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Abstract. This article introduces a new approach for solving a time-fractional cancer tumor model
using Caputo, Caputo-Fabrizio (CF), and Atangana-Baleanu-Caputo (ABC) fractional derivatives, ac-
counting for varying net-killing rates of cancer cells in an uncertain environment. The model with the
Caputo derivative is initially tackled using an explicit finite difference method (EFDM) with a fully time-
dependent net killing rate. Approximate solutions for two different net death rates are obtained using the
Sumudu transformation (ST) combined with the Adomian decomposition method (ADM), providing
more accurate approximations than the EFDM. The model’s behavior is analyzed with 2D and 3D visu-
alizations. Convergence and error analysis of the method for the Caputo fractional derivative have been
performed. The ADM provides reliable approximations for fractional models with fuzzy parameters,
outperforming the EFDM by achieving lower absolute errors. The results exhibit symmetric lower and
upper approximations around zero, effectively capturing the fuzzy nature of the solution. All methods
converge to zero at higher cuts in fuzzy triangular numbers, i.e. v = 1.

Keywords: Adomian decomposition method (ADM), Sumudu transformation (ST), fuzzy set theory, time-fractional
cancer tumor models
AMS Subject Classification 2010: 35A99

1 Introduction

Effective cancer treatment necessitates understanding tumor growth and therapy responses, influenced
by the tumor microenvironment and genetic changes. Predictive models guide personalized therapies,

∗Corresponding author
Received: 23 January 2025 / Revised: 18 April 2025 / Accepted: 21 April 2025
DOI: 10.22124/jmm.2025.29638.2640

c© 2025 University of Guilan http://jmm.guilan.ac.ir

https://doi.org/10.22124/jmm.2025.29638.2640
http://jmm.guilan.ac.ir


686 A. Singh, S. Pippal, J. Sati

improving outcomes and reducing recurrence. Tumor progression analysis involves studying cell divi-
sion rates, angiogenesis, and cancer cell evasion of apoptosis. Key treatment goals include disrupting
these processes, preventing tumor growth, and enhancing the immune system’s ability to combat cancer.
Mathematical modeling, such as time-fractional tumor models, simulates the response of cancer cells to
treatments, optimizing dosage and combination therapies. Understanding tumor heterogeneity can lead
to more individualized cancer care strategies.

With experimental methods, statistical models like expectation maximization assess cancer tumor
development and treatment response [20]. Burgess et al. explored diffusion coefficients and growth rates
in spherical tumors, considering therapy-dependent death and proliferation rates [8]. Fractal dimensions
and fractional derivatives measure complex shapes, nonlinear growth dynamics, and heterogeneous cell
distribution, aiding in treatment planning [9].

Advanced techniques such as fractional calculus and fuzzy logic in cancer modeling have been stud-
ied. Fractional calculus (FC) models systems with memory and long-range dependencies, while fuzzy
logic handles uncertainty. Fractional-order models offer accurate depictions of tumor growth and treat-
ment responses. El-Sayed et al. [25] analyzed fractional-order models in cancer systems. Iomin [17]
modeled tumor superdiffusion with fractional derivatives. Iyiola and Zaman [18] have performed a de-
tailed analysis of fractional order derivatives in the tumor model. Vieira et al. [31] reviewed FC in cancer
modeling. Padder et al. [23] discussed the Caputo fractional derivative in stability analysis and cancer
modeling.

Fuzzy logic effectively tackles uncertainty, prevalent in various domains in medical fields like diag-
nosis, treatment planning, and monitoring. Fractional diffusion equations with intrinsic uncertainty have
been studied by L.L. Huang et al. [16]. Tang et al. [27] investigated the negative impacts of treatment
through FC in a breast cancer model, whereas Debbouche et al. [10] investigated chaos in fractional-
order models of tumor growth. Uar and zdemir [28] developed fractional cancer-immune system models
using Caputo derivatives. Yager and Filev [32] explored fuzzy logic in cancer dynamics simulation. In-
tegrating fractional differential equations with fuzzy logic investigates drug administration dynamics and
enzyme models. Innovative operators like the fuzzy fractional operator, combining fuzzy and fractional
concepts, have been introduced by Abdollahi et al. [1]. Further, the human liver model [30] and the
fractional smoking model [29] were recently studied in fuzzy sense by Lalchand Verma et al.

Solving cancer models, analytically or numerically, remains challenging. Havard et al. [19] proposed
an analytical fuzzy transformation strategy for cancer models, employing Caputo Hukuhara’s partial dif-
ferentiability. Zureigat et al. [21] used explicit EFDM for the fuzzy fractional tumor model, considering
numerous fuzzy instances. Numerical methods and Legendre polynomial-based operational matrices
solve fuzzy fractional differential equations, offering efficient solutions for drug transduction models
and other applications. Gandhi et al. [15] investigated chemotherapy effects with the reduced differential
transform method, and Saadeh et al. [26] used Laplace transforms and the residual power series method
to find the solution to the tumor model. This article studies a time-fractional cancer tumor model using
Caputo, CF, and ABC fractional derivatives. We will analyze the varying net-killing rates of cancer cells
in an uncertain environment using an analytical approach. First, the Caputo derivative model with a fully
time-dependent net killing rate and an explicit finite difference method has been taken into consideration.
This has inspired us to reevaluate this model, which takes into account various net killing rates, and also
to solve this model with a new approach. Therefore, we approximate solutions for two different net death
rates using the ST [5, 6] combined with the ADM [12], which provides more accurate approximations
than EFDM.
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2 Preliminaries on fuzzy set theory

Definition 1. The function µP̃, defined on the real numbers R, assumes values in the interval [0,1]. A
fuzzy set P̃ is described by the set of ordered pairs (k,µP̃(k)) for all k ∈ R, as detailed in [14]:

P̃ = {(k,µP̃(k)) | k ∈ R, µP̃(k) ∈ [0,1]}, (1)

where the membership function for the fuzzy set P̃ at the point k is represented by µP̃(k). This membership
function represents the degree of membership of k in P̃.

Definition 2. A function P̃ : R→ [0,1] defines a fuzzy number if it satisfies the following constraint [14],
where, P̃ is normal, i.e. ∃ a point k0 ∈ R such that P̃(k0) = 1, P̃(k) is a convex fuzzy set, P̃(k) is upper
semi-continuous on R, and the closure of the set {k ∈ R | P̃(k)> 0} is compact.

Definition 3. Fuzzy triangular numbers, denoted by P̃(l1, l2, l3), are defined as fuzzy numbers with a
membership function given by [14]:

µ(k; l1, l2, l3) =


0, if k ≤ l1,
k−l1
l2−l1

, if l1 ≤ k ≤ l2,
l3−k
l3−l2

, if l2 ≤ k ≤ l3,

0, if k ≥ l3.

(2)

Here, µ(k; l1, l2, l3) is the membership function of P̃, representing the degree of membership of k. The
v-level sets (or v-cuts) of P̃ are given by:

P̃v = [l1 +(l2− l1)v, l3− (l3− l2)v], v ∈ [0,1]. (3)

Furthermore, the v-cut of the fuzzy number P̃ is defined as:

P̃v = {k ∈ R | µ(k; l1, l2, l3)≥ v}, v ∈ [0,1]. (4)

Definition 4. If P̃ is a fuzzy number with its parametric form µ̃v = [µ
v
,µv], then the double parametric

form can be expressed in crisp terms using the equation [14]:

µ̃(v,α) = α(µv−µ
v
)+µ

v
, v,α ∈ [0,1].

When α = 0, we have µ̃(v,0) = µ
v
, which represents the lower bound fuzzy number. Similarly, when

α = 1, µ̃(v,1) = µv, representing the upper bound fuzzy number.

Definition 5. Let Ũ = [U ,U ] and Ṽ = [V ,V ] be two fuzzy numbers, and let x ∈ R be a scalar. The
following properties hold for fuzzy numbers [24]:

• Ũ +Ṽ = (U +V ,U +V ) and Ũ−Ṽ = (U−V ,U−V )

• For scalar multiplication:

xṼ =

{{
[xV ,xV ], if,x≥ 0
[xV ,xV ], if,x < 0

}
.
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Definition 6. [11] Let χ : S×S→R be a fuzzy mapping and c,d ∈ S be fuzzy numbers. The H-distance
is defined as:

χ(c(α),d(α)) = max

{
sup

α∈[0,1]
|c(α)−d(α)|, sup

α∈[0,1]
|c(α)−d(α)|

}
. (5)

Definition 7. [2] Let there exist a function h : [u1,u2]→ S that is fuzzy continuous at a point a0 ∈ [u1,u2].
For each ε > 0, there exists an α > 0 such that

χ(h(a),h(a0))< ε whenever |a−a0|< α.

Definition 8. If ∃ β ∈ S such that for any two fuzzy numbers, w1,w2 ∈ S, satisfying w2 =w1+β , then β is
known as the H-difference of w1 and w2, denoted by w1	w2. Further details regarding the H-difference
and derivatives can be found in [3].

Definition 9. In the Caputo sense, the fuzzy-valued function ũ(k) of order ρ ∈ R+ has a gH -fractional
derivative given by [22]:

C
gH Dρ

k ũ(k) =


1

Γ(n−ρ)

∫ k
0 (k− p)n−ρ−1 ∂ ρ ũ(p)

∂ pρ d p, if n−1 < ρ < n,

dρ ũ(p)
d pρ , if ρ = n.

(6)

Definition 10. Assume f ∈H 1(a,b), for ρ ∈ (0,1] Then, in the Caputo meaning, the AB fractional
derivative is defined as [7]:

ABC
aDρ

t ( f (t)) =
B(ρ)
1−ρ

∫ t

a
f ′(x)Eρ

(
−ρ

(t− x)ρ

1−ρ

)
dx. (7)

In the case when B(0) = B(1) = 1, B(ρ) is a normalization function.

Definition 11. Assume f ∈H 1(a,b), for ρ ∈ (0,1] Then, in the Caputo interpretation, the CF fractional
derivative is defined as [7]:

CF
aDρ

t ( f (t)) =
B(ρ)
1−ρ

∫ t

a
f ′(x)e

−ρ

1−ρ
(t−x)dx. (8)

In the case when B(0) = B(1) = 1, B(ρ) is a normalization function.

Definition 12. The ST coupled with gH -Caputos time-fractional derivative C
gH Dρ

t is given as [7]:

S [
C

gH Dρ

t ũ(x, t)] =

{
S {ũ(x, t)}

sρ
−

n−1

∑
k=0

ũk(x,0)
sρ−k

}
,n−1 < ρ ≤ n. (9)

Definition 13. The ST of the CF derivative (G(s)) is given as [6]:

S [CF
aDα

t ( f (t))] =
B(α)

1−α(1− s)
(G(s)− f (0)). (10)

Definition 14. The ST of the ABC derivative (G(s)) is given as [6]:

S [ABC
aDα

t ( f (t))] =
B(α)

1−α +αsα
(G(s)− f (0)). (11)

Definition 15. The ST of tm is given below [6]:

S

(
tm

m!

)
= um, m = 0,1,2, . . .and S

(
tβ

Γ(β +1)

)
= uβ ,β >−1. (12)
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3 Methodology overview

Let us take the time-fractional fuzzy cancer tumor differential equation below to demonstrate the method-
ology:

∂ αŨ(ζ ,τ,α)

∂τα
=

∂ 2Ũ(ζ ,τ)

∂ζ 2 − K̃(ζ ,τ)Ũ(ζ ,τ), 0 < α ≤ 1, (ζ ,τ) ∈ ω = [0,X ]× [0,T ], (13)

equipped with boundary conditions as:

Ũ(ζ ,0) = g̃(ζ ), Ũ(0,τ) = m̃(0,τ), Ũ(X ,τ) = ñ(l,τ), (14)

where, Ũ(ζ ,τ,α) is the fuzzy concentration of the tumor cells at time t and a fractional order α ,
and K̃(ζ ,τ) is the fuzzy net death rate of the tumor cells of the crisp variable τ and ζ . The time-
fractional derivative of order α [4] is ∂ αŨ(ζ ,τ,α)

∂τα in the Caputo sense and ∂ 2Ũ(ζ ,τ)
∂ζ 2 denotes the fuzzy

partial Hukuhara derivative concerning x. Furthermore, as stated in [13], the fuzzy functions K̃(ζ , t) and
g̃(ζ ) are determined as:

K̃(ζ ,τ) = ν̃1s1(ζ ,τ) and g̃(ζ ) = ν̃2s2(ζ ), (15)

where the fuzzy convex numbers are represented by the variables ν̃1 and ν̃2, and the crisp functions
s1(ζ ,τ) and s2(ζ ,τ) of the crisp variables ζ and τ .
Let us do defuzzification of the given equation for all v ∈ [0,1] in the interval form as [13]:[

∂ αU(ζ ,τ,α,v)
∂τα

,
∂ αU(ζ ,τ,α,v)

∂τα

]
=

[
∂ 2U(ζ ,τ;v)

∂ζ 2 ,
∂ 2U(ζ ,τ,v)

∂ζ 2

]
−[K(ζ ,τ,v),K(ζ ,τ,v)][U(ζ ,τ,v),U(ζ ,τ,v)], (16)

equipped with the following fuzzy conditions:[
U(ζ ,0;v),U(ζ ,0;v)

]
=
[
g(ζ ;v),g(ζ ;v)

]
,[

U(0,τ;v),U(0,τ;v)
]
= [m(0,τ;v),m(0,τ;v)] ,[

U(X ,τ;v),U(X ,τ;v)
]
= [n(l,τ;v),n(l,τ;v)] .

Using β , a double parametric form with β ∈ [0,1], we obtain{
β

(
∂ αU(ζ ,τ,α,v)

∂τα
− ∂ αU(ζ ,τ,α,v)

∂τα

)
+

∂ αU(ζ ,τ,α,v)
∂τα

}
=

{
β

(
∂ 2U(ζ ,τ,v)

∂ζ 2 − ∂ 2U(ζ ,τ;v)
∂ζ 2

)
+

∂ 2U(ζ ,τ;v)
∂ζ 2

}
− [(β (K(ζ ,τ,v)

−K(ζ ,τ,v))+K(ζ ,τ,v))(β (U(ζ ,τ,v)−U(ζ ,τ,v))+U(ζ ,τ,v))]. (17)

Depending on fuzzy starting and boundary conditions, we have

β (U(ζ ,0;v)−U(ζ ,0;v))+U(ζ ,0;v) = β (g(ζ ;v)−g(ζ ;v))+g(ζ ;v),

β (U(0,τ;v)−U(0,τ;v))+U(0,τ;v) = β (m(0,τ;v)−m(0,τ;v))+m(0,τ;v),

β (U(X ,τ;v)−U(X ,τ;v))+U(X ,τ;v) = β (n(l,τ;v)−n(l,τ;v))+n(l,τ;v).
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By performing the ST to equation (17), we obtain

1
sρ

S

{
β

(
∂ αU(ζ ,τ,α,v)

∂τα
− ∂ αU(ζ ,τ,α,v)

∂τα

)
+

∂ αU(ζ ,τ,α,v)
∂τα

}
− 1

sρ

{
β (U(ζ ,0;v)−U(ζ ,0;v))+U(ζ ,0;v)

}

= S

{
β

(
∂ 2U(ζ ,τ,v)

∂ζ 2 − ∂ 2U(ζ ,τ;v)
∂ζ 2

)
+

∂ 2U(ζ ,τ;v)
∂ζ 2

}

−S

{
[β (K(ζ ,τ,v)−K(ζ ,τ,v))+K(ζ ,τ,v)][β (U(ζ ,τ,v)−U(ζ ,τ,v))+U(ζ ,τ,v)]

}
,

i.e.{
β

(
U(ζ ,s,α,v)−U(ζ ,s,α,v)

)
+U(ζ ,s,α,v)

}

=

{
β (U(ζ ,0;v)−U(ζ ,0;v))+U(ζ ,0;v)

}
+ sρS

{
β

(
∂ 2U(ζ ,τ,v)

∂ζ 2 − ∂ 2U(ζ ,τ;v)
∂ζ 2

)

+
∂ 2U(ζ ,τ;v)

∂ζ 2

}
− sρS N(Ũ). (18)

By performing the inverse ST to the above equation i.e. (18), we obtain{
β

(
U(ζ ,τ,α,v)−U(ζ ,τ,α,v)

)
+U(ζ ,τ,α,v)

}

=

{
β (U(ζ ,0;v)−U(ζ ,0;v))+U(ζ ,0;v)

}
+S −1

{
sρS

{
β

(
∂ 2U(ζ ,τ,v)

∂ζ 2

−∂ 2U(ζ ,τ;v)
∂ζ 2

)
+

∂ 2U(x,τ;v)
∂ζ 2

}}
−S −1{sρS N(ũ)}. (19)

Decompose the solution into series form as:

Ũ(ζ ,τ;v,β ) = β (U(ζ ,τ,α,v)−U(ζ ,τ,α,v))+U(ζ ,τ,α,v)

=
∞

∑
n=0

β (Un(ζ ,τ;v,β )−un(ζ ,τ;v,β ))+Un(ζ ,τ;v,β )

=
∞

∑
n=0

Ũn (20)

and decompose the NŨ(ζ ,τ), which is a nonlinear term, by Adomian polynomials (AP) [12] as stated
below:

NŨ(ζ ,τ) =
∞

∑
m=0

Ãm,

Ã0 = N Ũ0 and where, Ãm is called AP computed as:

Ãm =
1

m!
dm

dλ m N (
m

∑
l=0

λ
lŨl)|λ=0. (21)
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The following recurrence formula has been obtained:

Ũ0 = {β (U0(ζ ,τ;v)−U0(ζ ,τ;v))+U0(ζ ,τ;v)},{
β

(
∂ αUn(ζ ,τ,α,v)

∂τα
− ∂ αUn(ζ ,τ,α,v)

∂τα

)
+

∂ αUn(ζ ,τ,α,v)
∂τα

}

= S −1

{
sρS

{
β

(
∂ 2Un(ζ ,τ,v)

∂ζ 2 − ∂ 2Un(ζ , t;v)
∂ζ 2

)
+

∂ 2Un(ζ ,τ;v)
∂ζ 2

}}
−S −1{sρS {β (An−1−An−1)+An−1}}, n≥ 1.

Hence to solve the above equation, we obtain the general series solution as follows:

Ũ(ζ ,τ;v,β ) = Ũ0(ζ ,τ;v,β )+Ũ1(ζ ,τ;v,β )+Ũ2(ζ ,τ;v,β )+Ũ3(ζ ,τ;v,β )+ · · · , (22)

where the upper bound solution is given by β = 1 and the lower bound solution by β = 0.

4 Modeling with CF fractional derivative

Let us reconsider the model possessing the CF fractional derivative as follows:

∂ αŨ(ζ ,τ,α)

∂τα
=

∂ 2Ũ(ζ ,τ)

∂ζ 2 − K̃(ζ ,τ)ũ(ζ ,τ), 0 < α ≤ 1, (ζ ,τ) ∈ ω = [0,X ]× [0,T ], (23)

equipped with boundary conditions:

Ũ(ζ ,0) = g̃(ζ ), Ũ(0, t) = m̃(0,τ), Ũ(X ,τ) = ñ(l, t). (24)

Instead of considering the Caputo fractional derivative, we prefer the CF derivative. Here, ∂ αŨ(ζ ,τ,α)
∂τα

is the derivative of CF. Therefore, on considering the CF derivative, the revised iteration scheme is as
follows:

Ũ0 = {β (U0(ζ ,τ;v)−U0(ζ ,τ;v))+U0(ζ ,τ;v)}{
β

(
∂ αUn(ζ ,τ,α,v)

∂τα
− ∂ αUn(ζ ,τ,α,v)

∂τα

)
+

∂ αUn(ζ ,τ,α,v)
∂ tα

}

= S −1

{
B(α)

1−α(1− s)
S

{
β

(
∂ 2Un(ζ ,τ,v)

∂ζ 2 − ∂ 2Un(ζ ,τ;v)
∂ζ 2

)
+

∂ 2Un(ζ ,τ;v)
∂ζ 2

}}

−S −1

{
B(α)

1−α(1− s)
S {β (An−1−An−1)+An−1}

}
, n≥ 1.

Similarly, we can obtain the general series solution as follows:

Ũ(x,τ;v,β ) = Ũ0(ζ ,τ;v,β )+Ũ1(ζ ,τ;v,β )+Ũ2(ζ ,τ;v,β )+Ũ3(ζ ,τ;v,β )+ · · · . (25)
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5 Modeling with ABC fractional derivative
Now, we consider the model possessing the ABC fractional derivative as follows:

∂ αŨ(ζ ,τ,α)

∂τα
=

∂ 2Ũ(ζ ,τ)

∂ζ 2 − K̃(ζ ,τ)Ũ(ζ ,τ),0 < α ≤ 1, (ζ ,τ) ∈ ω = [0,X ]× [0,T ], (26)

equipped with: Ũ(ζ ,0) = g̃(ζ ), Ũ(0,τ) = m̃(0,τ), Ũ(X ,τ) = ñ(l,τ). Instead of considering the Caputo
fractional derivative, we prefer to use the ABC derivative. Here, ∂ αŨ(ζ ,τ,α)

∂τα is the fractional derivative of
ABC. Therefore, considering the ABC derivative, the revised iteration scheme is as follows:

Ũ0 = h {β (U0(ζ ,τ;v)−U0(ζ ,τ;v))+U0(ζ ,τ;v)},{
β

(
∂ αUn(ζ ,τ,α,v)

∂τα
− ∂ αUn(ζ ,τ,α,v)

∂τα

)
+

∂ αUn(ζ ,τ,α,v)
∂τα

}

= S −1

{
B(α)

1−α +αsα
S

{
β

(
∂ 2Un(ζ ,τ,v)

∂ζ 2 − ∂ 2Un(ζ ,τ;v)
∂ζ 2

)
+

∂ 2Un(ζ ,τ;v)
∂ζ 2

}}

−S −1

{
B(α)

1−α +αsα
S {β (An−1−An−1)+An−1}

}
, n≥ 1. (27)

Similarly, we can obtain the general series solution as follows:

Ũ(ζ ,τ;v,β ) = Ũ0(ζ ,τ;v,β )+Ũ1(ζ ,τ;v,β )+Ũ2(ζ ,τ;v,β )+Ũ3(ζ ,τ;v,β )+ · · · . (28)

6 Analysis of convergence and errors

Theorem 1. Let us consider that there are two functions ũn(ζ ,τ;v,β ) and ũ(ζ ,τ;v,β ) in the Banach
space (B[0,T ],‖.‖). If 0 < k < 1, consequently, the solution of equation (13) converges to the series
solution (20).

Proof. Let us prove that the sequence of partial sums Sm of series (20) is a Cauchy sequence in Banach
space (B[0,T ],‖.‖), as follows:

‖Sm+1(ζ ,τ;v,β )−Sm(ζ ,τ;v,β )‖ = ‖ũm+1(ζ ,τ;v,β )‖
≤ k‖ũm(ζ ,τ;v,β )‖
≤ k2‖ũm−1(ζ ,τ;v,β )‖
...

≤ km+1‖ũ0(ζ ,τ;v,β )‖. (29)

Now, by choosing arbitrarily partial sums Sm and Sn corresponding to two natural numbers m,n where
m≥ n and utilizing the triangular inequality, we get

‖Sm−Sn‖ = ‖(Sm(x,τ;v,β )−Sm−1(ζ ,τ;v,β ))+(Sm−1(ζ , t;v,β )−Sm−2(ζ ,τ;v,β ))+ · · ·
+(Sn+1(ζ ,τ;v,β )−Sn(ζ ,τ;v,β ))‖

≤ ‖(Sm(ζ ,τ;v,β )−Sm−1(ζ ,τ;v,β ))‖+‖(Sm−1(ζ ,τ;v,β )−Sm−2(ζ ,τ;v,β ))‖+ · · ·
+‖(Sn+1(ζ ,τ;v,β )−Sn(ζ ,τ;v,β ))‖ (30)
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Using (29) we get

‖Sm−Sn‖ ≤ km‖(ũ0(ζ ,τ;v,β )‖+ km−1‖ũ0(ζ ,τ;v,β )‖+ · · ·+ kn+1‖ũ0(ζ ,τ;v,β )‖
≤ (km + km−1 + · · ·+ kn+1)‖ũ0(ζ ,τ;v,β )‖
≤ kn+1(km−n−1 + km−n−2 + · · ·+ k+1)‖ũ0(ζ ,τ;v,β )‖

≤ kn+1

(
1− km−1

1− k

)
‖ũ0(ζ ,τ;v,β )‖. (31)

For 0 < k < 1 we have 1− km−1 < 1. Therefore

‖Sm−Sn‖ ≤
kn+1

1− k
max

t∈[0,T ]
|ũ0(ζ , t;v,β )|. (32)

As ũ0(ζ ,τ;v,β ) is bounded, thus lim
n,m→0

‖Sm−Sn‖= 0. As a result, the sequence Sm converges since it

is a Cauchy sequence.

Theorem 2. For the solution (20) the error bounds are:

|ũ(ζ ,τ;v,β )−
n

∑
i=0

ũi(ζ ,τ;v,β )| ≤ kn+1

1− k
maxτ∈[0,T ]‖ũ0(ζ ,τ;v,β )‖ (33)

Proof. From (32) we have

|ũ(ζ ,τ;v,β )−Sn(ζ ,τ;v,β )| ≤ kn+1

(
1− km−1

1− k

)
‖ũ0(ζ ,τ;v,β )‖. (34)

Since k ∈ (0,1) and 1− km−1 < 1, we have

|ũ(ζ ,τ;v,β )−
n

∑
i=0

ũi(ζ ,τ;v,β )| ≤ kn+1

1− k
maxτ∈[0,T ]‖ũ0(ζ ,τ;v,β )‖. (35)

7 Application to numerical problems

Example 1. Consider the following fuzzy tumor model [33] in which the net killing rate is time-
dependent only

C
0Dα

t ũ(x, t,α) =
∂ 2ũ(x, t)

∂x2 − t2ũ(x, t) t ≥ 1, 0 < α ≤ 1, with ũ(x,0) = φ̃(v,β )ekx, (36)

where φ̃(v,β ) = β ((1−v)−(v−1))+(v−1) v,β ∈ [0,1]. Also, exact solution of this problem is given
by [26]:

ũ(x, t,α) = φ̃(v,β )ekx + k2
φ̃(v,β )ekx tα

Γ(α +1)
+ k4

φ̃(v,β )ekx t2α

Γ(1+2α)
.
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The few terms are calculated below:

ũ0(x, t,α) = ũ(x,0) = φ̃(v,β )ekx

ũ1(x, t,α) = k2
φ̃(v,β )ekx 1

Γ(α +1)
tα − φ̃(v,β )ekx Γ(3)

Γ(α +3)
t2+α ,

ũ2(x, t,α) = φ̃(v,β )ekx

[
− k2

(
Γ(3)

Γ(2α +3)
+

Γ(α +3)
Γ(α +1)Γ(2α +3)

)
t2+2α

+k4 t2α

Γ(2α +1)
+ k

t4+2αΓ(3)Γ(α +5)
Γ(α +3)Γ(2α +5)

]
.

Subsequently, the following is the complete approximate series solution (up to three terms):

ũ(x, t,α) =
2

∑
i=0

ũi(x, t,α)

= φ̃(v,β )ekx + k2
φ̃(v,β )ekx 1

Γ(α +1)
tα − φ̃(v,β )ekx Γ(3)

Γ(α +3)
t2+α

+k4
φ̃(v,β )ekx 1

Γ(2α +1)
t2α − k2

φ̃(v,β )ekx

(
Γ(3)

Γ(2α +3)
+

Γ(α +3)
Γ(α +1)Γ(2α +3)

)
t2+2α

+kφ̃(v,β )ekx Γ(3)Γ(α +5)
Γ(α +3)Γ(2α +5)

t4+2α . (37)

7.1 Solving the CF fractional derivative model

Now, considering the problem (36) equipped with the CF derivative as:

CF
0Dα

t ũ(x, t,α) =
∂ 2ũ(x, t)

∂x2 − t2ũ(x, t), t ≥ 1, 0 < α ≤ 1.

In a similar way as explained in Section 4, the first two terms are calculated below:

ũ0(x, t,α) = ũ(x,0) = φ̃(v,β )ekx, (38)

ũ1(x, t,α) =
k2φ̃(v,β )ekx

B(α)
(1−α(1− t))− φ̃(v,β )ekx

B(α)

(
t2−α(t2− t3

3
)

)
, (39)

ũ2(x, t,α) =
k4φ̃(v,β )ekx

B(α)2 (1−2α +2αt +α
2 +

α2t2

2
−2α

2t)− k2φ̃(v,β )ekx

B(α)2

×
(

2t2−2αt2 +
4αt3

3
−2αt2 +

4αt3

3!
+2α

2t2− 4α2t3

3
− 4α3t3

3!
+

3!α2t4

4!
+

3!α2t5

3×5!

)
+

φ̃(v,β )ekx

B(α)2

(
t4−2αt4 +α

2t4 +
αt5

3
− α2t5

3
+

4!αt5

5!
− 4!α2t5

5!
+

5!α2t6

3×6!

)
. (40)
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Thus, a three-term approximate solution is given as:

ũ(x, t,α) = φ̃(v,β )ekx +
k2φ̃(v,β )ekx

B(α)
(1−α(1− t))− φ̃(v,β )ekx

B(α)

(
t2−α(t2− t3

3
)

)
+

k4φ̃(v,β )ekx

B(α)2 (1−2α +2αt +α
2 +

α2t2

2
−2α

2t)

−k2φ̃(v,β )ekx

B(α)2

(
2t2−2αt2 +

4αt3

3
−2αt2 +

4αt3

3!
+2α

2t2− 4α2t3

3
− 4α3t3

3!
+

3!α22t4

4!

)
+

φ̃(v,β )ekx

B(α)2

(
t4−2αt4 +α

2t4 +
αt5

3
− α2t5

3
+

4!αt5

5!
− 4!α2t5

5!
+

5!α2t6

3×6!

)
. (41)

7.2 Solving the ABC fractional derivative model

Now considering the problem (36) equipped with the ABC derivative as

ABC
0Dα

t ũ(ζ , t,α) =
∂ 2ũ(x, t)

∂x2 − t2ũ(x, t) t ≥ 1, 0 < α ≤ 1,

In a similar way as explained in the Section 5, the first two terms are calculated below:

ũ0(x, t,α) = ũ(x,0) = φ̃(v,β )ekx,

ũ1(x, t,α) =
k2φ̃(v,β )ekx

B(α)

(
1−α +

αtα

Γ(α +1)

)
−2

φ̃(v,β )ekx

B(α)

(
(1−α)t2

2
+

αtα+2

Γ(α +3)

)
,

ũ2(x, t,α) =
k4φ̃(v,β )ekx

B(α)2

[
(1−α)2 +2α(1−α)

tα

Γ(α +1)
+α

2 t2α

Γ(2α +1)

]

−2k2φ̃(v,β )ekx

B(α)2

[
(1−α)2t2 +

(
2α(1−α)

Γ(α +3)
+

α(1−α)

2Γ(α +1)
+

α(1−α)

Γ(α +3)

)
tα+2

+

(
α2

Γ(2α +3)
+

α2Γ(α +3)
2Γ(α +1)Γ(2α +3)

)
t2α+2

]
+

2φ̃(v,β )ekx

B(α)2

[
(1−α)2t4

2

+

(
α(1−α)Γ(α +4)
Γ(α +3)Γ(α +5)

+
α(1−α)Γ(5)

2Γ(α +5)

)
t4+α +

α2Γ(α +4)
Γ(α +3)Γ(2α +5)

t4+2α

]
.

Thus, a three-term approximate solution is given as:

ũ(x, t,α) = φ̃(v,β )ekx +
k2φ̃(v,β )ekx

B(α)

(
1−α +

αtα

Γ(α +1)

)
−2

φ̃(v,β )ekx

B(α)

(
(1−α)t2

2
+

αtα+2

Γ(α +3)

)
+

k4φ̃(v,β )ekx

B(α)2

[
(1−α)2 +2α(1−α)

tα

Γ(α +1)
+α

2 t2α

Γ(2α +1)

]

−2k2φ̃(v,β )ekx

B(α)2

[
(1−α)2t2 +

(
2α(1−α)

Γ(α +3)
+

α(1−α)

2Γ(α +1)
+

α(1−α)

Γ(α +3)

)
tα+2

+

(
α2

Γ(2α +3)
+

α2Γ(α +3)
2Γ(α +1)Γ(2α +3)

)
t2α+2

]
+

2φ̃(v,β )ekx

B(α)2

[
(1−α)2t4

2



696 A. Singh, S. Pippal, J. Sati

+

(
α(1−α)Γ(α +4)
Γ(α +3)Γ(α +5)

+
α(1−α)Γ(5)

2Γ(α +5)

)
t4+α +

α2Γ(α +4)
Γ(α +3)Γ(2α +5)

t4+2α

]
.

Example 2. Take into consideration the following tumor model, where the net mortality rate is dependent
on the cell concentration:

C
0Dα

t ũ(x, t,α) =
∂ 2ũ(x, t)

∂x2 − 2
x

∂ ũ(x, t)
∂x

− ũ2(x, t) t > 0, 0 < x≤ 1 ,0 < α ≤ 1, (42)

equipped with ũ(x,0) = φ̃(v,β )xp, where, φ̃(v,β ) = β ((1− v)− (v−1))+ (v−1), v,β ∈ [0,1]. Then
the terms are as follows:

ũ0(x, t,α) = ũ(x,0) = φ̃(v,β )xp, (43)

ũ1(x, t,α) = φ̃(v,β )p(p−3)xp−2 tα

Γ(α +1)
− φ̃

2(v,β )x2p tα

Γ(α +1)
, (44)

ũ2(x, t,α) = φ̃(v,β )p(p−2)(p−3)(p−5)xp−4 t2α

Γ(2α +1)
+2φ̃

3(v,β )x3p t2α

Γ(2α +1)

−φ̃
2(v,β )6p(p−2)x2p−2 t2α

Γ(2α +1)
. (45)

As a result, the following is the approximate series solution (up to three terms):

ũ(x, t,α) =
2

∑
i=0

ũi(x, t,α)

= φ̃(v,β )xp + φ̃(v,β )p(p−3)xp−2 tα

Γ(α +1)

+φ̃(v,β )p(p−2)(p−3)(p−5)xp−4 t2α

Γ(2α +1)
− φ̃

2(v,β )x2p tα

Γ(α +1)

−φ̃
2(v,β )6p(p−2)x2p−2 t2α

Γ(2α +1)
+2φ̃

3(v,β )x3p t2α

Γ(2α +1)
. (46)

7.3 Solving the model with CF derivative

Now consider the problem (42) equipped with the CF derivative:

CF
0Dα

t ũ(ζ , t,α) =
∂ 2ũ(x, t)

∂x2 − 2
x

∂ ũ(x, t)
∂x

− ũ2(x, t).

In a similar way as explained in Section 4, the first two terms are calculated below:

ũ0(x, t,α) = ũ(x,0) = φ̃(v,β )xp,

ũ1(x, t,α) =

(
φ̃(v,β )p(p−1)xp−2− 2

x
φ̃(v,β )pxp−1− φ̃

2(v,β )x2p
)

1
B(α)

(1−α(1− t)) ,

ũ2(x, t,α) =

(
∂ 2K1

∂x2 −
2
x

∂K1

∂x
−2φ̃(v,β )xpK1

)
1

B(α)2

(
(1−2α +2αt +α

2−2α
2t +

α2t2

2

)
,
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where

K1 =

(
φ̃(v,β )p(p−1)xp−2− 2

x
φ̃(v,β )pxp−1− φ̃

2(v,β )x2p
)
.

We can find other terms in a similar way. Consequently, an approximate three-term solution is provided
as:

ũ(x, t,α) = φ̃(v,β )xp +

(
φ̃(v,β )p(p−1)xp−2− 2

x
φ̃(v,β )pxp−1− φ̃

2(v,β )x2p
)

×
(

1
B(α)

(1−α(1− t))
)
+

(
∂ 2K1

∂x2 −
2
x

∂K
∂x
−2φ̃(v,β )xpK1

)
1

B(α)2

×
(
(1−2α +2αt +α

2−2α
2t +

α2t2

2

)
(47)

where

K1 =

(
φ̃(v,β )p(p−1)xp−2− 2

x
φ̃(v,β )pxp−1− φ̃

2(v,β )x2p
)
.

7.4 Solving the model with ABC derivative

Now consider the problem (42) equipped with the ABC derivative

ABC
0Dα

t ũ(ζ , t,α) =
∂ 2ũ(x, t)

∂x2 − 2
x

∂ ũ(x, t)
∂x

− ũ2(x, t).

In a similar way as explained in Section 5, the first two terms are calculated below:

ũ0(x, t,α) = ũ(x,0) = φ̃(v,β )xp,

ũ1(x, t,α) =

(
φ̃(v,β )p(p−1)xp−2− 2

x
φ̃(v,β )pxp−1− φ̃

2(v,β )x2p
)

1
B(α)

(
1−α +

αtα

Γ(α +1)

)
,

ũ2(x, t,α) =

(
∂ 2K1

∂x2 −
2
x

∂K
∂x
−2φ̃(v,β )xpK1

)
1

B(α)2

(
(1−α)2 +

2α(1−α)tα

Γ(α +1)
+

α2t2α

Γ(2α +1)

)
,

where

K1 =

(
φ̃(v,β )p(p−1)xp−2− 2

x
φ̃(v,β )pxp−1− φ̃

2(v,β )x2p
)
.

Similarly, we can find other terms. Thus, a three-term approximate solution is given as:

ũ(x, t,α) = φ̃(v,β )xp +

(
φ̃(v,β )p(p−1)xp−2− 2

x
φ̃(v,β )pxp−1− φ̃

2(v,β )x2p
)

1
B(α)

×
(

1−α +
αtα

Γ(α +1)

)
+

(
∂ 2K1

∂x2 −
2
x

∂K
∂x
−2φ̃(v,β )xpK1

)
1

B(α)2

×
(
(1−α)2 +

2α(1−α)tα

Γ(α +1)
+

α2t2α

Γ(2α +1)

)
,

where

K1 =

(
φ̃(v,β )p(p−1)xp−2− 2

x
φ̃(v,β )pxp−1− φ̃

2(v,β )x2p
)
.
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8 Results and Discussion

The fuzzy solution in numerical form for Example 1 is shown in Table 1 for six different values of
(0,0.2,0.4,0.6,0.8,1) of v and four different values (0,0.4,0.6,1) of β , while the values of t, x, k,
and α are fixed at 0.05, 4, −1, and 0.9, respectively. From Table 1, it can be observed that fuzzy
solution ũ(x, t,α) depends significantly on the parameters v and β . As v increases from 0 to 1, ũ(x, t,α)
approaches zero for all values of β , indicating a decrease in the solution’s magnitude over this range.
Furthermore, the absolute errors for both methods decrease as v approaches 1, with errors reaching zero
at v = 1. When comparing the accuracy of the methods, the ADM consistently outperforms the EFDM
by achieving lower absolute errors. Table 1 also presents both lower and upper approximations, showing
symmetry around zero, which captures the fuzzy nature of the solution. In Table 2 the numerical solutions
are achieved in all the cases i.e. Caputo, CF, ABC along with the exact solution at the respective values.
This table provides a comparison of fuzzy solutions ũ(x, t,α) for Example 1 using the ADM across three
different derivatives: Caputo, CF, and ABC. It is noted that in both lower and upper bounds, the solution
reduces with an increase in v-cuts, with t, x, k, and α set at 0.05, 4, -1, and 0.9, respectively. The
table also indicates that the absolute error is lower when comparing the ADM-generated solutions with
those produced using the explicit finite difference method, providing compelling evidence that the ADM
solution offers a better approximation. Additionally, the ABC derivative yields values slightly more from
the exact solution as compared to Caputo and CF derivatives, particularly at higher v values. Overall,
while all methods converge to zero at v = 1, the Caputo derivative generally provides values closest to
the exact solution, highlighting its accuracy in modeling this fuzzy fractional system.

Table 3, shows the fuzzy solutions ũ(x, t,α) for Example 2 at fixed parameters t = 0.05, x = 0.8,
p = 1.2, and α = 0.9, with varying v-cuts and β values. The results, calculated using the ADM, display
solutions for the Caputo, CF, and ABC derivatives across different values of β . It is noted that for
both lower and upper approximations, the magnitude of the solution decreases with increasing v-cut
values. The Caputo derivative produces values closest to zero as v approaches 1, particularly in lower
approximation solutions, demonstrating its tendency towards stability. In comparison, the CF and ABC
derivatives yield solutions that are further from zero, with ABC consistently showing the smallest values
across most v-cuts. This suggests that, while the Caputo method remains closest to the initial conditions,
the ABC method offers a more conservative approximation in this context.

For Example 1, the 3D graphical representations of the approximate solutions for both the lower
bound (β = 0) and upper bound (β = 1) are displayed in Figures 1 and 2. These figures illustrate
the behavior of the solutions at v = 0 while considering various fractional orders α set to 1, 0.9, 0.8,
and 0.7, respectively. Each fractional order reflects a distinct solution behavior, showcasing the impact
of varying α on the solution’s progression. Similarly, for Example 2, the approximate solutions are
presented in Figures 3 and 4 for the lower bound (β = 0) and upper bound (β = 1) at a fixed value
of p = 1.2 and v = 0. As with Example 1, the graphical representations illustrate the solutions across
different fractional orders α = 1, 0.9, 0.8, and 0.7, demonstrating the solutions sensitivity to changes
in the fractional order α and capturing how the solutions vary in response to these adjustments. The
analysis of the 3D representations reveals an important insight into the behavior of the upper-bound and
lower-bound solutions as the fractional order grows. In particular, it is seen that both the upper and
lower bound solutions continuously shrink as the fractional parameter (α) grows. The variation of ũ with
respect to t for both the lower and upper bound approximation solutions for x = 4, v = 0, and for various
Caputo fractional orders is shown in Example 1 in Figure 5, i.e., α = 1,0.9,0.8,0.7. These plots reveal
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that ũ decreases as t increases in both the upper- and lower-bound scenarios. Additionally, the graphs
demonstrate that over time, the cancer cell mortality rate rises, while the concentration of tumor cells
gradually diminishes, mirroring findings observed in [33].

Figures 6 and Figures 7 show the behavior of ũ versus t for various fractional derivatives Caputo, CF,
and ABC of order one along with the exact solution for both the lower and upper bounds for Example 1
and Example 2, respectively. It is evident that the Caputo derivative provides the closest approximation
to the exact solution compared to the CF and ABC derivatives. This provides compelling evidence for
the Caputo derivative’s dependability in the fuzzy fractional cancer model.

For Example 2, Figure 8 illustrates the variation of ũ with t for the lower and upper limit approxi-
mations at x = 0.8, p = 1.2, v = 0, and different fractional orders (α = 1,0.9,0.8,0.7). Tumor growth
dynamics require a thorough understanding of the fractional derivative. Although we have only approx-
imated our series solution up to three series components, increasing the number of series components
will allow for a more accurate approximation of the solution. It is observed that cancer cell concentration
decreases for each α within the specified range, with numerical solution accuracy improving as α ap-
proaches 1. Given uncertainties in initial tumor cell production, a fuzzy approach is essential to manage
the system’s initial state effectively. As noted in [21], for the fractional cancer model solved via RPSE,
α = 1.8 is optimal when the net cell-killing rate depends on cell concentration. Conversely, for the fuzzy
model under fuzzy initial conditions, α = 0.9 is optimal. Understanding tumor development requires
insight into the fractional derivative, as cancer cell concentration decreases across the range of α , with
numerical accuracy improving as α→ 1. Fuzziness remains critical due to initial-state ambiguity. Tumor
growth dynamics depend on the fractional derivative, with cancer cell concentration decreasing across
the specified α range and numerical accuracy improving as α → 1. Given uncertainties in initial tumor
cell production, a fuzzy approach is essential.

(a) α = 1 (b) α = 0.9 (c) α = 0.8 (d) α = 0.7

Figure 1: For Example 1, 3D graphics of a lower approximate solution i.e., β = 0, obtained at k =−1 and v = 0
for different fractional orders.

(a) α = 1 (b) α = 0.9 (c) α = 0.8 (d) α = 0.7

Figure 2: For Example 1, 3D graphics of upper approximate solution i.e. β = 1, obtained at k =−1 and v = 0 for
different fractional orders.
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Table 1: Error analysis of a fuzzy solution to Example 1 by EFDM and ADM at t = 0.05, x = 4, α = 0.9, ∀v,
β ∈ [0,1].

β v ũ(x, t,α) Abs Error [33] Abs Error (ADM)
β = 0, Lower Appr. Solution 0 -0.01964888 4.45721×10−5 8.80×10−8

0.2 -0.015719104 3.56577×10−5 7.10×10−8

0.4 -0.011789328 2.67433×10−5 5.30×10−8

0.6 -0.0078595521 1.78288×10−5 3.52×10−8

0.8 -0.0039297761 8.91442×10−6 1.75×10−8

1 0 0 0
β = 1, Upper Appr. Solution 0 0.01964888 4.45721×10−5 8.80×10−8

0.2 0.015719104 3.56577×10−5 7.10×10−8

0.4 0.011789328 2.67433×10−5 5.30×10−8

0.6 0.0078595521 1.78288×10−5 3.52×10−8

0.8 0.0039297761 8.91442×10−6 1.75×10−8

1 0 0 0
β = 0.4, Lower Appr. Solution 0 -0.0039297761 8.91442×10−6 1.75×10−8

0.2 -0.0031438209 7.13154×10−6 1.40×10−8

0.4 -0.0023578656 5.34865×10−6 1.06×10−8

0.6 -0.0015719104 3.56577×10−6 7.10×10−9

0.8 -0.00078595521 1.78288×10−6 3.52×10−9

1 0 0 0
β = 0.6, Upper Appr. Solution 0 0.0039297761 8.91442×10−6 1.75×10−8

0.2 0.0031438209 7.13154×10−6 1.40×10−8

0.4 0.0023578656 5.34865×10−6 1.06×10−8

0.6 0.0015719104 3.56577×10−6 7.10×10−9

0.8 0.00078595521 1.78288×10−6 3.52×10−9

1 0 0 0

Table 2: A fuzzy solution to Example 1 by ADM at t = 0.05, x = 4, α = 0.9, ∀v, β ∈ [0,1] for Caputo, CF, and
ABC derivative.

β v Exact ũ(x, t,α) Caputo ũ(x, t,α) CF ũ(x, t,α) ABC
β = 0, Lower Appr. Solution 0 -0.019650134 -0.01964888 -0.02133121 -0.021750971

0.2 -0.015720107 -0.015719104 -0.01706497 -0.017400777
0.4 -0.01179008 -0.011789328 -0.01279872 -0.013050583
0.6 -0.00786600536 -0.0078595521 -0.00853248 -0.0087003883
0.8 -0.0039300268 -0.0039297761 -0.00426624 -0.0043501942
1 0 0 0 0

β = 1, Upper Appr. Solution 0 0.019650134 0.01964888 0.02133121 0.021750971
0.2 0.015720107 0.015719104 0.01706497 0.017400777
0.4 0.01179008 0.011789328 0.01279872 0.013050583
0.6 0.0078600536 0.0078595521 0.00853248 0.0087003883
0.8 0.0039300268 0.0039297761 0.00426624 0.0043501942
1 0 0 0 0

β = 0.4, Lower Appr. Solution 0 -0.0039300268 -0.0039297761 -0.00426624 -0.0043501942
0.2 -0.0031440214 -0.0031438209 -0.00341299 -0.0034801553
0.4 -0.0023580161 -0.0023578656 -0.00255974 -0.0026101165
0.6 -0.0015720107 -0.0015719104 -0.00170650 -0.0017400777
0.8 -0.00078600536 -0.00078595521 -0.00085325 -0.00087003883
1 0 0 0 0

β = 0.6, Upper Appr. Solution 0 0.0039300268 0.0039297761 0.00426624 0.0043501942
0.2 0.0031440214 0.0031438209 0.00341299 0.0034801553
0.4 0.0023580161 0.0023578656 0.00255974 0.0026101165
0.6 0.0015720107 0.0015719104 0.00170650 0.0017400777
0.8 0.00078600536 0.00078595521 0.00085325 0.00087003883
1 0 0 0 0
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Table 3: A fuzzy solution to Example 2 by ADM at t = 0.05, x = 0.8, p = 1.2, α = 0.9, ∀ v, β ∈ [0,1].

β v ũ(x, t,α) Caputo ũ(x, t,α) CF ũ(x, t,α) ABC
β = 0, Lower Appr. Solution 0 -0.5798454 -0.31829888 -0.24427739

0.2 -0.45889475 -0.22465087 -0.15978955
0.4 -0.34055161 -0.14685736 -0.094185198
0.6 -0.22469925 -0.08405798 -0.0463997028
0.8 -0.11122095 -0.03539232 -0.015357731
1 0 0 0

β = 1, Upper Appr. Solution 0 0.5263297 0.00797533 -0.121079
0.2 0.42664771 0.02604379 -0.074038544
0.4 0.32128596 0.03514089 -0.037343105
0.6 0.21613673 0.03440621 -0.012059996
0.8 0.10908032 0.02297938 0.00074347558
1 0 0 0

β = 0.4, Lower Appr. Solution 0 -0.11122095 -0.03539232 -0.015357731
0.2 -0.088799909 -0.02727952 -0.011065814
0.4 -0.066468224 -0.01969078 -0.0073926204
0.6 -0.044224968 -0.01261919 -0.0043296126
0.8 -0.022069205 -0.00605790 -0.0018682519
1 0 0 0

β = 0.6, Upper Appr. Solution 0 0.10908031 0.2297938 0.00074347558
0.2 0.087429905 0.01933524 0.0017126901
0.4 0.065697598 0.01522212 0.0021314883
0.6 0.043882468 0.01063312 0.0019913316
0.8 0.02198358 0.00536138 0.0012836817
1 0 0 0

9 Conclusion

The fuzzy fractional model of tumor cell growth is thoroughly examined in this work. The aforemen-
tioned study is significant concerning the mathematical model of tumor cells. Fuzzy logic is used to gain
a better understanding of how tumor cells proliferate, since the early phases of cancer cell formation
are inherently unpredictable. However, fractional derivatives such as ABC, CF, and Caputo help figure
out how tumor cells respond over a brief period. The model’s solution has been found using the ST
and ADM. The suggested method’s primary benefit is that it creates fewer errors; its drawback is the
significant amount of time needed to identify the series components and then approximate them to obtain
the solution. To more accurately approximate the solution, a large number of components are needed.
Furthermore, the concentration of cancer cells has been found to steadily drop over time, eventually
reaching zero in both the lower-bound and upper-bound solutions. To fully comprehend the mathemat-
ical model of tumor cells, this work will undoubtedly be crucial. This model facilitates the study of
fractional derivatives and fuzziness, paving the way for more accurate cancer cell models and treatment
strategies with the advancing technology. As more precise and alternative approaches become available
soon, this work might be reconsidered to better understand tumor models and develop more effective
techniques to combat these fatal diseases.
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Figure 5: Plot for Example 1, ũ versus t((a),(b)) and x((c),(d)) for lower and upper bounds at different Caputo
fractional order.
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Figure 6: For Example 1, graphics of ũ versus t at different fractional derivatives Caputo, CF, ABC.
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Figure 7: For Example 2, graphics of ũ versus t((a),(b)) and x((c),(d)) for lower and upper bounds at different
fractional order.
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Figure 8: For Example 2, graphics of ũ versus t ((a),(b)) and x ((c),(d)) for lower and upper bounds at different
fractional orders 1 and 0.9 respectively.
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