
تعداد نشریات | 31 |
تعداد شمارهها | 804 |
تعداد مقالات | 7,707 |
تعداد مشاهده مقاله | 35,373,192 |
تعداد دریافت فایل اصل مقاله | 7,819,375 |
اثر بلوس آهستهرهش حاوی روی، سلنیوم، مس، کبالت، منگنز و ید بر عملکرد رشد و فراسنجه های خونی برههای نر مهربان | ||
تحقیقات تولیدات دامی | ||
دوره 14، شماره 2، مرداد 1404، صفحه 47-57 اصل مقاله (871.91 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/ar.2025.29022.1866 | ||
نویسندگان | ||
مریم فرهادی؛ حسن علی عربی* ؛ داریوش علیپور؛ رضا صدیقی وثاق | ||
گروه علوم دامی، دانشکده کشاورزی، دانشگاه بوعلی سینا | ||
چکیده | ||
بهمنظور بررسی اثر بلوسهای آهستهرهش حاوی عناصر روی، سلنیوم، مس، کبالت، منگنز و ید (مولتی تریس) بر عملکرد و فراسنجههای خونی، از 14 راس بره نر مهربان با میانگین وزن 2±29 کیلوگرم و میانگین سنی 5/5 ماه در قالب طرح کاملاً تصادفی با دو تیمار و هفت تکرار بهمدت 56 روز استفاده شد. برهها در گروه شاهد فقط جیره پایه را دریافت کردند، اما برههای اختصاص یافته به تیمار بلوس علاوه بر جیره پایه، بلوس آهستهرهش نیز دریافت نمودند. میزان خوراک مصرفی دامها بهصورت روزانه اندازهگیری شد. همچنین، وزنکشی برهها بهصورت هفتگی انجام شد. خونگیری از دامها در ابتدا و انتهای آزمایش قبل از خوراک وعده صبح با اعمال گرسنگی و تشنگی 12 ساعته بهعمل آمد. غلظت آنزیمهای آلکالین فسفاتاز، آلانین آمینوترانسفراز و آسپارتات آمینوترانسفراز، غلظت عناصر معدنی (روی، مس، آهن، کلسیم و فسفر)، و غلظت پروتئین کل، آلبومین، گلوبولین و نیتروژن اورهای خون اندازهگیری شد. نتایج نشان داد میزان مصرف خوراک، وزن بدن و میانگین افزایش وزن روزانه بهطور معنیداری تحت تأثیر جیره قرار نگرفت. بین تیمارها از نظر غلظت آنزیمهای کبدی، پروتئین کل و گلوبولین، تفاوت معنی داری مشاهده نشد، ولی غلظت آلبومین سرم خون در دامهای دریافتکننده بلوس بهطور معنیداری افزایش یافت (73/4 در برابر 38/4 گرم بر دسیلیتر) (05/0>P). غلظت روی پلاسما نیز در گروه دریافتکننده بلوس بهطور معنیداری بالاتر از گروه شاهد بود (37/1 در برابر 24/1 میلیگرم بر لیتر)(05/0>P). در مجموع، اگرچه تفاوت در عملکرد معنیدار نبود، اما افزایش وزن روزانه دامهای دریافتکننده بلوس حدود شش درصد بالاتر از گروه شاهد بود که میتواند به بهبود بهرهوری کمک نماید. | ||
کلیدواژهها | ||
بره پرواری؛ بلوس آهسته رهش؛ عملکرد؛ فراسنجه های خونی؛ مواد معدنی کممصرف | ||
مراجع | ||
Aliarabi, H., Bayervand, M., Bahari, A.A., Zamani, P., Fadayifar, A., & Alimohamady, R. (2017). Effect of feeding slow-release bolus of zinc, selenium and cobalt on growth performance and some blood metabolites of markhoz male goats. Iranian Journal of Animal Science, 47(4), 507-517. doi: 10.22059/ijas.2017.137518.653386 [In Persian] Aliarabi H., & Fadayifar A. (2015). Effect of slow-release bolus of zinc, selenium and cobalt on some blood metabolites and performance of male and female Mehraban lambs. Iranian Journal of Animal Science Research, 7(1), 23-33. doi: 10.22067/ijasr.v7i1.35315 [In Persian] Alimohamady, R. (2012). Effect of different levels of sources of selenium on performance and some rumen and plasma metabolites of Mehraban male lambs. MSc Thesis. Faculty of Agriculture, Bu-Ali Sina University, Iran. [In Persian] Awadeh, F., Kincaid, R., & Johnson, K. (1998). Effect of level and source of dietary selenium on concentrations of thyroid hormones and immunoglobulins in beef cows and calves. Journal of Animal Science, 76, 1204-1215. doi: 10.2527/1998.7641204x Azizzadeh, M., Mohri, H., & Seifi, A. (2005). Effect of oral zinc supplementation on hematology, serum biochemistry, performance, and health in neonatal dairy calves. Comparative Clinical Pathology, 14(2), 67-71. doi: 10.1007/s00580-005-0559 Cheraghi-mashoof, L. (2014). Effect of zinc and copper supplements on some blood parameters and performance of pregnant ewes and their lambs. MSc Thesis. Faculty of Agriculture, Bu-Ali Sina University, Iran. [In Persian] Chung, J., Kim, J. K. Y., & Jang, I. (2007). Effects of dietary supplemented inorganic and organic selenium on antioxidant defense systems in the intestine, serum, liver and muscle of Korean native goats. Asian-Australasian Journal of Animal Science, 20, 52-59. doi: 10.5713/ajas.2007.52 Daghash, H.A., & Mousa, S.M. (1999). Zinc sulfate supplementation to ruminant rations and its effects on digestibility in lamb; growth, rectal temperature and some blood constituents in buffalo calves under heat stress. Assiut Veterinary Medical Journal, 40, 128-146. doi: 10.21608/avmj.1999.182331 Dalvand, M., Azarfar, A., Fadayifar, A., & Tehrani, A. (2022). The effect of slow-release selenium and cobalt bolus on milk production and composition, reproductive performance and some blood parameters of Lori bakhtiari's ewes. Journal of Ruminant Research, 10(4), 71-88. doi: 10.22069/ejrr.2022.20424.1857 [In Persian] Fadayifar, A., & Aliarabi, H. (2013). Slow-release bolus (trace mineral) for ruminants. Iranian patent no: 79633. [In Persian] Garg, A. K., Mudgal, V., & Dass, R.S. (2008). Effect of organic zinc supplementation on growth, nutrient utilization and mineral profile in lambs. Animal Feed Science and Technology, 144, 82-96. doi: 10.1016/j.anifeedsci.2007.10.003 Hosnedlova, B., Travnicek, J., & Soch, M. (2007). Current view of the significant of zinc for ruminant: a review. Agricultura Tropica et Subtropica, 40(2), 57-64. Hurley, L. S. (1981). Teratogenic effects of manganese, zinc and copper in nutrition. Physiological Reviews, 61, 249-295. doi: 10.1152/physrev.1981.61.2.249 Jia, W., Xiaoping, Z. H., Wei, Z. H., Jianbo, C. H., Cuihua, G., & Zhihai. J. (2009). Effects of source of supplemental zinc on performance, nutrient digestibility and plasma mineral profile in cashmere goats. Asian-Australian Journal of Animal Science, 22, 1648-1653. doi: 10.5713/ajas.2009.80649 Kadim, I. T., Johnson, E. H., Mahgoub, O., Srikandakumar, A., Al-Ajmi, D., Ritchie, A., Annamalai, K., & Al-Halhali, A. S. (2003). Effect of low levels of dietary cobalt on apparent nutrient digestibility in Omani goats. Animal Feed Science and Technology, 109, 209-216. doi: 10.1016/S0377-8401(03)00174-3 Kendall, N. R., Mackenzie, A. M., & Telfer, S. B. (2012). The trace element and humoral immune response of lambs administered a zinc, cobalt and selenium soluble glass bolus. Livestock Science, 148, 81-86. doi: 10.1016/j.livsci.2012.05.013 Kendall, N. R., & Telfer, S. B. (2000). Induction of zinc deficiency in sheep and its correction with a bolus of soluble glass containing zinc. Veterinary Research, 146, 634-637. doi: 10.1136/vr.146.22.634 Khorrami, Z., Aliarabi, H., Farahavar, A., & Fadayifar, A. (2021). The Effect of slow-release bolus of zinc and selenium or daily feeding of salts of these elements on the performance of pregnant ewes and their lambs. Research on Animal Production, 12(31), 77-89. doi: 10.52547/rap.12.31.77 [In Persian] Khorrami, Z., Aliarabi, H., Farahavar, A., & Fadayifar, A. (2024). Effect of pre and postpartum maternal supplementation of zinc and selenium via slow-release glass bolus or the element salts on feed intake and some blood parameters in ewes and their lambs. Animal Feed Science and Technology, 311, 1-14. doi: 10.1016/j.anifeedsci.2024.115949 Kubkomawa, I. H., Tizhe, M., Emenalom, O., & Okoli, I. (2015). Handling, reference value and usefulness of blood biochemical of indigenous pastoral cattle in tropical Africa: a review. Dynamic Journal of Animal Science and Technology, 1(2), 18-27. Kumar, N., Garg, A. K., Mudgal, V., Dass, R. S., Chaturvedi, V. K., & Varshney, V. P. (2008). Effect of different levels of selenium supplementation on growth rate, nutrient utilization, blood metabolic profile, and immune response in lambs. Biological Trace Element Research, 126(1), 44-56. doi: 10.1007/s12011-008-8214-8 Miller, W. J. (1970). Zinc nutrition of cattle. A review. Journal of Dairy Science, 53, 1123-1135. doi: 10.3168/jds. S0022-0302(70)86355-X Mohamed, A. H., Mohamed, M. Y., Ibrahim, K., Abd El Ghany, T. F., & Mahgoup, A. A. S. (2017). impact of nano-zinc oxide supplementation on productive performance and some biochemical parameters of ewes and offspring. Egyptian Journal of Sheep and Goat Sciences, 12(3), 1-16. doi: 10.21608/ejsgs.2017.26308 Mudgal, V., Garg, A. K., Dass, R. S., & Varshney, V. P. (2008). Effect of selenium and copper supplementation on blood metabolic profile in male buffalo (bubalus bubalis) calves. Biological Trace Element Research, 121(1), 31-38. doi: 10.1007/s12011-007-8002-x Murray, R., Grunner, D., Mayes, P., & Rodweld, V. (1990). Chemical constituents of blood and body fluids. Harpers Biochemistry. 2nd ed. Lange Medical Book, USA. Pp. 685-690. Nagalakshmi, D., Dhanalakshmi, K., & Himabindu, D. (2009). Effect of dose and source of supplemental zinc on immune response and oxidative enzymes in lambs. Veterinary Research Communications, 33, 631-644. doi: 10.1016/0891-5849(90)90076-U National Research Council (NRC). (2007). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelid. National Academy Press, Washington, D.C. Piri, E. C. J. H., Viva, M., Chibunda, R. T., & Mellau, L. S. B. (2009). Effect of zinc supplementation on plasma mineral concentration in gazing goat in sub-humid climate of tanzania. Tanzania Veterinary Journal, 26(2), 92-96. doi: 10.4314/tvj. v26i2.53807 Ramadan, S. G. A., Mahboub, H. D. A., Helal, M. H. Y., & Sallam, M. A. (2018). Effect of vitamin e and selenium on performance and productivity of goats. International Journal of Chemical and Biomedical Science, 4(2), 16-22. doi: 10.2340/00015555-0754 SAS. (2003). Statistical Analysis System, User’s Guide: Statistics. Version 9.1. SAS Institute, Cary, NC, USA. Slavik, P., Illek, J., Brix, M., Hlavicova, J., Rajmon, R., & Jilek, F. (2008). Influence of organic versus inorganic dietary selenium supplementation on the concentration of selenium in colostrum, milk and blood of beef cows. Acta Veterinaria Scandinavica, 50(43), 1-6. doi: 10.1186/1751-0147-50-43 Sobhanirad, S., Mashhadi, M., & Kashani, R. (2014). Effects of source and level of zinc on haematological and biochemical parameters in baluchi lambs. Research Opinions in Animal and Veterinary Sciences, 4(7), 389-393. Spears, J. W., Schlegel, P., Seal, M. C., & Lloyd, K. E. (2004). Bioavailability of zinc from zinc sulfate and different organic zinc sources and their effects on ruminal volatile fatty acid proportions. Livestock Production Science, 90(2), 211-217. doi: 10.1016/j.livprodsci.2004.05.001 Stepanova, I. A., Nazarova, A. A., & Arisov, M. V. (2020). Peculiarities of mineral metabolism of holstein heifers’ diet supplemented with copper Nano powders. World's Veterinary Journal, 10(4), 492-498. doi: 10.54203/scil.2020.wvj59 Suttle, N. F. (2010). Mineral Nutrition of Livestock, 4th ed. CAB International, Oxford, UK. Thompson, K. G., Audige, L., Arthur, D. G., Juhan, A. F., Orr, M. B., Mcsporran, K. D., & Wilson, P. R. (1994). Osteochondrosis associated with copper deficiency in young farmed red deer and wapiti/red hybrids. New Zealand Veterinary Journal, 42, 137-143. doi: 10.1080/00480169.1994.35804 Underwood, E. J., & Suttle, N. F. (1999). The mineral nutrition of livestock. CAB international, Wallingford, UK. Vilela, F. G., Zanetti, M. A., Netto, A. S., Júnior, J. E. F., Rennó, F. P., Venturelli, B. C., & Canaes, T. S. (2012). Supplementation of diets for santa ines sheep with organic and inorganic zinc sources. Revista Brasileira de Zootechnie, 41(9), 2134-2138. doi: 10.1590/S1516-35982012000900023 Zaboli, K. H. H., Aliarabi, H., Tabatabai, M. M., Bahari, A. A., & Zarei, Z. (2013). Effect of zinc oxide nano particle and zinc oxide on performance and some blood parameters in male markhoz goat kids. Animal Production Research, 2(2), 29-41. [In Persian] Zimmermann, M. B., Benoist, B., Corigliano, S., Jooste, P. L., Molinari, L., Moosa, K., & Torresani, T. (2006). Assessment of iodine status using dried blood spot thyroglobulin: development of reference material and establishment of an international reference range in iodine-sufficient children. The Journal of Clinical Endocrinology and Metabolism, 91(12), 4881-4887. doi: 10.1210/jc.2006-1370 | ||
آمار تعداد مشاهده مقاله: 64 تعداد دریافت فایل اصل مقاله: 25 |