
تعداد نشریات | 31 |
تعداد شمارهها | 792 |
تعداد مقالات | 7,554 |
تعداد مشاهده مقاله | 24,670,753 |
تعداد دریافت فایل اصل مقاله | 7,582,976 |
اثر مکمل سازی آرژنین و تراکم جمعیت بر عملکرد رشد، ریخت شناسی روده، شاخص های خونی و کیفیت گوشت در جوجه های گوشتی آرین و راس | ||
تحقیقات تولیدات دامی | ||
دوره 14، شماره 1، اردیبهشت 1404، صفحه 77-100 اصل مقاله (1.09 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/ar.2025.28565.1851 | ||
نویسندگان | ||
کامران بهرامپور؛ سیدجواد حسینی واشان* | ||
گروه علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند | ||
چکیده | ||
مطالعه حاضر بهمنظور مقایسه عملکرد جوجههای گوشتی سویه آرین و راس و بررسی مکمل آرژنین بر عملکرد رشد، ریختشناسی روده، شاخصهای خونی و کیفیت گوشت در شرایط تراکم جمعیت انجام شد. در این آزمایش از 224 قطعه جوجه گوشتی یک روزه سویه آرین و 224 قطعه جوجه گوشتی یک روزه سویه راس استفاده شد. آزمایش در قالب طرح کاملاً تصادفی با آرایش فاکتوریل 2×2×2 با استفاده از دو سویه جوجه (آرین و راس) و دو سطح تراکم (12 و 16 پرنده در متر مربع) و دو سطح اسیدآمینه آرژنین (100 و 130 درصد پیشنهاد کاتالوگ آرین) با هشت تیمار و پنج تکرار اجرا شد. آثار متقابل نشان داد پرندگان هر دو سویه راس و آرین در تراکم بالا و سطح 100 درصد آرژنین، کمترین میزان افزایش وزن روزانه را داشتند (05/0P<). در دوره پایانی 1، کمترین ضریب تبدیل خوراک در گروه سویه آرین، تراکم پایین و سطح 130 درصد آرژنین مشاهده شد (05/0P<). تراکم بالا موجب کاهش غلظت آلبومین و پروتئین کل و افزایش غلظت گلوکز، کلسترول و فعالیت آنزیم آسپارتات آمینوترانسفراز شد (05/0P<). غلظت کلسترول در هر دو سویه با افزایش تراکم، بالا رفت ولی در گروهی که سطح بالای آرژنین استفاده شد، کاهش یافت (05/0P<). ارتفاع، عرض پرز و سطح جذب روده در تراکم بالای پرورش، کاهش یافت. آثار متقابل نشان داد کمترین سطح جذب پرز در سویه آرین، تراکم 16 و سطح 100 درصد آرژنین مشاهده شد (05/0P<). تراکم بالای جمعیت موجب کاهش ظرفیت نگهداری آب و افزایش افت ناشی از پخت شد و در مقابل، افزایش درصد آرژنین سبب افزایش ظرفیت نگهداری آب و کاهش افت ناشی از پخت شد (05/0P<). بهطور کلی، نتایج نشان داد سویه راس نسبت به آرین، افزایش وزن روزانه و مصرف خوراک روزانه بالاتری نشان داد. تراکم بالای جمعیت در هر دو سویه، تاثیر منفی بر عملکرد، ریختشناسی روده، کیفیت گوشت و بعضی از شاخصهای خونی داشت. | ||
کلیدواژهها | ||
آرژنین؛ تراکم جمعیت؛ جوجه گوشتی؛ عملکرد رشد؛ ریخت شناسی روده | ||
مراجع | ||
Abdolalizadeh Alvanegh, F., Ebrahimi, M., & Daghigh Kia, H. (2017). Effect of in ovo injection of different ratios of L-arginine to L-lysine on body growth, muscle production, and blood metabolites concentration of day old Ross broiler chicks. Iranian Journal of Animal Science, 48(2), 207-217. doi: 10.22059/ijas.2017.221665.653484 [In Persian] Abudabos, A. M., Saleh, F., Lemme, A., & Zakaria, H. A. (2014). The relationship between guanidino acetic acid and metabolisable energy level of diets on performance of broiler chickens. Italian Journal of Animal Science, 13(3), 3269. doi: 10.4081/ijas.2014.3269 Abudabos, A. M., Samara, E. M., Hussein, E. O., Al-Ghadi, M. a. Q., & Al-Atiyat, R. M. (2013). Impacts of stocking density on the performance and welfare of broiler chickens. Italian Journal of Animal Science, 12(1), e11. doi: 10.4081/ijas.2013.e11 Acar, N., Moran Jr, E., & Bilgili, S. (1991). Live performance and carcass yield of male broilers from two commercial strain crosses receiving rations containing lysine below and above the established requirement between six and eight weeks of age. Poultry Science, 70(11), 2315-2321. Adibmoradi, M., Ebrahimi, M., Zare Shahneh, A., Shivazad, M., Ansari Pirsaraei, Z., Tebianian, M., & Nourijelyani, K. (2014). The effects of L-arginine on growth, small intestine, and immune system of broilers in starter period. Iranian Journal of Animal Science, 45(3), 223-233. doi: 10.22059/ijas.2014.53778 [In Persian] Adji, A. V., Plumeriastuti, H., Ma’Ruf, A., & Legowo, D. (2019). Histopathological alterations of ceca in broiler chickens (Gallus gallus) exposed to chronic heat stress. World's Veterinary Journal, 3, 211-217. doi: 10.36380/scil.2019.wvj27 Ahmad, R., Yu, Y.-H., Hsiao, F. S.-H., Su, C.-H., Liu, H.-C., Tobin, I., Zhang, G., & Cheng, Y.-H. (2022). Influence of heat stress on poultry growth performance, intestinal inflammation, and immune function and potential mitigation by probiotics. Animals, 12(17), 2297. doi: 10.3390/ani12172297 Ahmed, I., & Khan, M. A. (2004). Dietary arginine requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton). Aquaculture Nutrition, 10(4), 217-225. doi: 10.1111/j.1365-2095.2004.00293.x Akhavan-Salamat, H., & Ghasemi, H. A. (2016). Alleviation of chronic heat stress in broilers by dietary supplementation of betaine and turmeric rhizome powder: dynamics of performance, leukocyte profile, humoral immunity, and antioxidant status. Tropical Animal Health and Production, 48, 181-188. doi: 10.1007/s11250-015-0941-1 Alfaro, D., Silva, A., Borges, S., Maiorka, F., Vargas, S., & Santin, E. (2007). Use of Yucca schidigera extract in broiler diets and its effects on performance results obtained with different coccidiosis control methods. Journal of Applied Poultry Research, 16(2), 248-254. doi: 10.1093/japr/16.2.248 Altaf, M., Mahmud, A., & Mehmood, S. (2019). Effects of supplemented growth promoters on performance and intestinal morphology in broilers reared under different stocking densities. Brazilian Journal of Poultry Science, 21. doi: 10.1590/1806-9061-2019-1073 Amao, S., Ojedapo, L., & Oso, O. (2015). Evaluation of two commercial broiler strains differing in efficiency of feed utilization. Journal of New Sciences, 14. Antar, R. I., Shosha, S. M., Elazab, M. E., & Esmail, R. S. (2020). Genetic and hormonal difference between high growth rate breed (Cobb broiler chicken) and low growth rate breed (native Fayoumi chicken). Benha Veterinary Medical Journal, 39(1), 28-33. doi: 10.21608/bvmj.2020.36634.1229 Aslam, M. A., İpek, E., Riaz, R., Ӧzsoy, Ş. Y., Shahzad, W., & Güleş, Ӧ. (2021). Exposure of broiler chickens to chronic heat stress increases the severity of white striping on the pectoralis major muscle. Tropical Animal Health and Production, 53, 1-10. doi: 10.1007/s11250-021-02950-6 Awad, W., Ghareeb, K., & Böhm, J. (2008). Intestinal structure and function of broiler chickens on diets supplemented with a synbiotic containing Enterococcus faecium and oligosaccharides. International Journal of Molecular Sciences, 9(11), 2205-2216. doi: 10.3390/ijms9112205 Awad, W. A., Hess, C., & Hess, M. (2018). Re-thinking the chicken–Campylobacter jejuni interaction: a review. Avian Pathology, 47(4), 352-363. doi: 10.1080/03079457.2018.1475724 Badamasi, A., Ibrahim, H., & Yahaya, H. (2014). Comparative evaluation of feed conversion efficiency and mortality rate of two broiler strains under the same dietary conditions. International Journal of Animal and Veterinary Advances, 6(1), 5-7. doi: 10.19026/ijava.6.5609 Bahrampour, K., Hosseini-Vashan, S. J., Afzali, N., Salarmoeini, M., & Yosefi, K. (2024). Effects of energy levels and stocking density on growth performance, blood indices, intestinal morphology, and meat quality in Arian broiler chicken. Iranian Journal of Animal Science, 55(2), 259-282. doi: 10.22059/ijas.2023.359172.653945 [In Persian] Ball, R. O., Urschel, K. L., & Pencharz, P. B. (2007). Nutritional consequences of interspecies differences in arginine and lysine metabolism. The Journal of Nutrition, 137(6 Suppl. 2), 1626s-1641s. doi: 10.1093/jn/137.6.1626S Bertram, H. C., Whittaker, A. K., Andersen, H. J., & Karlsson, A. H. (2003). pH dependence of the progression in NMR T 2 relaxation times in post-mortem muscle. Journal of Agricultural and Food Chemistry, 51(14), 4072-4078. doi: 10.1021/jf020968+ Bowker, B., Hawkins, S., & Zhuang, H. (2014). Measurement of water-holding capacity in raw and freeze-dried broiler breast meat with visible and near-infrared spectroscopy. Poultry Science, 93(7), 1834-1841. doi: 10.3382/ps.2013-03651 Brudnicki, A., Brudnicki, W., Szymeczko, R., Bednarczyk, M., Pietruszynska, D., & Kirkillo-Stacewicz, K. (2017). Histo-Morphometric adaptation in the small intestine of broiler chicken, after embryonic exposure to galactosides. Journal of Animal & Plant Sciences, 27(4), 1075-1082. Burkholder, K., Thompson, K., Einstein, M., Applegate, T., & Patterson, J. (2008). Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility to Salmonella enteritidis colonization in broilers. Poultry Science, 87(9), 1734-1741. doi: 10.3382/ps.2008-00107 Castellini, C., Mugnai, C., & Dal Bosco, A. (2002). Effect of organic production system on broiler carcass and meat quality. Meat Science, 60(3), 219-225. doi: 10.1016/s0309-1740(01)00124-3 Castro, F., Su, S., Choi, H., Koo, E., & Kim, W. (2019). L-Arginine supplementation enhances growth performance, lean muscle, and bone density but not fat in broiler chickens. Poultry Science, 98(4), 1716-1722. doi: 10.3382/ps/pey504 Castro, F. L., Teng, P.-Y., Yadav, S., Gould, R. L., Craig, S., Pazdro, R., & Kim, W. K. (2020). The effects of L-Arginine supplementation on growth performance and intestinal health of broiler chickens challenged with Eimeria spp. Poultry Science, 99(11), 5844-5857. doi: 10.1016/j.psj.2020.08.017 Christensen, L. B. (2003). Drip loss sampling in porcine m. longissimus dorsi. Meat Science, 63(4), 469-477. doi: 10.1016/s0309-1740(02)00106-7 Corzo, A., Kidd, M. T., Burnham, D. J., Miller, E. R., Branton, S. L., & Gonzalez-Esquerra, R. (2005). Dietary amino acid density effects on growth and carcass of broilers differing in strain cross and sex. Journal of Applied Poultry Research, 14(1), 1-9. doi: 10.1093/japr/14.1.1 Costa, H., Vaz, R., Silva, M., Rodrigues, K., Sousa, L., Bezerra, L., Ribeiro, M., Barbosa, A., Almeida, J., & Oliveira, M. (2021). Performance and meat quality of broiler chickens reared on two different litter materials and at two stocking densities. British Poultry Science, 62(3), 396-403. doi: 10.1080/00071668.2020.1864810 Creamer, B. (1964). Variations in small-intestinal villous shape and mucosal dynamics. British Medical Journal, 2(5421), 1371. doi: 10.1136/bmj.2.5421.1371 Danisman, R., & Gous, R. (2010). Effect of dietary protein on the allometric relationships between some carcass portions and body protein in three broiler strains. South African Journal of Animal Science, 41, 194-208. doi: 10.4314/sajas.v41i3.2 Dansethakul, P., Thapanathamchai, L., Saichanma, S., Worachartcheewan, A., & Pidetcha, P. (2015). Determining a new formula for calculating low-density lipoprotein cholesterol: data mining approach. Excli Journal, 14, 478-483. doi: 10.17179/excli2015-162 Dao, H. T., Sharma, N. K., Daneshmand, A., Kumar, A., Bradbury, E. J., Wu, S.-B., & Swick, R. A. (2022). Supplementation of reduced protein diets with L-arginine and L-citrulline for broilers challenged with subclinical necrotic enteritis. 1. Growth, carcass yield, and intestinal lesion scores. Animal Production Science, 62(13), 1236-1249. doi: 10.1071/AN21393 Davila, D., Brief, S., Simon, J., Hammer, R. E., Brinster, R., & Kelley, K. (1987). Role of growth hormone in regulating T‐Dependent immune events in aged, nude, and transgenic rodents. Journal of Neuroscience Research, 18(1), 108-116. doi: 10.1002/jnr.490180118 Ebrahimi, M., Shahneh, A. Z., Shivazad, M., Pirsaraei, Z. A., Tebianian, M., Adibmoradi, M., & Nourijelyani, K. (2013). An evaluation of the effect of feeding L-arginine on growth performance, carcass traits and blood parameters in broiler chickens. Iranian Journal of Animal Science, 44(2), 157-166. doi: 10.22059/ijas.2013.35565 [In Persian] Ebrahimi, M., Zare Shahneh, A., Shivazad, M., & Ansari Pirsaraei, Z. (2015). The effects of feeding high levels of L-arginine at the starter period on meat production and its quality, and blood parameters in broiler chicks. Iranian Journal of Animal Science, 46(2), 169-179. doi: 10.22059/ijas.2015.55648 [In Persian] Ebrahimi, M., Zare Shahneh, A., Shivazad, M., Ansari Pirsaraei, Z., Tebianian, M., Adibmoradi, M., & Nourijelyani, K. (2014). The effects of L-arginine supplement on growth, meat production, and fat deposition in broiler chickens. Iranian Journal of Animal Science, 44(2), 157-166. doi: 10.22059/ijas.2013.35565 [In Persian] El Rammouz, R., Berri, C., Le Bihan-Duval, E., Babile, R., & Fernandez, X. (2004). Breed differences in the biochemical determinism of ultimate pH in breast muscles of broiler chickens- a key role of AMP deaminase? Poultry Science, 83(8), 1445-1451. doi: 10.1093/ps/83.8.1445 Emadi, M., Jahanshiri, F., Kaveh, K., Hair-Bejo, M., Ideris, A., & Alimon, A. (2011). Nutrition and immunity: the effects of the combination of arginine and tryptophan on growth performance, serum parameters and immune response in broiler chickens challenged with infectious bursal disease vaccine. Avian Pathology, 40(1), 63-72. doi: 10.1080/03079457.2010.539590 Fathima, S., Al Hakeem, W. G., Shanmugasundaram, R., & Selvaraj, R. K. (2024). Effect of arginine supplementation on the growth performance, intestinal health, and immune responses of broilers during necrotic enteritis challenge. Poultry Science, 103(7), 103815. doi: 10.1016/j.psj.2024.103815 Floyd, J., Fajans, S. S., Conn, J. W., Knopf, R. F., & Rull, J. (1966). Stimulation of insulin secretion by amino acids. The Journal of Clinical Investigation, 45(9), 1487-1502. doi: 10.1172/JCI105456 Gholami, M., Chamani, M., Seidavi, A., Sadeghi, A. A., & Aminafschar, M. (2020a). Effects of stocking density and climate region on performance, immunity, carcass characteristics, blood constitutes, and economical parameters of broiler chickens. Revista Brasileira de Zootecnia, 49. doi: 10.37496/rbz4920190049 Gholami, M., Chamani, M., Seidavi, A., Sadeghi, A. A., & Aminafschar, M. (2020b). Effects of stocking density and environmental conditions on performance, immunity, carcase characteristics, blood constitutes, and economical parameters of cobb 500 strain broiler chickens. Italian Journal of Animal Science, 19(1), 524-535. doi: 10.1080/1828051X.2020.1757522 Gonzales, E., Buyse, J., Sartori, J. R., Loddi, M. M., & Decuypere, E. (1999). Metabolic disturbances in male broilers of different strains. 2. Relationship between the thyroid and somatotropic axes with growth rate and mortality. Poultry Science, 78(4), 516-521. doi: 10.1093/ps/78.4.516 Gottardo, E. T., Burin Junior, Á. M., Lemke, B. V., Silva, A. M., Busatta Pasa, C. L., & Muller Fernandes, J. I. (2017). Immune response in Eimeria sp. and E. coli challenged broilers supplemented with amino acids. Australian Journal of Veterinary Sciences, 49(3), 175-184. doi: 10.4067/S0719-81322017000300175 Habibian, M., Ghazi, S., Moeini, M. M., & Abdolmohammadi, A. (2014). Effects of dietary selenium and vitamin E on immune response and biological blood parameters of broilers reared under thermoneutral or heat stress conditions. International Journal of Biometeorology, 58, 741-752. doi: 10.1007/s00484-013-0654-y Hafez, H. M., & Attia, Y. A. (2020). Challenges to the poultry industry: current perspectives and strategic future after the COVID-19 outbreak. Frontiers in Veterinary Science, 7, 516. doi: 10.3389/fvets.2020.00516 Hassanabadi, A., Nasiri Moghadam, H., & Golian, A. (2015). ffects of different levels of digestible arginine and protein in starter diets containing ideal amino acids ratio on performance, carcass traits and serum parameters in broiler chickens. Iranian Journal of Animal Science Research, 7(2), 139-152. doi: 10.22067/ijasr.v7i2.51524 [In Persian] He, S., Li, S., Arowolo, M. A., Yu, Q., Chen, F., Hu, R., & He, J. (2019). Effect of resveratrol on growth performance, rectal temperature and serum parameters of yellow‐feather broilers under heat stress. Animal Science Journal, 90(3), 401-411. doi: 10.1111/asj.13161 Henrique, C. d. S., Oliveira, A. F. G., Ferreira, T. S., Silva, E. S., de Mello, B., Andrade, A. d. F., Martins, V., de Paula, F. O., Garcia, E. d. M., & Bruno, L. D. G. (2017). Effect of stocking density on performance, carcass yield, productivity, and bone development in broiler chickens Cobb 500®. Semina: Ciências Agrárias (Londrina), 38(4 Suppl. 1), 2705-2717. doi: 10.5433/1679-0359.2017v38n4SUPLp2705 Henwork. (2024). https://www.henwork.com/priceAndAnalysis/jooje-rizi/production Hossain, M., Suvo, K., & Islam, M. (2011). Performance and economic suitability of three fast-growing broiler strains raised under farming condition in Bangladesh. International Journal of Agricultural Research, Innovation and Technology, 1, 37-43. doi: 10.3329/ijarit.v1i1-2.13931 Houshmand, M., Azhar, K., Zulkifli, I., Bejo, M., & Kamyab, A. (2012). Effects of prebiotic, protein level, and stocking density on performance, immunity, and stress indicators of broilers. Poultry Science, 91(2), 393-401. doi: 10.3382/ps.2010-01050 Iji, P., Saki, A., & Tivey, D. (2001). Body and intestinal growth of broiler chicks on a commercial starter diet. 1. Intestinal weight and mucosal development. British Poultry Science, 42(4), 505-513. doi: 10.1080/00071660120073151 Ilemobayo, J., Berger, M., Gutierrez, M., & Tomori, A. (2024). Factors Influencing Chick Quality in Broilers: A Comprehensive Review. doi: 10.13140/RG.2.2.34371.17442 Jahanian, R. (2009). Immunological responses as affected by dietary protein and arginine concentrations in starting broiler chicks. Poultry Science, 88(9), 1818-1824. doi: 10.3382/ps.2008-00386 Jahanian Najafabadi, H., Zamani, P., Ighani, V., Reza Yazdi, K., & Zarafrouz, F. (2019). Evaluation the effect of diets formulated according to the Arian and Ross strains catalogue on performance and carcass characteristics of broilers. Animal Sciences Journal, 31(121), 275-302. doi: 10.22092/asj.2018.110276.1479 [In Persian] Jamalpor, F., Salari, S., & Abdanan Mehdizadeh, S. (2021). Effect of feed form and stock density on performance assessed and some behavioral parameters assessed by image processing, in broiler chickens. Iranian Journal of Animal Science, 52(3), 141-152. doi: 10.22059/ijas.2021.318838.653814 [In Persian] Jeong, S.-B., Kim, Y. B., Lee, J.-W., Kim, D.-H., Moon, B.-H., Chang, H.-H., Choi, Y.-H., & Lee, K.-W. (2020). Role of dietary gamma-aminobutyric acid in broiler chickens raised under high stocking density. Animal Nutrition, 6(3), 293-304. doi: 10.1016/j.aninu.2020.03.008 Jiao, P., Guo YuMing, G. Y., Yang Xin, Y. X., & Long FangYu, L. F. (2010). Effects of dietary arginine and methionine levels on broiler carcass traits and meat quality. Journal of Animal and Veterinary Advances, 9(11), 1546-1551. doi: 10.3923/javaa.2010.1546.1551 Jobgen, W. S., Fried, S. K., Fu, W. J., Meininger, C. J., & Wu, G. (2006). Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. The Journal of Nutritional Biochemistry, 17(9), 571-588. doi: 10.1016/j.jnutbio.2005.12.001 Karimi, M., Esmaeilipour, O., Mazhari, M., & doomary, h. (2022). The effect of thyme (Thymus vulgaris) on growth performance, blood metabolites, and meat quality of broilers at high stocking density. Iranian Journal of Animal Science Research, 15(3), 351-367. doi: 10.22067/ijasr.2022.78413.1097 [In Persian] Khajali, F., & Wideman, R. (2010). Dietary arginine: metabolic, environmental, immunological and physiological interrelationships. World's Poultry Science Journal, 66(4), 751-766. doi: 10.1017/S0043933910000711 Khajavi, M., Rahimi, S., Kamali, M. A., & Zuhair, H. M. (2002). The effect of food restriction on the immune system of broiler chickens of two strains, Ross and Arian, under heat stress. M.Sc thesis of animal science, Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Iran. [In Persian] Kiahosseini, M., Hosseni, S., Mehdizadeh, S. M., Lotfolahian, H., & Dastar, B. (2014). The effect of different levels of olive pule on the performance of Ross and Arian commercial broiler hybrides. Master's thesis, Department of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources. [In Persian] Korver, D. R. (2023). Review: Current challenges in poultry nutrition, health, and welfare. Animal, 17, 100755. doi: 10.1016/j.animal.2023.100755 Lawson, M. A. (2004). The role of integrin degradation in post-mortem drip loss in pork. Meat Science, 68(4), 559-566. doi: 10.1016/j.meatsci.2004.05.019 Le Floc'h, N., Melchior, D., & Obled, C. (2004). Modifications of protein and amino acid metabolism during inflammation and immune system activation. Livestock Production Science, 87(1), 37-45. doi: 10.1016/j.livprodsci.2003.09.005 Li, C. (2017). Growth and development of two broiler strains with low protein and crystalline amino acid supplemented diets. Louisiana State University and Agricultural & Mechanical College. doi: 10.31390/gradschool_theses.4365 Li, P., Yin, Y.-L., Li, D., Kim, S. W., & Wu, G. (2007). Amino acids and immune function. British Journal of Nutrition, 98(2), 237-252. doi: 10.1017/S000711450769936X Li, X., Xiong, X., Wu, X., Liu, G., Zhou, K., & Yin, Y. (2020). Effects of stocking density on growth performance, blood parameters and immunity of growing pigs. Animal Nutrition, 6(4), 529-534. doi: 10.1016/j.aninu.2020.04.001 Lin, H., Decuypere, E., & Buyse, J. (2004). Oxidative stress induced by corticosterone administration in broiler chickens (Gallus gallus domesticus): 1. Chronic exposure. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 139(4), 737-744. doi: 10.1016/j.cbpc.2004.09.013 Lin, H., Sui, S., Jiao, H., Buyse, J., & Decuypere, E. (2006). Impaired development of broiler chickens by stress mimicked by corticosterone exposure. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 143(3), 400-405. doi: 10.1016/j.cbpa.2005.12.030 Liu, S., Tan, J., Hu, Y., Jia, X., Kogut, M. H., Yuan, J., & Zhang, H. (2019). Dietary l‐arginine supplementation influences growth performance and B‐cell secretion of immunoglobulin in broiler chickens. Journal of Animal Physiology and Animal Nutrition, 103(4), 1125-1134. doi: 10.1111/jpn.13110 Malone, G., Chaloupka, G., Merkley, J., & Littlefield, L. (1979). Evaluation of Five Commercial Broiler Crosses: 1. Grow-Out Performance. Poultry Science, 58(3), 509-515. doi: 10.3382/ps.0580509 Manafi Azar, Q., Akhavan, M. H. A., Jahangir, & Mehdi, F. (2008). Comparison growth and carcass traits of commercial broiler strains in Iran. Pajouhesh & Sazandegi 78, 88-94. [In Persian] Mardewi, N., Rukmini, N., Rejeki, I., & Astiti, N. (2019). The effect of cage density on the quality of broiler chicken meat. Journal of Physics: Conference Series, Mazzoni, M., Zampiga, M., Clavenzani, P., Lattanzio, G., Tagliavia, C., & Sirri, F. (2022). Effect of chronic heat stress on gastrointestinal histology and expression of feed intake-regulatory hormones in broiler chickens. Animal, 16(8), 100600. doi: 10.1016/j.animal.2022.100600 Merkley, J., Weinland, B., Malone, G., & Chaloupka, G. (1980). Evaluation of five commercial broiler crosses: 2. Eviscerated yield and component parts. Poultry Science, 59(8), 1755-1760. doi: 10.3382/ps.0591755 Moradi Shahrbabak, M., Zaghari, M., & Riahi, M. (2016). Comparison of performance of broiler chickens of four genetic combinations of Arian strain. Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Tehran, Iran. [In Persian] Moreira, J., Mendes, A. A., Roça, R. d. O., Garcia, E. A., Naas, I. d. A., Garcia, R. G., & Paz, I. C. L. d. A. (2004). Effect of stocking density on performance, carcass yield and meat quality in broilers of different commercial strains. Revista Brasileira de Zootecnia, 33(6), 1506-1519. Mussini, F. J. (2012). Comparative response of different broiler genotypes to dietary nutrient levels. Department of Poultry Science, University of Arkansas, Fayetteville, USA. Nasr, M. A., Alkhedaide, A. Q., Ramadan, A. A., Abd-El Salam, E. H., & Hussein, M. A. (2021). Potential impact of stocking density on growth, carcass traits, indicators of biochemical and oxidative stress and meat quality of different broiler breeds. Poultry Science, 100(11), 101442. doi: 10.1016/j.psj.2021.101442 Pas, M. T., Everts, M., & Haagsman, H. (2004). Muscle development of livestock animals: physiology, genetics and meat quality. CABI publishing. Perez-Carbajal, C., Caldwell, D., Farnell, M., Stringfellow, K., Pohl, S., Casco, G., Pro-Martinez, A., & Ruiz-Feria, C. (2010). Immune response of broiler chickens fed different levels of arginine and vitamin E to a coccidiosis vaccine and Eimeria challenge. Poultry Science, 89(9), 1870-1877. doi: 10.3382/ps.2010-00753 Prakatur, I., Miskulin, M., Pavic, M., Marjanovic, K., Blazicevic, V., Miskulin, I., & Domacinovic, M. (2019). Intestinal morphology in broiler chickens supplemented with propolis and bee pollen. Animals, 9(6), 301. doi: 10.3390/ani9060301 Puvadolpirod, S., & Thaxton, J. (2000). Model of physiological stress in chickens 1. Response parameters. Poultry Science, 79(3), 363-369. doi: 10.1093/ps/79.3.363 Saki, A., Momeni, M., Tabatabaei, M., Ahmadi, A., Rahmati, M., Matin, H. H., & Janjan, A. (2010). Effect of feeding programs on broilers Cobb and Arbor Acres plus performance. International Journal of Poultry Science, 9(8), 795-800. doi: 10.3923/ijps.2010.795.800 Samadian, F., Karimi Torshizi, M. A., & Eivakpour, A. (2023). A Comparison between Performance, Tibia Bone Characteristics and Intestinal Morphology in Ross 308 and Arian Broilers. Research on Animal Production, 14(40), 70-77. doi: 10.61186/rap.14.40.70 [In Persian] Sarker, M., Islam, M., Ahmed, S., & Alam, J. (2002). Profitability and meat yield traits of different fast growing broiler strains in Winter. Journal of Biological Science, 2, 361-363. doi: 10.3923/jbs.2002.361.363 Scanes, C. G. (2016). Biology of stress in poultry with emphasis on glucocorticoids and the heterophil to lymphocyte ratio. Poultry Science, 95(9), 2208-2215. doi: 10.3382/ps/pew137 Shakeri, M., & Le, H. H. (2022). Deleterious effects of heat stress on poultry production: Unveiling the benefits of betaine and polyphenols. Poultry, 1(3), 147-156. doi: 10.3390/poultry1030013 Shariatmadari, F., Rezaei, M. J., & Lotfolahian, H. (2005). Comparing production traits performances of commercial broiler chickens in Iran. Pajouhesh & Sazandegi, 67, 68-74. [In Persian] Smith, E., & Pesti, G. (1998). Influence of broiler strain cross and dietary protein on the performance of broilers. Poultry Science, 77, 276-281. doi: 10.1093/ps/77.2.276 Sohail, M., Hume, M., Byrd, J., Nisbet, D., Ijaz, A., Sohail, A., Shabbir, M., & Rehman, H. (2012). Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poultry Science, 91(9), 2235-2240. doi: 10.3382/ps.2012-02182 Son, J., Kim, H.-J., Hong, E.-C., & Kang, H.-K. (2022). Effects of stocking density on growth performance, antioxidant status, and meat quality of finisher broiler chickens under high temperature. Antioxidants, 11(5), 871. doi: 10.3390/antiox11050871 Song, J., Xiao, K., Ke, Y., Jiao, L., Hu, C., Diao, Q., Shi, B., & Zou, X. (2014). Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poultry Science, 93(3), 581-588. doi: 10.3382/ps.2013-03455 Srinongkote, S., Smriga, M., & Toride, Y. (2004). Diet supplied with L‐lysine and L‐arginine during chronic stress of high stock density normalizes growth of broilers. Animal Science Journal, 75(4), 339-343. doi: 10.1111/j.1740-0929.2004.00195.x Sterling, K. G., Pesti, G. M., & Bakalli, R. I. (2006). Performance of Different Broiler Genotypes Fed Diets with Varying Levels of Dietary Crude Protein and Lysine. Poultry Science, 85(6), 1045-1054. doi: 10.1093/ps/85.6.1045 Sun, L., Xu, L., Zhao, L., Dou, L., Hou, Y., Wang, C., Jin, Y., & Su, L. (2023). Dietary L-arginine supplementation influences the muscle fiber characteristics and meat quality of Mongolian sheep through the NO/AMPK/PGC-1α pathway. Food Bioscience, 52, 102446. doi: 10.1016/j.fbio.2023.102446 Tan, B., Yin, Y., Kong, X., Li, P., Li, X., Gao, H., Li, X., Huang, R., & Wu, G. (2010). L-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids, 38, 1227-1235. doi: 10.1007/s00726-009-0334-8 Tan, J., Liu, S., Guo, Y., Applegate, T. J., & Eicher, S. D. (2014). Dietary L-arginine supplementation attenuates lipopolysaccharide-induced inflammatory response in broiler chickens. British Journal of Nutrition, 111(8), 1394-1404. doi: 10.1017/S0007114513003863 Van Laack, R., Liu, C.-H., Smith, M., & Loveday, H. (2000). Characteristics of pale, soft, exudative broiler breast meat. Poultry Science, 79(7), 1057-1061. doi: 10.1093/ps/79.7.1057 Wan, X., Jiang, L., Zhong, H., Lu, Y., Zhang, L., & Wang, T. (2017). Effects of enzymatically treated Artemisia annua L. on growth performance and some blood parameters of broilers exposed to heat stress. Animal Science Journal, 88(8), 1239-1246. doi: 10.1111/asj.12766 Wang, J., & Peng, K. (2008). Developmental morphology of the small intestine of African ostrich chicks. Poultry Science, 87(12), 2629-2635. doi: 10.3382/ps.2008-00163 Wang, S., Li, C., Xu, X., & Zhou, G. (2013). Effect of fasting on energy metabolism and tenderizing enzymes in chicken breast muscle early postmortem. Meat Science, 93(4), 865-872. doi: 10.1016/j.meatsci.2012.11.053 Wideman, R., & Chapman, M. (2004). Nω-Nitro-L-Arginine Methyl Ester (L-NAME) amplifies the pulmonary hypertensive response to endotoxin in broilers. Poultry Science, 83(3), 485-494. doi: 10.1093/ps/83.3.485 Wu, L., Fang, Y., & Guo, X. (2011). Dietary L-arginine supplementation beneficially regulates body fat deposition of meat-type ducks. British Poultry Science, 52(2), 221-226. doi: 10.1080/00071668.2011.559452 Wu, X., Ruan, Z., Gao, Y., Yin, Y., Zhou, X., Wang, L., Geng, M., Hou, Y., & Wu, G. (2010). Dietary supplementation with L-arginine or N-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn-and soybean meal-based diet. Amino Acids, 39, 831-839. doi: 10.1007/s00726-010-0538-y Wu, Y.-y., Dai, Y.-j., Xiao, K., Wang, X., Wang, M.-m., Huang, Y.-y., Guo, H.-x., Li, X.-f., Jiang, G.-z., & Liu, W.-b. (2022). Effects of different dietary ratio lysine and arginine on growth, muscle fiber development and meat quality of Megalobrama amblycephala. Aquaculture Reports, 26, 101322. doi: 10.1016/j.psj.2022.102072 Yao, K., Guan, S., Li, T., Huang, R., Wu, G., Ruan, Z., & Yin, Y. (2011). Dietary L-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets. British Journal of Nutrition, 105(5), 703-709. doi: 10.1017/S000711451000365X Yazdanabadi, F. I., Moghaddam, G., Nematollahi, A., Daghighkia, H., & Sarir, H. (2020). Effect of arginine supplementation on growth performance, lipid profile, and inflammatory responses of broiler chicks challenged with coccidiosis. Preventive Veterinary Medicine, 180, 105031. doi: 10.1016/j.prevetmed.2020.105031 Youssef, S., Shaban, S., & Inas, I. I. (2015). Effect of l-arginine supplementation on productive, reproductive performance, immune response and gene expression in two local chicken strains: 1-egg production, reproduction performance and immune response. Egyptian Poultry Science Journal, 35, 573-590. Zamani, P., Zarafroz, F., & Reza Yazdi, K. (1385). Comparison of the effect of different levels of metabolic energy and crude protein in the diet on the performance of Arian broiler chickens. Agricultural Sciences and Industries, 20(2), 3-14. [In Persian] Zhang, G., Yang, Z., Zhang, Q., Yang, W., & Jiang, S. (2012). A multienzyme preparation enhances the utilization of nutrients and energy from pure corn and wheat diets in broilers. Journal of Applied Poultry Research, 21(2), 216-225. doi: 10.3382/japr.2010-00288 Zhao, J., Chen, J., Zhao, G., Zheng, M., Jiang, R., & Wen, J. (2009). Live performance, carcass composition, and blood metabolite responses to dietary nutrient density in two distinct broiler breeds of male chickens. Poultry Science, 88(12), 2575-2584. doi: 10.3382/ps.2009-00245 | ||
آمار تعداد مشاهده مقاله: 545 تعداد دریافت فایل اصل مقاله: 49 |