. Any chain-block has a demand and a cost. Its demand is equal to the sum of
the demands of nodes contained in the block, and its cost is equal to the distance from the first node to
the last node of the block. The blocking procedure is done such that no chain-block has a demand more
than C.

Now, for the second type blocks, consider a container at the end of deadlock alley, which is only
accessible from one node. The last and the only container incident to the container in this alley may be
considered as a block and we call it access-block. The same parameters, demand and cost are assigned
to any access-block. The following subsection explains the detail about blocking procedure.
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4.1 MIP for block network

A directed graph G = (V,A) with arc distances ci j for arc (i, j) ∈ A is given. We define two types of
blocks. Let N−(i) = { j|(i, j) ∈ A} and N+(i) = { j|( j, i) ∈ A} be out-neighbours and in-neighbours of
node i∈V , respectively. Also δ−(i) = |N−(i)| and δ+(i) = |N+(i)| are out-degree and in-degree of node
i, respectively.

Definition 1. For graph G = (V,A) with arc distances ci j, subset of vertices B = {n1, . . . ,np} ⊂ V , is
called a block-chain of graph G, if δ−(ni) = δ+(ni) = 1, for i = 1, . . . , p, and N−(ni) = {ni+1}, for
i = 1, . . . , p−1. For chain-block B we have:

demand(B) =
p

∑
j=1

qn j , cost(B) =
p−1

∑
j=1

c(n j,n j+1).

Definition 2. Subset of vertices B = {n1, . . . ,np} ⊂V , is called an access-block of graph G, if N−(n1) =
N+(n1) = {n2, j}, N−(ni) =N+(ni) = {ni−1,ni+1}, for i= 2, . . . , p−1, and N−(np) =N+(np) = {np−1},
where j ∈V \B. For access-block B we have:

demand(B) =
p

∑
j=1

qn j , cost(B) =
p−1

∑
j=1

[c(n j,n j+1)+ c(n j+1,n j)].

Figure 5: An example for the blocking procedure

Figure 5 shows blocking procedure in a simple graph.

Remark 1. When we enter a chain-block, first we visit its first node and when we exit a chain-block, its
last node is our last visit. However, when we enter an access-chain, first and last node we visit, is its
first node. According to this, we update arc distances in an aggregated graph. The first node and the last
visited node of block B is shown by B( f irst) and B(last), respectively.

After building chain-blocks and access-blocks of graph G, we have an aggregated graph GB =
(V B,AB). Note that if there exists a node i ∈ V that does not belong to any block, then for simplicity
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it is assumed as a single chain-block with zero cost. Arc distances cB
i j are built as follows:

V B ={Bi|Bi is a chain-block or an access-block in graph G},
AB ={(Bi,B j)|(Bi(last),B j( f irst)) ∈ A,Bi is a chain-block}∪

{(Bi,B j)|(Bi( f irst),B j( f irst)) ∈ A,Bi is an access-block},

cB
Bi,B j

=

{
c(Bi(last),B j( f irst)), Bi(last),B j( f irst) ∈ A&,Bi is a chain-block
c(Bi( f irst),B j( f irst)), Bi( f irst),B j( f irst) ∈ A&,Bi is an access-block

Up to know, we have built an aggregated graph GB = (NB,EB), in which any block node Bi ∈ V has
the cost of cost(Bi) and demand of q(Bi). Moreover, arc distance cB(Bi,B j) is assigned to arc (Bi,B j).
In order to solve the problem on the reduced aggregated graph, first we have to modify the model for
graphs, in which nodes have costs. It only suffices to change the objective function (1) to the form:

min
K

∑
k=1

∑
(i, j)∈AB

cB
i jx

k
i j +

K

∑
k=1

∑
Bi∈V B

cost(i)wk
i (4)

5 Valid inequalities

In this section we provide two types of valid inequalities to strengthen our MIP model. First we introduce
two subsets of arcs as follow:

A− = {(i, j) ∈ A|δ−(i) = 1},
A+ = {(i, j) ∈ A|δ+( j) = 1}.

It is clear that if (i, j) ∈ A−, then serving customer i ∈ V is only possible by passing arc (i, j). In other
words, one of the K vehicles has to pass arc (i, j) and service node i. This can be shown by the following
inequality:

K

∑
k=1

ak
i j = 1, ∀(i, j) ∈ A−. (5)

On the other hand, if (i, j)∈ A+, and if vehicle uk is chosen to service node j, then it has to pass arc (i, j),
or serving node j is only possible by passing arc (i, j). In other words

∑
p∈V

ak
jp = 1 =⇒ xk

i j ≥ 1, ∀(i, j) ∈ A+,

which is done by the following inequality:

xk
i j ≥

K

∑
k=1

ak
i j, ∀(i, j) ∈ A+. (6)

Adding valid inequalities (5) and (6) to model (1) or (4) provide a stronger formulation for VRPNG.
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Table 2: Results for library networks

Network Optimal solution Time(min:sec) Duality gap
Parameters (First incumbent)

Name (|V |, |A|) P. St. P. Bl. P. P. St. P. Bl. P. P. St. m. Bl. P.
ta1 (24,55) 967 967 967 1:1 1:06 1:06 0 0 0
giul39 (39,170) 1058 1058 1058 2:46 2:32 2:32 0 0 0
germany50 (50,88) 7506 6430 6430 15:54 12:16 12:15 3.1 2.82 2.82
zib54 (54,80) 8706 7542 7412 42:41 25:15 22:18 24.15 18:16 17:08
ta2 (65,108) 10256 9861 6541 117:05 35:13 33:40 30.13 16.15 6.03

6 Numerical results

In this section, we implemented our model on two types of networks. The first type contains library
networks and the second one contains a network obtained in a real case study. We implemented the
proposed model in Gams 25.1.2 on a computer with Intel(R) Core(TM) i7-5500U 2.4 GHz processor
and 8 GB RAM. CPLEX 12.8 is chosen as the MIP solver.

6.1 Library networks

The network instances in this section are obtained from SNDlib.zib.de, which is a library of test in-
stances for network optimization. The results are outlined in Table 2. Column entitled ”P.” shows the
results obtained by solving model (1), column entitled ”St. P.” shows the results related to the model (1)
strengthen with valid inequalities (5) and (6). Finally the column entitled ”Bl. P.” is related to solving
the strengthened model (1) on the reduced network after blocking procedure.

Table 2 shows that as size of the network grows gradually, the proposed model with valid inequalities
and blocking procedure outgo the original model (1). Therefore, larger the sample size, more effective
strengthening and compacting the network. This is more clear in our case study in the next subsection.

6.2 Behshahr case description

The waste collection system in Behshahr is a simple VRPNG. Behshahr is a city in Mazandaran province,
Iran. It is located at the foot of the Alborz mountains. There are 800 waste containers that are clustered
into 5 regions for 5 identical vehicles with capacity of 43 containers for each. The clustering procedure
has been done by Behshahr Municipality according to its predetermined regions.
Any container starts its first route from parking and ends it to a depot, but other routes starts and ends
in depot. Parking and depot are close to each other and both of them are in the countryside, that can be
assumed as one node. Therefore we assumed that every route starts from source (parking) and ends to
terminal (depot).

In this problem, all containers are assumed to be full and ready for evacuation. So, it is clear that the
demand of node (container) i is one unit for i = 1, . . . ,n and zero for source and terminal nodes. Any
region contains about 160 waste containers. Any vehicle is responsible for its own region and have to
traverse 4 routes from S to T to collect all containers.
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Therefore, the problem of designing 4 routes for one vehicle in any region is VRPNG for 4 vehicles
{u1, . . . ,u4} with 43 units of capacity. Here we have G = (V,A), where V = {S,1, . . . ,160,T}. In order
to obtain set of edges A, we suppose (i, j) ∈ A, if and only if there is no other container in the shortest
path from container located at node i to container at j and ci j shows the shortest path from node i to j.

After preparing the graph G = (V,A) in the text file, four approaches were applied to solve the
problem:

1. The first approach: Solve model (1) for graph G;

2. The second approach: Build an aggregated graph and solve model (4);

3. The third approach: Strengthen formulation (4) with valid inequalities (5) and (6) and solve it for
the aggregated graph;

4. The fourth approach: Solve several shortest path problems on the aggregated graph to achieve the
complete graph and solve the usual model of VRP with node costs (see [4]).

Table 3 shows the results for the first region with 160 nodes and 406 edges.

Table 3: Results of 4 approaches for the first region

Approach N E Incumbent Time Duality gap Reduction
value hour:min (Km)

1 160 406 4478 24:10 9.70% 5.270
2 149 393 4374 24:10 9.11% 6.111
3 149 393 4329 24:10 7.32% 6.494
4 149 11026 no integer 4:27 - -

solution found
(Out of memory)

The driver responsible for this region was driving four routes with the total length of Z = 5098 in
map scale. The third column labeled Incumbent value, is the value of the solution obtained after time
limitation stopped the program. The last column labelled Reduction, shows the reduction in objective
value comparing to the current solution by driver in Kilo-meter. It can be seen that the 3 first approaches
based on non-complete graphs are successful in finding integer solution better than current one in a day,
but the classical model for VRP for complete graphs ran out of memory in about 4 hours without finding
even an integer solution. Similar results were obtained in other regions.

Table 4 shows the results for the second region with 158 nodes and 395 edges. The driver responsible
for the second region was driving four routes with the total length of Z = 5000.
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Table 4: Results of 4 approaches for the second region

Approach N E Incumbent Time Duality gap Reduction
value hour:min (Km)

1 158 395 4462 24:10 9.68% 4.573
2 142 380 4351 24:10 9.42% 5.516
3 142 380 4239 24:10 7.81% 6.468
4 142 10011 no integer 4:45 - -

solution found
(Out of memory)

Table 5 shows the results for the third region with 161 nodes and 401 edges. The driver responsible
for the third region was driving four routes with the total length of Z = 4985.

Table 5: Results of 4 approaches for the third region

Approach N E Incumbent Time Duality gap Reduction
value hour:min (Km)

1 161 401 4531 24:10 8.86% 3.859
2 148 395 4500 24:10 8.23% 4.122
3 148 395 4384 24:10 6.81% 5.108
4 148 10878 no integer 4:35 - -

solution found
(Out of memory)

Table 6 shows the results for the fourth region with 162 nodes and 404 edges. The driver responsible
for this region was driving four routes with the total length of Z = 5001.

Table 6: Results of 4 approaches for the fourth region

Approach N E Incumbent Time Duality gap Reduction
value hour:min (Km)

1 162 404 4426 24:10 9.13% 4.887
2 148 390 4306 24:10 8.56% 5.907
3 148 390 4201 24:10 6.73% 6.800
4 148 10878 no integer 4:15 - -

solution found
(Out of memory)

Table 7 shows the results for the fifth region with 159 nodes and 400 edges. The driver responsible
for this region was driving four route s with the total length of Z = 5045.
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Table 7: Results of 4 approaches for the fifth region

Approach N E Incumbent Time Duality gap Reduction
value hour:min (Km)

1 159 400 4651 24:10 8.23% 3.349
2 145 390 4425 24:10 8.03% 5.270
3 145 390 4382 24:10 6.61% 5.635
4 145 10440 no integer 5:11 - -

solution found
(Out of memory)

Finally it can be seen that modelling the VRP for non-complete graphs is really affordable compared
to classical model for complete graphs. Moreover reducing the graph size by blocking procedure and
strengthening the formulation by valid inequalities make it applicable for even large size graphs in real
case studies.

7 Conclusion

This paper studied vehicle routing problem for directed non-complete graphs (VRPNG). Classical mod-
els for VRP may be infeasible for non-complete graphs, since subtours are unavoidable for them. We
proposed a mixed integer linear programming model for VRPNG, in which subtours are allowed but all
nodes should be connected to the source node. This is guaranteed by disconnected subtour elimination
(DSE) constraints. Separating DSE constraints and providing an extended formulation based on the sep-
aration problem results in our original proposed model, which is a reason for strength of our model.
We also proposed a blocking procedure to compact our directed graph and reduce its size. Finally, we
provided two types of valid inequalities. In numerical results it was shown that some fractional solution
are cut off by these cuts and duality gap is reduced.
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