
تعداد نشریات | 31 |
تعداد شمارهها | 804 |
تعداد مقالات | 7,707 |
تعداد مشاهده مقاله | 35,374,016 |
تعداد دریافت فایل اصل مقاله | 7,820,076 |
تجزیه و تحلیل غنی سازی مجموعه های ژنی جهت شناسایی مناطق ژنومی مرتبط با سازگاری محیطی در برخی از نژادهای گوسفندان ایرانی | ||
تحقیقات تولیدات دامی | ||
دوره 14، شماره 2، مرداد 1404، صفحه 1-18 اصل مقاله (1.13 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/ar.2025.29316.1876 | ||
نویسندگان | ||
علی نوروزی1؛ محمدحسین مرادی* 1، 2؛ حسین محمدی1؛ امیر حسین خلت آبادی فراهانی1؛ علی اسمعیلی زاده کشکوئیه3 | ||
1گروه علوم دامی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک | ||
2گروه علوم دامی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران | ||
3گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه شهید باهنر کرمان | ||
چکیده | ||
پژوهش حاضر با هدف مطالعه ارتباط ژنومی (GWAS) بر اساس تجزیه و تحلیل غنیسازی مجموعههای ژنی جهت شناسایی جایگاههای ژنی مؤثر بر صفات سازگاری با شرایط محیطی با استفاده از اطلاعات آرایههای ژنومیOvine high-density 600K Illumina انجام شد. بهاین منظور از اطلاعات ژنوتیپی 139 رأس گوسفندان بومی ایرانی شامل نژادهای کرمانی (15 رأس)، سنجابی (14 رأس)، لریبختیاری (15 رأس)، قزل (15 رأس)، قرهگل (15 رأس)، سیاهکبود (15 رأس)، کبوده شیراز (9 راس)، افشاری (14 رأس)، شال (15 رأس) و بلوچی (12 رأس) استفاده شد. ابتدا، تجزیه GWAS برای صفات مورد مطالعه در برنامه PLINK انجام شد. سپس، ژنهای معنیداری که در داخل و یا 50 کیلوباز بالا و پاییندست نشانگرهای معنیدار قرار داشتند، شناسایی شدند. در نهایت، تفسیر مجموعه ژنی با هدف شناسایی عملکرد زیستی ژنهای نزدیک به مناطق انتخابی از مسیر پایگاههای بیوانفورماتیکی مختلف انجام شد. نتایج نشان داد که بهترتیب 2431، 2244 و 2145 نشانگر SNP با صفات سازگاری با شرایط محیطی گرمسیری-سردسیری، پراکنش در مناطق با ارتفاع بالا-پایین از سطح دریا و پوشش بدنی پشمی-پوستی در گوسفندان بومی ایران مرتبط هستند (05/0>P). با تجزیه و تحلیل غنیسازی مجموعههای ژنی، مسیرهای زیستی (و ژنهای کاندیدای) مربوط به پاسخ دفاعی به عفونتهای باکتریایی (HSPA4L، DNAJB4 و MSRB3)، تنظیم پاسخ ایمنی بهواسطه ایمونوگلوبولینها (IL27A، TRAF3IP2 و LY96)، تنظیم فرآیند سیستم رشد و اتصالات سلولی (BMP2، THBS1 و MYH10)، تنظیم اندازه ساختار آناتومی (FGF2 و ACTR3)، تنظیم استخوانسازی و توسعه اندام (PTBP1 و TMEM117)، و رشد اپیدرم پوست و پشم (KRT71، KR27 و KR25) شناسایی شدند. در مجموع، نتایج تحقیق حاضر میتوانند دیدگاه جدیدی در رابطه با معماری ژنتیکی صفات سازگاری در برنامههای اصلاحنژادی گوسفندان کشور فراهم آورند. | ||
کلیدواژهها | ||
تجزیه مسیر؛ ژن کاندیدا؛ گوسفندان ایرانی؛ مطالعه ارتباط ژنومی | ||
مراجع | ||
Abdalla, E., Byrem, T., Weigel, K., & Rosa, G. (2016). Genome‐wide association mapping and pathway analysis of leukosis incidence in a US holstein cattle population. Animal Genetics, 47(4), 395-407. doi: 10.1111/age.12438 Abdoli, R., Mirhoseini, S. Z., Hossein-Zadeh, N. G., Zamani, P., Ferdosi, M. H., & Gondro, C. (2019a). Genome-wide association study of four composite reproductive traits in Iranian fat-tailed sheep. Reproduction, Fertility and Development, 31(6), 1127-1133. doi: 10.1071/RD18282 Abdoli, R., Mirhoseini, S. Z., Ghavi Hossein-Zadeh, N., Zamani, P., Moradi, M. H., Ferdosi, M. H., & Gondro, C. (2019b). Genome-wide association study of first lambing age and lambing interval in sheep. Small Ruminant Research, 178, 43-45. doi: 10.1016/J.SMALLRUMRES.2019.07.014 Amiri Roudbar, M., Mohammadabadi, M., Ayatollahi Mehrgardi, A., & Abdollahi Arpanahi, R. (2017). Estimates of variance components due to parent-of-origin effects for body weight in Iran-Black sheep. Small Ruminant Research, 141, 1-5. doi: 10.1016/j.smallrumres An, B., Xu, L., Xia, J., Wang, X., Miao, J., Chang, T., Song, M., Ni, J., Xu, L., Zhang, L., Li, J., & Gao, H. (2020). Multiple association analysis of loci and candidate genes that regulate body size at three growth stages in Simmental beef cattle. BMC Genetics, 21(1), 32. doi: 10.1186/s12863-020-0837-6 Arora, R., Kaur, M., Kumar, A., Chhabra, P., Mir, M. A., Ahlawat, S., Singh, M. K., Sharma, R., & Gera, R. (2024). Skeletal muscle transcriptomics of sheep acclimated to cold desert and tropical regions identifies genes and pathways accentuating their diversity. International Journal of Biometeorology, 68(9), 1811-1821. doi: 10.1007/s00484-024-02708-3 Arzik, Y., Kizilaslan, M., Behrem, S., White, S. N., Piel, L. M., & Cinar, M. U. (2023). Genome-wide scan of wool production traits in akkaraman sheep. Genes, 14(3), 713. doi: 10.3390/genes14030713 Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene ontology: Tool for the unification of biology. Nature Genetics, 25, 25-29. doi: 10.1038/75556 Chen, Z. H., Xu, Y. X., Xie, X. L., Wang, D. F., Aguilar-Gómez, D., Liu, G. J., Li, X., Esmailizadeh, A., Rezaei, V., Kantanen, J., Ammosov, I., Nosrati, M., Periasamy, K., Coltman, D. W., Lenstra, J. A., Nielsen, R., & Li, M. H. (2021). Whole-genome sequence analysis unveils different origins of European and Asiatic mouflon and domestication-related genes in sheep. Commun Biology, 4(1), 1307. doi: 10.1038/s42003-021-02817-4 Clancey, E., Kiser, J. N., & Moraes, J. G. N. (2019). Genome-wide association analysis and gene set enrichment analysis with SNP data identify genes associated with 305-day milk yield in Holstein dairy cows. Animal Genetics, 50, 254-258. doi: 10.1111/age.12792 Connell, P., Ballinger, C. A., Jiang, J., Wu, Y., Thompson, L. J., Hohfeld, J., & Patterson, C. (2001). The cochaperone CHIP regulates protein triagedecisions mediated by heat -shock proteins. Nature Cell Biology, 3, 93 -96. doi: 10.1038/35050618 Dadousis, C., Pegolo, S., Rosa, G., Gianola, D., Bittante, G., & Cecchinato, A. (2017). Pathway-based genome-wide association analysis of milk coagulation properties, curd firmness, cheese yield, and curd nutrient recovery in dairy cattle. Journal of Dairy Science, 100(2), 1223-1231. doi: 10.3168/jds.2016-11587 Dadousis, C., Pegolo, S., Rosa, G. J. M., Gianola, D., Bittante, G., & Cecchinato, A. (2017). Pathway-based genomewide association analysis of milk coagulation properties, curd firmness, cheese yield, and curd nutrient recovery in dairy cattle. Journal of Dairy Science, 100, 1223-1231. doi: 10.3168/jds.2016-11587 Devlin, B., & Roeder, K. (1999). Genomic control for association studies. Biometrics, 55, 997-1004. doi: 10.1111/j.0006-341x Duan, X., An, B., Du, L., Chang, T., Liang, M., Yang, B. G., Xu, L., Zhang, L., Li, J. E. G., & Gao, H. (2021). Genome-wide association analysis of growth curve parameters in chinese simmental beef cattle. Animals, 11(1), 192. doi: 10.3390/ani11010192 Edea, Z., Dadi, H., Dessie, T., & Kim, K. S. (2019). Genomic signatures of high-altitude adaptation in Ethiopian sheep populations. Genes & Genomics, 41, 973-981. doi: 10.1007/s13258-019-00820-y Esmaeilifard, S. M., Gholizadeh, M., Hafezian, S. H., & Abdollahi-Arpanahi, R. (2021). Genes and pathways affecting sheep productivity traits: genetic parameters, genome-wide association mapping, and pathway enrichment analysis. Frontiers in Genetics, 12, 710613. doi: 10.3389/fgene.2021.710613 Esmaeilifard, S. M., Hafezian, S. H., Gholizadeh, M., & Abdolahi-Arpanahi, R. (2019). Gene set enrichment analysis using genome-wide association study to identify genes and biological pathways associated with twinning in Baluchi sheep. Animal Production Research, 8(2), 63-80. doi: 10.22124/AR.2019.11948.1365 [In Persian] Freitas, P. H., Wang, Y., Yan, P., Oliveira, H. R., Schenkel, F. S., Zhang, Y., Xu, Q., & Brito, L. F. (2021). Genetic diversity and signatures of selection for thermal stress in cattle and other two Bos species adapted to divergent climatic conditions. Frontiers in Genetics, 12, 604823. doi: 10.3389/fgene.2021.604823 Gaspar, D., Ginja, C., Carolino, N., Leão, C., Monteiro, H., Tábuas, L., Branco, S., Padre, L., Caetano, P., Romão, R., & Matos, C. (2024). Genome-wide association study identifies genetic variants underlying footrot in Portuguese Merino sheep. BMC Genomics, 25(1), 100. Ghavi Hossein-Zadeh, N. (2024). An overview of recent technological developments in bovine genomics. Veterinary and Animal Science, 25, 100382. doi: 10.1016/J.VAS.2024.100382 Gholizadeh, M., Rahimi-Mianji, G., Nejati-Javaremi, A., De Koning, D. J., & Jonas, E. (2014). Genome wide association study to detect QTL for twinning rate in Baluchi sheep. Journal of Genetics, 93, 489-493. doi: 10.1186/s12864-024-10130-7 Gootwine, E. (2020). Invited review: Opportunities for genetic improvement toward higher prolificacy in sheep. Small Ruminant Research, 186, 106090. doi: 10.1016/j.smallrumres.2020.106090 Guo, T., Zhao, H., Yuan, C., Huang, S., Zhou, S., Lu, Z., Niu, C. E., Liu, J., Zhu, S., Yue, Y., & Yang, Y. (2021). Selective sweeps uncovering the genetic basis of horn and adaptability traits on fine-wool sheep in China. Frontiers in Genetics, 12, 604235. doi: 10.3389/fgene.2021.604235 Habimana, R., Ngeno, K., Okeno, T. O., Hirwa, C. A., Keambou Tiambo, C., & Yao, N. K. (2021). Genome-wide association study of growth performance and immune response to newcastle disease virus of indigenous chicken in Rwanda. Frontiers in Genetics, 12, 723980. doi: 10.3389/fgene.2021.723980 Han, Y., & Peñagaricano, F. (2016). Unravelling the genomic architecture of bull fertility in Holstein cattle. BMC Genetics, 17(1), 143. doi: 10.1186/s12863-016-0454-6 Huang, D.W., Sherman, B.T., & Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protocols, 4(1), 44-57. doi: 10.1038/nprot.2008.211 Igoshin, A., Yudin, N., Aitnazarov, R., Yurchenko, A. A., & Larkin, D. M. (2021). Whole-genome resequencing points to candidate DNA loci affecting body temperature under cold stress in Siberian cattle populations. Life, 11(9), 959. doi: 10.3390/life11090959 Jafarymanesh, A. R., Khaltabadi Farahani, A. H., Moradi, M. H., & Mohammadi, H. (2020). Gene-set enrichment analysis to identify genes and biological pathways associated with egg weight in the whole laying period. Journal of Agricultural Biotechnology, 12(3), 91-116. doi: 10.22103/JAB.2020.15255.1197 [In Persian] Jombart, T., & Ahmed, I. (2011). New tools for the analysis of genome-wide SNP data. Bioinformatics, 27, 3070-3071. doi: 10.1093/bioinformatics/btr521 Jin, M., Lu, J., Fei, X., Lu, Z., Quan, K., Liu, Y., Chu, M., Di, R., Wei, C., & Wang, H. (2020). Selection signatures analysis reveals genes associated with high-altitude adaptation in Tibetan goats from Nagqu, Tibet. Animals, 10(9), 1599. doi: 10.3390/ani10091599 Jin, M., Wang, H., Liu, G., Lu, J., Yuan, Z., Li, T., Liu, E., Lu, Z., Du, L., & Wei, C. (2024). Whole-genome resequencing of Chinese indigenous sheep provides insight into the genetic basis underlying climate adaptation. Genetics Selection Evolution, 56(1), 26. doi: 10.1186/s12711-024-00880-z Karimi, K., Farid, A. H., Myles, S., & Miar, Y. (2021). Detection of selection signatures for response to Aleutian mink disease virus infection in American mink. Scientific Reports, 11(1), 2944. doi: 10.1038/s41598-021-82522-8 Kaseja, K., Mucha, S., Yates, J., Smith, E., Banos, G., & Conington, J. (2023). Genome-wide association study of health and production traits in meat sheep. Animal, 17(10), 100968. doi: 10.1016/j.animal.2023.100968 Khalatabadi-Farahani, A. H., Mohammadi, H., & Moradi, M. H. (2020). Gene set enrichment analysis using genome-wide association study to identify genes and pathways associated with litter size in various sheep breeds. Journal of animal production, 22(3), 325-335. doi: 10.22059/jap.2020.292715.623468 [In Persian] Khanzadeh, H., Ghavi Hossein-Zadeh, N., & Ghovvati, S. (2022). The statistical power of genome-wide association studies for threshold traits with different frequencies of causal variants. Genetica, 150(1), 51-57. doi: 10.1007/s10709-021-00140-8 Khare, S., Lawhon, S. D., Drake, K. L., Nunes, J. E. S., Figueiredo, J. F., Rossetti, C. A., Gull, T., Everts, R. E., Lewin, H. A., & Galindo, C. L. (2012). Systems biology analysis of gene expression during in vivo Mycobacterium avium paratuberculosis enteric colonization reveals role for immune tolerance. PLoS One, 8, e42127. doi: 10.1371/journal.pone.0042127 Kijas, J. W., Lenstra, B., Hayes, S., Boitard, L. R., & Porto, N. (2012). Genome wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biology, 10, 1001258. doi: 10.1371/journal.pbio.1001258 Li, H., Wu, X. L., Tait, J. R. G., Bauck, S., Thomas, D. L., Murphy, T. W., & Rosa, G. J. M. (2020). Genome‐wide association study of milk production traits in a crossbred dairy sheep population using three statistical models. Animal Genetics, 51(4), 624-628. doi: 10.1111/age.12956 Li, X., Yuan, L., Wang, W., Zhang, D., Zhao, Y., Chen, J., Xu, D., Zhao, L., Li, F., & Zhang, X. (2022). Whole genome re-sequencing reveals artificial and natural selection for milk traits in East Friesian sheep. Frontiers in Veterinary Science, 9, 1034211. doi: 10.3389/fvets.2022.1034211 Liang, C. S., Kobiyama, A., Shimizu, A., Sasaki, T., Asakawa, S., Shimizu, N., & Watabe, S. (2007). Fast skeletal muscle myosin heavy chain gene cluster of medaka Oryzias latipes enrolled in temperature adaptation. Physiological Genomics, 29(2), 201-214. doi: 10.1152/physiolgenomics.00078.2006 Mastrangelo, S., Bahbahani, H., Moioli, B., Ahbara, A., Abri, M. A., & Almathen, F. (2019). Novel and known signals of selection for fat deposition in domestic sheep breeds from Africa and Eurasia. PloS ONE, 14, 0209632. doi: 10.1371/journal.pone.0209632 McLaren, R. J., Rogers, G. R., Davies, K. P., Maddox, J. F., & Montgomery, G. W. (1997). Linkage mapping of wool keratin and keratin-associated protein genes in sheep. Mammalian Genome, 8(12), 938–940. doi: 10.1007/s003359900616 Mi, H., & Thomas, P. (2009). PANTHER Pathway: an ontology-based pathway database coupled with data analysis tools. Methods in Molecular Biology, 563, 123-140. doi: 10.1007/978-1-60761-175-2_7 Mohammadi, H., Khalatabadi Farahani, A. H., Moradi, M. H., & Hajkhodadadi, I. (2022). Genome wide association study based on gene-set enrichment analysis of growth traits in a Chicken advanced intercross line. Journal of Animal Science Research, 31(3), 99-111. doi: 10.22034/AS.2021.46637.1621 [In Persian] Mohammadi, H., Khaltabadi Farahani, A. H, & Moradi, M. H. (2023). Genome-wide association study based on gene-set enrichment analysis of economically important traits in Japanese quail. Animal Production Research, 12(1), 65-78. doi: 10.22124/AR.2023.20946.1657 [In Persian] Mohammadi, H., Moradi, M. H., & Farahani, A. H. K. (2022). Genome-wide association study and pathway analysis for identifying the genes associated with coat color in Lori-Bakhtiari sheep breed. Iranian Journal of Animal Science, 53(3), 153-160. doi: 10.22059/IJAS.2022.329848.653846 [In Persian] Mohammadi, H., & Sadeghi, M. (2010). Estimation of genetic parameters for growth and reproduction traits and genetic trends of growth traits in Zel sheep breed under rural production system. Iranian Journal of Animal Science, 41(3), 231-241. doi: 20.1001.1.20084773.1389.41.3.6.9 [In Persian] Mokhber, M., Moradi-Shahrbabak, M., Sadeghi, M., Moradi-Shahrbabak, H., Stella, A., Nicolzzi, E., Rahmaninia, J., & Williams, J. L. (2018). A genome-wide scan for signatures of selection in Azeri and Khuzestani buffalo breeds. BMC Genomics, 19, 1-9. doi: 10.1186/s12864-018-4759-x Mooney, M. A., & Wilmot, B. (2015). Gene Set Analysis: a step-by-step guide. American Journal of Medical Genetics, 168(7), 517-527. doi: 10.1002/ajmg.b.32328 Moradi, M. H., Nejati-Javaremi, A., Moradi-Shahrbabak, M., Dodds, K. G., Brauning, R., & McEwan, J. C. (2021). Hitchhiking mapping of candidate regions associated with fat deposition in iranian thin and fat tail sheep breeds suggests new insights into molecular aspects of fat tail selection. Animals, 12, 1423. doi: 10.3390/ani12111423 Moradi, M. H., Farahani, A. H., & Nejati-Javaremi, A. (2017). Genome-wide evaluation of effective population size in some Iranian sheep breeds using linkage disequilibrium information. Iranian Journal Animal Science, 48, 39-49. doi: 10.22059/IJAS.2017.213736.653464 [In Persian] Moradi, M. H., Nejati-Javaremi, A., Moradi-Shahrbabak, M., Dodds, K. G., & McEwan, J. C. (2012). Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genetics, 13, 10. doi: 10.1186/1471-2156-13-10 Pacheco, A., Banos, G., Lambe, N., McLaren, A., McNeilly, T. N., & Conington, J. (2024). Genome-wide association studies of parasite resistance, productivity and immunology traits in Scottish Blackface sheep. Animal, 18(2), 101069. doi: 10.1016/j.animal.2023.101069 Parsons, Y. M., Piper, L. R., & Cooper, D. W. (1994). Linkage relationships between keratin-associated protein (KRTAP) genes and growth hormone in sheep. Genomics, 20(3), 500-502. doi: 10.1006/geno.1994.1209 Pasandideh, M., Gholizadeh, M., & Rahimi‐Mianji, G. (2020). A genome‐wide association study revealed five SNPs affecting 8‐month weight in sheep. Animal Genetics, 51(6), 973-976. doi: 10.1111/age.12996 Patiabadi, Z., Razmkabir, M., EsmailizadehKoshkoiyeh, A., Moradi, M. H., Rashidi, A., & Mahmoudi, P. (2024). Whole-genome scan for selection signature associated with temperature adaptation in Iranian sheep breeds. PLoS ONE, 19(8), e0309023. doi: 10.1371/journal.pone.0309023 Pham, K., Frost, S., Parikh, K., Puvvula, N., Oeung, B., & Heinrich, E. C. (2022). Inflammatory gene expression during acute high‐altitude exposure. The Journal of Physiology, 600(18), 4169-4186. doi: 10.1113/JP282772 Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., & Bender, D. (2007). PLINK: a toolset for whole-genome association and population-based linkage analysis. The American Journal of Human Genetics, 81, 559-575. doi: 10.1086/519795 Rastifar, M., Nejati-Javaremi, A., Moradi, M. H., & Abdollahi-Arpanahi, R. (2015). Identification of genomic regions associated with wool diameter in Iranian sheep breeds. Iranian Journal of Animal Science, 46(1), 65-72. doi: 10.22059/IJAS.2015.54592 [In Persian] Saravanan, K. A., Panigrahi, M., Kumar, H., Parida, S., Bhushan, B., Gaur, G. K., Dutt, T., Mishra, B. P., & Singh, R. K. (2021). Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics, 113(3), 955-963. doi: 10.1016/j.ygeno.2021.02.009 Senczuk, G., Criscione, A., Mastrangelo, S., Biscarini, F., Marletta, D., Pilla, F., Laloë, D., & Ciampolini, R. (2022). How geography and climate shaped the genomic diversity of Italian local cattle and sheep breeds. Animals, 12, 2198. doi: 10.3390/ani12172198 Tian, D., Han, B., Li, X., Liu, D., Zhou, B., Zhao, C., Zhang, N., Wang, L., Pei, Q., & Zhao, K. (2023). Genetic diversity and selection of Tibetan sheep breeds revealed by whole-genome resequencing. Animal Bioscience, 36(7), 991. doi: 10.5713/ab.22.0432 Vasu, M., Ahlawat, S., Chhabra, P., Sharm, U., Arora, R., Sharma, R., Mir, M. A., & Singh, M. K. (2024). Genetic insights into fiber quality, coat color and adaptation in Changthangi and Muzzafarnagri sheep: A comparative skin transcriptome analysis. Gene, 891, 147826. doi: 10.1016/j.gene.2023.147826 Veerkamp, R. F., Coffey, M. P., Berry, D. P., de Haas, Y., Strandberg, E., Bovenhuis, H., Calus, M. P. L., & Wall, E. (2012). Genome-wide associations for feed utilization complex in primiparous Holstein-Friesian dairy cows from experimental research herds in four European countries. Animal, 6, 1738–1749. doi: 10.1017/S1751731112001152 Wang, S., Dvorkin, D., & Da, Y. (2012). SNPEVG: a graphical tool for GWAS graphing with mouse clicks. BMC Bioinformatics, 13, 1-6. doi: 10.1186/1471-2105-13-319 Wang, S., Yi, X., Wu, M., Zhao, H., Liu, S., Pan, Y., Li, Q., Tang, X., Zhu, Y., & Sun, X. (2019). Detection of key gene InDels in TGF-β pathway and its relationship with growth traits in four sheep breeds. Animal Biotechnology, 32(2), 194-204. doi: 10.1080/10495398.2019.1675682 Wei, C., Wang, H., Liu, G., Zhao, F., Kijas, J. W., Ma, Y., Lu, J., Zhang, L. I., Cao, J., Wu, M., & Wang, G. (2016). Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Scientific Reports, 6(1), 26770. doi: 10.1038/srep26770 Wiener, P., Robert, C., Ahbara, A., Salavati, M., Abebe, A., Kebede, A., Wragg, D., Friedrich, J., Vasoya, D., Hume, D. A., & Djikeng, A. (2021). Whole-genome sequence data suggest environmental adaptation of Ethiopian sheep populations. Genome Biology and Evolution, 13(3), 014. doi: 10.1093/gbe/evab014 Yang, J. I., Li, W. R., Lv, F. H., He, S. G., Tian, S. L., Peng, W. F., Sun, Y. W., Zhao, Y. X., Tu, X. L., Zhang, M., & Xie, X. L. (2016). Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Molecular Biology and Evolution, 33(10), 2576-2592. doi: 10.1093/molbev/msw129 Young, M. D., Wakefield, M. J., Smyth, G. K., & Oshlack, A. (2010). Method gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biology, 11, 14-23. doi: 10.1186/gb-2010-11-2-r14 Yudin, N., & Larkin, D. M. (2019). Shared signatures of selection related to adaptation and acclimation in local cattle and sheep breeds from Russia. Russian Journal of Genetics, 55, 1008-1014. doi: 10.1134/S1022795419070159. Zamani, P., Akhondi, M., & Mohammadabadi, M. (2015). Associations of inter-simple sequence repeat loci with predicted breeding values of body weight in sheep. Small Ruminant Research, 132, 123-127. doi:10.1016/j.smallrumres.2015.10.018 Zhang, H., Wang, Z., Wang, S., & Li, H. (2012). Progress of genome wide association study in domestic animals. Journal of Animal Science and Biotechnology, 3(1), 26. doi: 10.1186/2049-1891-3-26 Zhang, H., Zhuang, Z., Yang, M., Ding, R., Quan, J., Zhou, S., Gu, T., Xu, Z., Zheng, E., Cai, G., Yang, J., & Wu, Z. (2021). Genome-wide detection of genetic loci and candidate genes for body conformation traits in Duroc × Landrace × Yorkshire crossbred pigs. Frontiers in Genetics, 12, 664343. doi: 10.3389/fgene.2021.664343 Zhang, L., Liu, J., Zhao, F., Ren, H., Xu, L., Lu, J., Zhang, S., Zhang, X., Wei, C., Lu, G., & Zheng, Y. (2013). Genome-wide association studies for growth and meat production traits in sheep. PloS ONE, 8(6), e66569. doi: 10.1371/journal.pone.0066569 Zhuang, Z., Xu, L., Yang, J., Gao, H., Zhang, L., Gao, X., Li, J., & Zhu, B. (2020). Weighted single-step genome-wide association study for growth traits in chinese simmental beef cattle. Genes, 11(2), 189. doi: 10.3390/genes11020189 | ||
آمار تعداد مشاهده مقاله: 99 تعداد دریافت فایل اصل مقاله: 31 |