| تعداد نشریات | 32 |
| تعداد شمارهها | 832 |
| تعداد مقالات | 8,024 |
| تعداد مشاهده مقاله | 46,536,998 |
| تعداد دریافت فایل اصل مقاله | 8,613,763 |
تاثیر افزودن سطوح مختلف چای کامبوچا در آب آشامیدنی بر عملکرد، فلور میکروبی، ریختشناسی روده باریک و خصوصیات اکسیدانی و آنتی اکسیدانی تام سرم در جوجه های بلدرچین ژاپنی | ||
| تحقیقات تولیدات دامی | ||
| دوره 14، شماره 3، آذر 1404، صفحه 61-75 اصل مقاله (1015.5 K) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22124/ar.2025.30057.1887 | ||
| نویسندگان | ||
| علی مهدوی* 1؛ امیر امیراحمدی1؛ سید جواد احمدپناهی2؛ حمید استاجی3؛ سینا محبوب ربانی1 | ||
| 1گروه علوم دامی، دانشگاه سمنان | ||
| 2گروه علوم پایه، دانشگاه سمنان | ||
| 3گروه پاتوبیولوژی، دانشگاه سمنان | ||
| چکیده | ||
| هدف از این پژوهش، بررسی تأثیر چای کامبوچا بهعنوان یک افزودنی طبیعی جایگزین آنتیبیوتیکها در آب آشامیدنی بر عملکرد، ریختشناسی روده، فلور میکروبی و وضعیت اکسیدانی و آنتیاکسیدانی تام سرم بلدرچینها بود. این آزمایش با چهار گروه آزمایشی شامل گروه شاهد، گروههای مکملشده با 5، 10 و 15 درصد چای کامبوچا، پنج تکرار و 10 قطعه بلدرچین در هر تکرار انجام شد. در این مطالعه، شاخصهای عملکردی شامل درصد ماندگاری، میانگین وزن، مصرف دان و ضریب تبدیل خوراک بررسی شدند. همچنین، ویژگیهای ریختشناسی روده شامل طول پرز و عمق کریپت در دئودنوم و ژژنوم ارزیابی شدند. ظرفیت اکسیدانی و آنتیاکسیداتیو پلاسما با روش ارل اندازهگیری شد و نسبت اکسیدان به آنتیاکسیدان بهعنوان شاخص تنش اکسیداتیو تعیین شد. نتایج نشان داد که بهجز ضریب تبدیل، سایر شاخصهای عملکردی در گروههای دریافتکننده چای کامبوچا بهبود معنیداری داشتند (05/0>P). در بخش ریختشناسی روده باریک، نتایج نشان داد طول پرز و عمق کریپت در گروههای سهگانه مکمل شده با چای کامبوچا نسبت به گروه شاهد، افزایش یافته است. ترکیب فلور میکروبی بین گروههای تیماری و شاهد متفاوت بود و باکتریهای مفید در گروههای دریافتکننده چای کامبوچا، افزایش و باکتریهای مضر، کاهش یافتهاند. همچنین، نسبت اکسیدان به آنتیاکسیدان در گروههای تغذیه شده با چای کامبوچا کاهش یافت. بهطور کلی، مکملسازی جیره با 10 درصد چای کامبوچا دارای بیشترین تأثیر مثبت بر شاخصهای بررسی شده بود. | ||
| کلیدواژهها | ||
| بلدرچین؛ خصوصیات آنتی اکسیدانی؛ ریخت شناسی روده باریک؛ فلور میکروبی؛ کامبوچا | ||
| مراجع | ||
|
Al-Tikriti, S. S. A., & Al-Nassery, H. Z. M. (2023). Effect of egg weight and type of breeding on the productive performance of Japanese quail. IOP Conference Series: Earth and Environmental Science, doi: 10.1088/1755-1315/1213/1/012079 Alaei, Z., Doudi, M., & Setorki, M. (2020). The protective role of Kombucha extract on the normal intestinal microflora, high-cholesterol diet caused hypercholesterolemia, and histological structures changes in New Zealand white rabbits. Avicenna Journal of Phytomedicine, 10(6), 604. [In Persian] Albazaz, R., & Bal, E. B. (2014). Microflora of digestive tract in poultry. KSÜ Doğa Bilimleri Dergisi, 17(1), 39-42. doi: 10.18016/ksujns.40137 Antolak, H., Piechota, D., & Kucharska, A. (2021). Kombucha tea—A double power of bioactive compounds from tea and symbiotic culture of bacteria and yeasts (SCOBY). Antioxidants, 10(10), 1541. doi: 10.3390/antiox10101541 Attri, S., Singh, N., Nadda, A. K., & Goel, G. (2021). Probiotics and their potential applications: An Introduction. In: Goel, G., & Kumar, A. (eds) Advances in probiotics for sustainable food and medicine. Microorganisms for Sustainability, 21, 1-26, Springer, Singapore. doi: 10.1007/978-981-15-6795-7_1 Bhattacharya, D., Bhattacharya, S., Patra, M. M., Chakravorty, S., Sarkar, S., Chakraborty, W., Koley, H., & Gachhui, R. (2016). Antibacterial activity of polyphenolic fraction of kombucha against enteric bacterial pathogens. Current microbiology, 73, 885-896. doi: 10.1007/s00284-016-1136-3 Bindari, Y. R., & Gerber, P. F. (2022). Centennial Review: Factors affecting the chicken gastrointestinal microbial composition and their association with gut health and productive performance. Poultry Science, 101(1), 101612. doi: 10.1016/j.psj.2021.101612 Bishop, P., Pitts, E. R., Budner, D., & Thompson-Witrick, K. A. (2022a). Chemical composition of kombucha. Beverages, 8(3), 45. doi: 10.3390/beverages8030045 Bishop, P., Pitts, E. R., Budner, D., & Thompson-Witrick, K. A. (2022b). Kombucha: Biochemical and microbiological impacts on the chemical and flavor profile. Food Chemistry Advances, 1, 100025. doi: 10.1016/j.focha.2022.100025 Bogdan, M., Justine, S., Filofteia, D. C., Petruta, C. C., Gabriela, L., Roxana, U. E., Florentina, M., Camelia Filofteia, D., Călina Petruța, C., & Gabriela, L. (2018). Lactic acid bacteria strains isolated from Kombucha with potential probiotic effect. Romanian Biotechnological Letters, 23(3), 13592-13598. Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D., & Gachhui, R. (2016). Kombucha tea fermentation: Microbial and biochemical dynamics. International journal of food microbiology, 220, 63-72. doi: 10.1016/j.ijfoodmicro.2015.12.015 Costa, M. A. d. C., Dias Moreira, L. D. P., Duarte, V. D. S., Cardoso, R. R., São José, V. P. B. d., Silva, B. P. D., Grancieri, M., Corich, V., Giacomini, A., & Bressan, J. (2022). Kombuchas from green and black tea modulate the gut microbiota and improve the intestinal health of wistar rats fed a high-fat high-fructose diet. Nutrients, 14(24), 5234. doi: 10.3390/ nu14245234 Costa, M. A. D. C., Vilela, D. L. D. S., Fraiz, G. M., Lopes, I. L., Coelho, A. I. M., Castro, L. C. V., & Martin, J. G. P. (2023). Effect of kombucha intake on the gut microbiota and obesity-related comorbidities: A systematic review. Critical reviews in food science and nutrition, 63(19), 3851-3866. doi: 10.1080/10408398.2021.1995321 Darabighane, B., Zarei, A., Shahneh, A. Z., & Mahdavi, A. (2011). Effects of different levels of Aloe vera gel as an alternative to antibiotic on performance and ileum morphology in broilers. Iranian Journal of Animal Science, 10(3), e36. doi: 10.4081/ijas.2011.e36 [In Persian] de Miranda, J. F., Ruiz, L. F., Silva, C. B., Uekane, T. M., Silva, K. A., Gonzalez, A. G. M., Fernandes, F. F., & Lima, A. R. (2022). Kombucha: A review of substrates, regulations, composition, and biological properties. Journal of Food Science, 87(2), 503-527. doi: 10.1111/1750-3841.16029 De Gregoris, T. B., Aldred, N., Clare, A. S., & Burgess, J. G. (2011). Improvement of phylum-and class-specific primers for real-time PCR quantification of bacterial taxa. Journal of microbiological methods, 86(3), 351-356. doi: 10.1016/j.mimet.2011.06.010 Dufresne, C., & Farnworth, E. (2000). Tea, Kombucha, and health: a review. Food research international, 33(6), 409-421. Erel, O. (2004). A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical biochemistry, 37(4), 277-285. doi: 10.1016/j.clinbiochem.2003.11.015 Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical biochemistry, 38(12), 1103-1111. doi: 10.1016/j.clinbiochem.2005.08.008 Fraiz, G. M., Bonifácio, D. B., Lacerda, U. V., Cardoso, R. R., Corich, V., Giacomini, A., Martino, H. S. D., Esteban-Echeverría, S., Romo-Hualde, A., & Muñoz-Prieto, D. (2024). The Impact of Green Tea Kombucha on the Intestinal Health, Gut Microbiota, and Serum Metabolome of Individuals with Excess Body Weight in a Weight Loss Intervention: A Randomized Controlled Trial. Foods, 13(22), 3635. doi: 10.3390/ foods13223635 Fu, C., Yan, F., Cao, Z., Xie, F., & Lin, J. (2014). Antioxidant activities of kombucha prepared from three different substrates and changes in content of probiotics during storage. Food Science and Technology, 34, 123-126. doi: 10.1590/S0101-20612014005000012 Gamboa-Gómez, C. I., González-Laredo, R. F., Gallegos-Infante, J. A., Pérez, M. d. M. L., Moreno-Jiménez, M. R., Flores-Rueda, A. G., & Rocha-Guzmán, N. E. (2016). Antioxidant and angiotensin-converting enzyme inhibitory activity of Eucalyptus camaldulensis and Litsea glaucescens infusions fermented with kombucha consortium. Food Technology and Biotechnology, 54(3), 367. doi: 10.17113/ftb.54.03.16.4622 He, W., Li, P., & Wu, G. (2021). Amino acid nutrition and metabolism in chickens. Amino acids in nutrition and health: Amino acids in the nutrition of companion, zoo and farm animals, 109-131. doi: 10.1007/978-3-030-54462-1_7 Heydari Sharifabad, R., Hemmati, B., & Zarei, A. (2019). The effect of kombucha (borage, citrus, thyme and valerian leaves) on the immune system and growth of broilers. Animal Science and Research Journal, 21(3), 65-75. [In Persian] Islam, M. A., Bose, P., Rahman, M. Z., Muktaruzzaman, M., Sultana, P., Ahamed, T., & Khatun, M. M. (2024). A review of antimicrobial usage practice in livestock and poultry production and its consequences on human and animal health. Journal of Advanced Veterinary and Animal Research, 11(3), 675. doi: 10.5455/javar.2024.k817 Jafari, R., Khosravi Darani, K., & Taghavi, N. S. (2021). Kombucha: From introduction and healing properties to being Halal. Journal of Halal Research, 4(2), 33-39. doi: 10.30502/h.2021.135713 [In Persian] Jayabalan, R., Malbaša, R. V., Lončar, E. S., Vitas, J. S., & Sathishkumar, M. (2014). A review on kombucha tea—microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive reviews in food science and food safety, 13(4), 538-550. doi: 10.1111/1541-4337.12073 Jha, R., Das, R., Oak, S., & Mishra, P. (2020). Probiotics (direct-fed microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: a systematic review. Animals, 10(10), 1863. doi: 10.3390/ani10101863 Khan, R. U., Naz, S., Raziq, F., Qudratullah, Q., Khan, N. A., Laudadio, V., Tufarelli, V., & Ragni, M. (2022). Prospects of organic acids as safe alternative to antibiotics in broiler chickens diet. Environmental Science and Pollution Research, 29(22), 32594-32604. doi: 10.1007/s11356-022-19241-8 Khazaei, A., Sarir, H., Torbati, M., & Farhangfar, S. (2017). Assessment the possibility of using Kombucha fermented tea in the diet on performance and some biochemical parameters in broiler. Journal of Livestock Research, 5(4), 61-68. doi: 10.22077/JLR.2017.856 [In Persian] Larypoor, M., Bayat, M., Zuhair, M. H., Sepahy, A. A., & Amanlou, M. (2013). Evaluation of the number of CD4+ CD25+ FoxP3+ Treg cells in normal mice exposed to AFB1 and treated with aged garlic extract. Cell Journal (Yakhteh), 15(1), 37. [In Persian] Marsh, A. J., O'Sullivan, O., Hill, C., Ross, R. P., & Cotter, P. D. (2014). Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food microbiology, 38, 171-178. doi: 10.1007/978-981-15-6795-7_7 Martínez-Leal, J., Ponce-García, N., & Escalante-Aburto, A. (2020). Recent evidence of the beneficial effects associated with glucuronic acid contained in kombucha beverages. Current nutrition reports, 9, 163-170. doi: 10.1007/s13668-020-00312-6 Mehdi, Y., Létourneau-Montminy, M.-P., Gaucher, M.-L., Chorfi, Y., Suresh, G., Rouissi, T., Brar, S. K., Côté, C., Ramirez, A. A., & Godbout, S. (2018). Use of antibiotics in broiler production: Global impacts and alternatives. Animal nutrition, 4(2), 170-178. doi: 10.1016/j.aninu.2018.03.002 Mihai, R. A., Cubi-Insuaste, N. S., & Catana, R. D. (2024). Biological activity and phenolic content of kombucha beverages under the influence of different tea extract substrates. Fermentation, 10(7), 338. doi: 10.3390/fermentation10070338 Miyakawa, M. E. F., Casanova, N. A., & Kogut, M. H. (2024). How did antibiotic growth promoters increase growth and feed efficiency in poultry? Poultry Science, 103(2), 103278. doi: 10.1016/j.psj.2023.103278 Mohammadi Saei, M., Yarahmadi, B., Farjanikish, G., & Norouzian, H. (2020). Effects of different dietary levels of probiotic on morphological and microbiological indices of intestine in Japanese quails. Research on Animal Production, 11(29), 10-17. doi: 10.52547/rap.11.29.10 [In Persian] Morales, D. (2020). Biological activities of kombucha beverages: The need of clinical evidence. Trends in Food Science & Technology, 105, 323-333. doi: 10.1016/j.tifs.2020.09.025 Naeem, M., & Bourassa, D. (2025). Probiotics in poultry: Unlocking productivity through microbiome modulation and gut health. Microorganisms, 13(2), 257. doi: 10.3390/microorganisms13020257 Nalla, K., Manda, N. K., Dhillon, H. S., Kanade, S. R., Rokana, N., Hess, M., & Puniya, A. K. (2022). Impact of probiotics on dairy production efficiency. Frontiers in microbiology, 13, 805963. doi: 10.3389/fmicb.2022.805963 National Research Council. (1994). Nutrient requirements of poultry: 1994. National Academies Press. Neffe-Skocińska, K., Dybka-Stępień, K., & Antolak, H. (2019). Isolation and identification of acetic acid bacteria with potential prohealth properties. Zywnosc Nauka Technol. Jakosc, 26, 183-195. Nummer, B. A. (2013). SPECIAL REPORT: Kombucha brewing under the Food and Drug Administration Model Food Code: Risk analysis and processing guidance. Journal of environmental health, 76(4), 8-11. Nyhan, L. M., Lynch, K. M., Sahin, A. W., & Arendt, E. K. (2022). Advances in kombucha tea fermentation: A review. Applied Microbiology, 2(1), 73-103. doi: 10.3390/applmicrobiol2010005 Ohimain, E. I., & Ofongo, R. T. (2012). The effect of probiotic and prebiotic feed supplementation on chicken health and gut microflora: a review. International Journal of Animal and Veterinary Advances, 4(2), 135-143. Poberezhets, J., & Kupchuk, I. (2021). Effectiveness of the use of probiotics in the diet of broiler chickens. Roczniki Naukowe Polskiego Towarzystwa Zootechnicznego, 17(4). doi: 10.5604/01.3001.0015.6857 Rehman, A., Arif, M., Sajjad, N., Al-Ghadi, M., Alagawany, M., Abd El-Hack, M., Alhimaidi, A., Elnesr, S., Almutairi, B., & Amran, R. (2020). Dietary effect of probiotics and prebiotics on broiler performance, carcass, and immunity. Poultry Science, 99(12), 6946-6953. doi: 10.1016/j.psj.2020.09.043 Reva, O. N., Zaets, I. E., Ovcharenko, L. P., Kukharenko, O. E., Shpylova, S. P., Podolich, O. V., de Vera, J.-P., & Kozyrovska, N. O. (2015). Metabarcoding of the kombucha microbial community grown in different microenvironments. AMB Express, 5, 1-8. doi: 10.1186/s13568-015-0124-5 Salahuddin, M., Hiramatsu, K., Tamura, K., & Kita, K. (2021). Dietary carbohydrate effects on histological features of ileal mucosa in White Leghorn chicken. Journal of Veterinary Medical Science, 83(6), 952-956. doi: 10.1292/jvms.21-0157 Salehi, S., Sadeghi, A., & Karimi, A. (2021). Growth performance, nutrients digestibility, caecum microbiota, antioxidant status and immunity of broilers as influenced by kombucha fermented on white sugar or sugar beet molasses. Italian Journal of Animal Science, 20(1), 1770-1780. doi: 10.1080/1828051X.2021.1941335 [In Persian] Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature protocols, 3(6), 1101-1108. doi: 10.1038/nprot.2008.73 Selvaraj, S., & Gurumurthy, K. (2023). An overview of probiotic health booster-kombucha tea. Chinese herbal medicines, 15(1), 27-32. doi: 10.1016/j.chmed.2022.06.010 Setarki, M., Doodi, M., & Houshmandi, Z. (2018). The effect of kombucha tea on oxidative stress parameters in hypercholesterolemic rabbits. Neyshabur Medical Sciences Journal, 6(2), 49-58. [In Persian] Simoes, G. D., Giorgi, R., do Amaral, C. C., Ferrua, C. P., Correa, G. P., Fernandez, T., Garcia, A. d. L. A., de Souza, K. B., dos Santos, A. L., & de Assis, A. M. (2022). Effects of kombucha in diabetes induced animal models: a systematic review. Acta Scientific NUTRITIONAL HEALTH, 6(8). doi: 10.31080/ASNH.2022.06.1106 Tahami, Z., Hosseini, S., & Bashtani, M. (2014). Effect of organic acids supplementation on some gastrointestinal tract characteristics and small intestine morphology of broiler chickens. Animal Production Research, 3(3), 1-10. [In Persian] Vargas, B. K., Fabricio, M. F., & Ayub, M. A. Z. (2021). Health effects and probiotic and prebiotic potential of Kombucha: A bibliometric and systematic review. Food Bioscience, 44, 101332. doi: 10.1016/j.fbio.2021.101332 Vina, I., Semjonovs, P., Linde, R., & Patetko, A. (2013). Glucuronic acid containing fermented functional beverages produced by natural yeasts and bacteria associations. International Journal of Applied Research, 14, 17-25. Wang, X. (2022). Managing land carrying capacity: Key to achieving sustainable production systems for food security. Land, 11(4), 484. doi: 10.3390/land11040484 Wang, X., Zhang, P., & Zhang, X. (2021). Probiotics regulate gut microbiota: an effective method to improve immunity. Molecules, 26(19), 6076. doi: 10.3390/molecules 26196076 Watawana, M. I., Jayawardena, N., Gunawardhana, C. B., & Waisundara, V. Y. (2015). Health, wellness, and safety aspects of the consumption of kombucha. Journal of Chemistry, 2015(1), 591869. doi: 10.1155/2015/591869 Wijayanti, D. A., Djunaidi, I. H., & Sjofjan, O. (2019). Effect of probiotic and acidifier combination as an alternative to antibiotic growth promoters on digesta pH and intestinal microflora of laying hen. International Research Journal of Advanced Engineering and Science, 4(2), 1-4. Ye, Y., Li, Z., Wang, P., Zhu, B., Zhao, M., Huang, D., Ye, Y., Ding, Z., Li, L., & Wan, G. (2021). Effects of probiotic supplements on growth performance and intestinal microbiota of partridge shank broiler chicks. PeerJ, 9, e12538. doi: 10.7717/peerj.12538 Yu, Z., & Morrison, M. (2004). Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques, 36(5), 808-812. doi: 10.2144/04365ST04 Zhou, D.-D., Saimaiti, A., Luo, M., Huang, S.-Y., Xiong, R.-G., Shang, A., Gan, R.-Y., & Li, H.-B. (2022). Fermentation with tea residues enhances antioxidant activities and polyphenol contents in kombucha beverages. Antioxidants, 11(1), 155. doi: 10.3390/antiox11010155 | ||
|
آمار تعداد مشاهده مقاله: 238 تعداد دریافت فایل اصل مقاله: 48 |
||