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Abstract. In this paper, we begin by providing a concise overview of fractal calculus. We then explore
the concepts of fractal complex numbers and functions, define the fractal complex derivative, and derive
the fractal Cauchy-Riemann equations. Additionally, we introduce fractal contour integrals, offer illus-
trative examples, and present their visualizations. Finally, we examine and visualize the transformations
of circles under fractal complex functions.
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1 Introduction

Fractals, with their intricate patterns and self-similarity, are widely observed in nature, such as in coast-
lines, blood vessels, and clouds [21]. These structures are characterized by fractional dimensions exceed-
ing their topological dimensions and are analyzed using tools from fractal geometry, measure theory, and
stochastic processes [4, 5, 20, 24, 26, 28].

Fractional calculus generalizes the order of differentiation and integration but remains fundamentally
non-local. However, most physical measurements are local. In an attempt to define local formulations of
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fractional calculus, Kolwankar and Gangal introduced the concept of local fractional derivatives in [19].
They discovered that enforcing locality leads to a change in the underlying mathematical framework,
where the measure of the space aligns with that of a fractal set. This observation gave rise to fractal
calculus [23], which redefines differential and integral operators based on the measure theory of fractals
[2, 3].

It is important to note that while some researchers attempt to analyze fractals using fractional deriva-
tives, this approach has a fundamental limitation [27]. Fractional calculus changes only the order of
differentiation and does not alter the underlying measure space, which remains based on the real number
line. In contrast, fractals require a measure that captures their non-integer dimensional structure. There-
fore, fractal calculus, which is grounded in the appropriate fractal measure, is more suitable for studying
dynamics on fractal geometries.

To address the mathematical challenges posed by fractals, classical calculus has been extended to
fractal settings, leading to fractal derivatives, integrals, and novel frameworks for studying complex
geometries and dynamics [6, 22, 23, 25]. Fractal calculus has found significant applications in physics,
engineering, and beyond, enabling models for phenomena such as sub- and super-diffusion [7, 10, 11],
fractal time dynamics [12, 14, 17], and fractal space analysis [15, 18]. Recent advancements include
fractal Laplace and Fourier transforms [9, 12], stability analyses of fractal differential equations [13],
and generalizations to mean square calculus and nonstandard analysis [8, 16].

It is well known that the Mandelbrot set is one of the most famous and visually captivating objects
in mathematics and fractal geometry. Defined by a deceptively simple iterative process, the Mandelbrot
set exhibits a boundary of infinite complexity and self-similarity. Specifically, the Mandelbrot set M ⊂C
consists of all complex numbers c for which the sequence defined by [21]:

zn+1 = z2
n + c, z0 = 0,

remains bounded as n→ ∞.
Closely related is the Julia set, which, for a fixed complex number c ∈ C, is defined as the set of

initial points z0 ∈ C for which the iteration [1]:

zn+1 = z2
n + c

does not escape to infinity. In other words, the Julia set captures the boundary between stable and unstable
behavior under iteration for a given c, whereas the Mandelbrot set captures the set of all such c values
that lead to bounded orbits starting from zero.

Motivated by the intricate and fractal nature of these sets, this paper explores the extension of com-
plex analysis into the realm of fractal geometry through fractal complex analysis. Since fractal calculus
adapts classical calculus to sets with non-integer dimensions, it allows for the formulation of integrals
and derivatives on fractal supports. By incorporating the concept of fractal dimension and the appropri-
ate measure, fractal complex analysis enables us to investigate transformations and properties of fractal
objects such as the Mandelbrot and Julia sets in a more mathematically rigorous way.

This paper introduces a novel framework termed Fractal Complex Analysis, extending fractal calcu-
lus to the realm of complex functions. The structure of the paper is as follows: foundational definitions of
fractal calculus are presented in Section 2, followed by the introduction of fractal complex numbers and
functions in Section 3. Fractal derivatives for complex functions are explored in Section 4, and Section 5
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defines fractal contour integrals along with their properties. Visualizations of transformations under frac-
tal complex functions are discussed in Section 6, with Section 7 concluding the study by summarizing
key findings and implications.

2 Basic definitions of fractal calculus

This section summarizes the definitions of fractal calculus for the Cantor set F ⊂ [a,b]⊂R, as discussed
in [6, 23].

Definition 1. The indicator function of F is given by

IF(J) =

{
1, if F ∩ J 6= /0,
0, otherwise,

where J = [a,b]⊂ R.

Definition 2. The coarse-grained fractal measure of F ∩ [a,b] is

H α

δ
(F,a,b) = inf

|P|≤δ

n−1

∑
i=0

Γ(α +1)(xi+1− xi)
αIF([xi,xi+1]),

where P = {x0 = a,x1, . . . ,xn = b} and |P|= maxi(xi+1− xi).

Definition 3. The fractal measure is defined as

H α(F,a,b) = lim
δ→0

H α

δ
(F,a,b).

Definition 4. The fractal dimension of F ∩ [a,b] is

dimγ(F) = inf{α : H α(F,a,b) = 0}
= sup{α : H α(F,a,b) = ∞}. (1)

Definition 5. The integral staircase function is

Sα
F (x) =

{
H α(F,a0,x), x≥ a0,

−H α(F,x,a0), x < a0,

where a0 ∈ R.

Definition 6. A function g : F → R is F-continuous at x ∈ F if

g(x) = lim
y→x

g(y), y ∈ F,

whenever the limit exists.
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Definition 7. The Fα -derivative of g at x ∈ F is

Dα
F g(x) =

lim
y→x

g(y)−g(x)
Sα

F (y)−Sα
F (x)

, x ∈ F,

0, x /∈ F,

if the limit exists.

Definition 8. The Fα -integral of g ∈ B(F) (bounded on F) is

∫ b

a
g(x)dα

F x = sup
P

n−1

∑
i=0

inf
x∈F∩[xi,xi+1]

g(x)∆Sα
F = inf

P

n−1

∑
i=0

sup
x∈F∩[xi,xi+1]

g(x)∆Sα
F ,

where ∆Sα
F = Sα

F (xi+1)−Sα
F (xi), and the infimum/supremum is over subdivisions P .

3 Fractal complex numbers and functions

Here, we introduce and explain the ideas of fractal functions and fractal complex numbers.

Definition 9. A fractal complex number is defined as ζ = a+ ib, a,b ∈F , where i =
√
−1.

Example 1. Let F be the ternary Cantor set. Choose a and b from F . Then the fractal complex number
ζ is: ζ = 1

3 + i 2
9 . This represents a fractal complex number where both real and imaginary parts belong

to the ternary Cantor set.

Definition 10. A complex function f (w) is a mapping that associates complex numbers with other com-
plex numbers. Specifically, if w = u+ iv where u,v ∈ R and i =

√
−1, then a complex function f is

formally defined as:

f : C→ C, w 7→ f (w).

Definition 11. A fractal complex function f (ζ ) is a mapping that associates fractal complex numbers
with fractal complex numbers. If ζ = a+ ib where a,b∈F and i=

√
−1, then a fractal complex function

f is defined as:

f : F ×F → C, ζ 7→ f (ζ ),

where F is a fractal set.

Example 2. Let F be the ternary Cantor set. Consider the fractal complex function f (ζ ) = ζ 2. If we
choose ζ = 1

3 + i 2
9 , then f

(1
3 + i 2

9

)
= 5

81 + i · 4
27 . This illustrates a fractal complex function applied to

a fractal complex number. In Figure 1, we compare the standard complex function f (w) = w2 with its
fractal counterpart.
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(a) Standard Complex Numbers and f (w) = w2 (b) Fractal Complex Numbers and f (ζ ) = ζ 2

Figure 1: Comparison of f (w) = w2 for standard complex numbers and fractal complex numbers from the ternary
Cantor set. 1a shows the transformation of standard complex numbers under quadratic mapping. 1b illustrates the
transformation of fractal complex numbers derived from the ternary Cantor set, demonstrating the unique behavior
and distribution of the fractal set under quadratic mapping.

Example 3. Let F be the ternary Cantor set. Consider the fractal complex function f (ζ ) = ln(ζ ). In
Figure 2, we compare the standard complex logarithm ln(w) with its fractal counterpart derived from the
ternary Cantor set.

(a) Standard complex numbers and ln(w) (b) Fractal complex numbers and ln(ζ )

Figure 2: Comparison of ln(w) for standard complex numbers and ln(ζ ) for fractal complex numbers from the
ternary Cantor set. 2a shows the transformation of standard complex numbers under the logarithmic mapping. 2b
illustrates the transformation of fractal complex numbers derived from the ternary Cantor set, revealing the unique
behavior and distribution of the fractal set under the logarithmic mapping.
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4 Fractal derivative of fractal complex functions

The notion of the fractal derivative for fractal complex functions is defined in this section.

Definition 12. The fractal derivative of a fractal complex function generalizes the concept of the deriva-
tive for complex functions. For a complex function f (ζ ) : F ×F → C, where f (ζ ) = u(x,y)+ iv(x,y),
the derivative at a point ζ0 is defined as:

Dα
F f (ζ0) = F−lim

ζ→ζ0

f (ζ )− f (ζ0)

Sα
F (ζ )−Sα

F (ζ0)

= F−lim
∆α Sα

F (ζ )→0

f (ζ )− f (ζ0)

∆αSα
F (ζ )

= Dα
F,xu+ iDα

F,xv, if ∆
αSα

F (y) = 0,

= Dα
F,yu+ iDα

F,yv, if ∆
αSα

F (x) = 0,

if it exists, where ∆αSα
F (ζ ) = ∆αSα

F (x)+ i∆αSα
F (y).

Definition 13. For a complex function f (ζ ) = u(x,y)+ iv(x,y) defined on a fractal domain F×F, where
ζ = x+ iy, the fractal version of the Cauchy-Riemann equations are given by:

Dα
F,xu = Dα

F,yv,

Dα
F,yu =−Dα

F,xv,
(2)

where Dα
F,x and Dα

F,y denote the fractal derivatives with respect to x and y, respectively. These equa-
tions ensure that the function f (ζ ) is fractal differentiable, analogous to the classical Cauchy-Riemann
equations, which ensure holomorphy (complex differentiability) in classical complex analysis.

Definition 14. A fractal complex function f (ζ ) = u(x,y)+ iv(x,y) is differentiable at a point ζ = ζ0 if
we say that f (ζ ) is fractal analytic at ζ = ζ0. In other words, f (ζ ) is fractal analytic if it satisfies the
fractal Cauchy-Riemann equations and the fractal derivative exists at ζ0.
If f (ζ ) is fractal analytic everywhere in the fractal domain (finite or infinite), we call it a fractal entire
function. If the fractal derivative Dα

F f (ζ ) does not exist at ζ = ζ0, then ζ0 is labeled a fractal singular
point.

Example 4. Let f (ζ ) = ζ 2. Then the real part u(x,y) = x2−y2, x,y∈ F and the imaginary part v(x,y) =
2xy. Using Eq.(2) we have:

Dα
F,xu = 2x = Dα

F,yv, Dα
F,yu =−2y =−Dα

F,xv, x,y ∈ F.

We see that f (ζ ) = ζ 2 satisfies the fractal Cauchy-Riemann conditions throughout the fractal complex
plane. Since the partial fractal derivatives are clearly F-continuous, we conclude that f (ζ ) = ζ 2 is fractal
analytic.

Example 5. Let f (ζ ) = ζ ∗. Now u= x and v=−y. By applying the fractal Cauchy-Riemann conditions,
we obtain:

Dα
F,xu = 1, whereas Dα

F,yv =−1.
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The fractal Cauchy-Riemann conditions are not satisfied, and f (ζ ) = ζ ∗ is not a fractal analytic function
of ζ . It is interesting to note that f (ζ ) = ζ ∗ is F-continuous but nowhere fractal differentiable. In Figure
3, we illustrate f (ζ ) = ζ ∗ on fractal complex numbers derived from the ternary Cantor set.

Figure 3: Plot of fractal complex numbers and their conjugates. The red points represent the original fractal
complex numbers ζ , while the blue points represent the fractal complex conjugates ζ ∗. This plot demonstrates the
unique distribution and transformation of fractal complex numbers under the complex conjugate mapping.

5 Fractal contour integrals

In this section, we introduce and define fractal contour integrals.

Definition 15. Given a complex function f (ξ ) : F×F→C defined in a region of the complex plane, the
contour integral of f (ξ ) along a path Γ from ξ0 to ξ1 is defined by dividing the contour from ξ0 to ξ1 into
n intervals with n−1 intermediate points ξ1,ξ2, . . . ,ξn−1 on the contour. This contour integral is given
by: ∫

Γ

f (ξ )dα
F ξ = F−lim

∆α Sα
F (ξ j)→0

n

∑
j=1

f (ζ j)(Sα
F (ξ j)−Sα

F (ξ j−1)),

where ζ j is a point on the curve between ξ j and ξ j−1. Alternatively, for a complex function f (ξ ) =
u(x,y)+ iv(x,y), the contour integral along a path Γ from ξ0 to ξ1 is defined by:

∫
ξ1

ξ0

f (ξ )dα
F ξ =

∫ x1,y1

x0,y0

[u(x,y)+ iv(x,y)][dα
F x+ idα

F y]

=
∫ x1,y1

x0,y0

[u(x,y)dα
F x− v(x,y)dα

F y]+ i
∫ x1,y1

x0,y0

[v(x,y)dα
F x+u(x,y)dα

F y].
(3)

Example 6. Consider the contour integral of the fractal complex function f (ξ ) = ξ along a path Γ from
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ξ0 = 0 to ξ1 = 1+ i. Using the fractal integral definition in Eq. (3), we have∫
ξ1

ξ0

f (ξ )dα
F ξ = i

∫ 1

0
2t dα

F t = iSα
F (t)

2
∣∣∣∣1
0
= iSα

F (1)
2 = i(Γ(α +1))2,

here we use x = t,y = t.

6 Visualization of circle transformations

This section examines how circles centered at the origin in the ξ -plane are transformed under the map-
ping ω(ξ ) = ξ+1

ξ
. Both complex numbers and fractal supports are considered for this transformation.

(a) Circles centered at the origin in the ξ -plane with
various radii.

(b) Transformed points in the ω-plane after ap-
plying the mapping ω(ξ ) = ξ+1

ξ
to the Cantor set

points.

Figure 4: Comparison of the effects of the mapping ω(ξ ) = ξ+1
ξ

on circles in the ξ -plane and the fractal Cantor
set in the ω-plane.

As shown in Figure 4, the effects of the mapping ω(ξ ) = ξ+1
ξ

are observed in two different config-
urations. Figure 4a presents the transformation of circles centered at the origin in the ξ -plane, demon-
strating how various radii are mapped. In contrast, Figure 4b illustrates the transformation of points from
the Cantor set under the same mapping in the ω-plane, highlighting the impact of the mapping on the
fractal structure.

7 Conclusion

In this paper, we have laid the groundwork for a theory of fractal complex analysis by introducing
fractal complex numbers and defining corresponding functions, derivatives, and integrals within fractal
spaces. We derived the fractal Cauchy-Riemann equations, proposed the concept of fractal contour
integration, and explored the behavior of functions over fractal domains. In particular, we visualized
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the transformation of geometric objects, such as circles, under fractal complex functions, uncovering
intricate and often self-similar distortions. These investigations offer new insights into the interplay
between complex analysis and fractal geometry.

These results provide a foundational framework for extending classical complex analysis into the set-
ting of fractal spaces. They open promising avenues for further research in both theoretical mathematics
and applied fields such as mathematical physics, where systems governed by fractal structures frequently
arise.
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