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 The central topic of the present article is the investigation of solutions 

of nonlinear fractional partial differential models (NFPDDEs) using the 

generalized-exponential-rational-function (GEERAF) Method. In this 

regard, the jumarie's modified-riemann-liouville (JMRL) derivative has 

been used to convert the proposed model into ordinary differential-

difference model (ODDEM). This efficient proposed method can be 

used as a replacement for generating novel types of solutions to 

NFPDDEs in Scientific issues. According to the scientific literature, 

our findings have not been published before in any other sources. 
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1. Introduction 

Fractional differential calculus is of great importance in problems in engineering, mathematics, 

and physics. In recent decades, researches have shown that these types of equations can be very 

useful and efficient by modeling various phenomena in terms of fractional derivatives. They have 

many applications in many fields such as nonlinear earthquake oscillations, quantum mechanics 

[1,2], physics and plasma physics [3,4], and light propagation. Therefore, solving fractional 

differential equations or NFPDDEs is one of the problems of the day. Several methods used to 

find exact soliton wave solutions including: Extended tanh technique [5-7], Generalized and 

Modified Kudryashov approach [8,9], Extended hyperbolic technique [10], 
𝐺′

𝐺2
-expansion approach 

[11], Double (
𝐺′

𝐺
,
1

𝐺
) -expansion technique [12], Generalized projective Riccati equation approach 

[13], and etc. [14-17]. 
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The theory of the GEERAF method was first introduced by Ghanbari et al. for nonlinear partial 

differential equations [18]. In recent years, this method has been used by scientists to solve 

various partial differential equations [19-25]. 

Sometimes, the modeling of real-world phenomena using differential-difference equations (DDEs) 

will be described and introduced. Many of the fundamental concepts of partial differential 

equations were also extended to DDEs after the introduction of Fermi's theory in the early 1960 

[26] . 

Scientists apply nonlinear lattice equations for physical model development including applications 

in electric current research along with electric and biological circuit pulse behavior [27-28]. After 

Fermi and over the years, various lattices of differential equations have been introduced, such as 

the Hybrid (Wadati) lattice, the Diederik Korteweg lattice, the Toda lattice, the Ablowitz Ladik 

lattice, and the Generalized Volterra lattice [29,30]. 

After the emergence of soliton theory, in addition to solutions to partial differential equations, 

discussions began about solutions to DDEs and FDDEs, including the Hirota's approach [31], the 

(
𝐺′

𝐺
)-expansion method [32,33], the Generalized differential transform approach [34,35], the 

Extended Riccati Sub-ODE technique [36] which are the most common methods. This paper seeks 

to explore FDDEs of the form 

𝐷𝛽
𝑡  𝑤𝑛  =  𝑄(𝑤𝑛−1,  𝑤𝑛 ,  𝑤𝑛+1),    0 <  𝛽 ≤  1  

 

where 𝑫𝜷
𝒕  represents the JMRL of order 𝜷, 𝑸 is a rational function and $ 𝒘𝒏 = 𝒘(𝒏, 𝒕) represents 

how much the nth particle has shifted from its equilibrium position . 

In the section ‘Description of the GEERAF technique ‘, we describe the basic steps of the 

GEERAF method for FDDEs. In the section ‘Procedure of Solution ‘, the linearization process of 

FDDEs and the results obtained by the method for solving an NFPDDEs are presented. The paper 

concludes with a 3D graphical representation of the results in these sections and some concluding 

remarks. 

2. 2. Preliminaries of the JMRL derivative 

In this section, we introduce The JMRL derivative. Let 𝒉: ℝ → ℝ represent a continuous function 

(but it may not be differentiable). The JMRL derivative of order 𝜷 is expressed as follows [37]: 

𝐷𝑧
𝛽
 ℎ(𝑧) =

{
 
 
 

 
 
 1

Γ(−𝛽)
 ∫(𝑧 − 𝜁)−𝛽−1

𝑡

0

 (ℎ(𝜁) − ℎ(0)) 𝑑𝜁,   𝛽 < 0,              

1

Γ(1 − 𝛽)
 
𝑑

𝑑𝑡
∫(𝑧 − 𝜁)−𝛽

𝑡

0

 (ℎ(𝜁) − ℎ(0)) 𝑑𝜁,   0 < 𝛽 < 1,

𝐷 
𝐽

𝑧
𝛽−𝑘

 𝐷𝑘ℎ(𝑧),   𝑘 ≤ 𝛽 ≤ 𝑘 + 1,   𝑘 > 1,                              

 
𝐽   

 

Some important properties of the JMRL derivative are as follows: 
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𝐷 
𝐽

𝑧
𝛽−𝑘

 𝑧𝜂 =
Γ(𝜂 + 1)

Γ(𝜂 + 1 − 𝛽)
 𝑧−𝛽+𝜂;    𝜂 > 0, 

𝐷 
𝐽

𝑧
𝛽
 (ℎ(𝑧)𝑔(𝑧)) = 𝑔(𝑧) 𝐷 

𝐽
𝑧
𝛽−𝑘

ℎ(𝑧) + ℎ(𝑧) 𝐷 
𝐽

𝑧
𝛽
𝑔(𝑧), 

𝐷 
𝐽

𝑧
𝛽
 (ℎ(𝑔(𝑧))) = ℎ𝑔

′ (𝑔(𝑧)) 𝐷 
𝐽

𝑧
𝛽
𝑔(𝑧) =  𝐷 

𝐽
𝑔
𝛽
ℎ(𝑔(𝑧))(𝑔𝑧

′)𝛽 , 

 

3. Description of the GEERAF Technique 

As mentioned, in recent years, many models have been solved using the GEERAF method. In this 

section, we briefly present an application of this technique to determine solutions to NFPDDEs. 

The general form of the NFPDDEs is as follows: 

ℙ(𝑤𝑛+𝑠1 , … , 𝑤𝑛+𝑠𝑐 , … , 𝐷𝑡
𝛽
𝑤𝑛+𝑠1 , … , 𝐷𝑡

𝛽
𝑤𝑛+𝑠𝑐 , … , 𝐷𝑡

𝛽
 𝑤𝑛+𝑠1 , … , 𝐷𝑡

𝛽
𝑤𝑛+𝑠𝑐)  =  0,    0 <  𝛽 ≤ 1. (1) 

 

Where 𝑤𝑛is the unknown function, and 𝐷 
𝐽

𝑡
𝛽
𝑤𝑛 is the JMRL derivative of order 0 <  𝛽 ≤ 1. 

Step 1. According to the following fractional complex transformation 

𝑤𝑛+𝑠𝑝(𝑡) = 𝜒𝑛+𝑠𝑝(𝜉𝑛),   𝜉𝑛 =∑𝑑𝕚

ℚ

𝕚=1

𝑛𝕚 +∑
𝑘𝕛𝑡𝕛

𝛼

Γ(1 + 𝛾)

ℕ

𝕛=1

+ 𝜁,   𝑝 = 1,2, … , 𝑐. (2) 

 

Then, Eq. (1) becomes a system of ODDEs of integer order, as shown below: 

ℙ(𝜒𝑛+𝑠1 , … , 𝜒𝑛+𝑠𝑐 , … , 𝜒𝑛+𝑠1
′ , … , 𝜒𝑛+𝑠𝑐

′ , … , 𝜒𝑛+𝑠1
(𝑟) , … , 𝜒𝑛+𝑠𝑐

(𝑟𝑛) )  =  0,    0 <  𝛽 ≤ 1. (3) 

 

Step 2. We seek solutions of Eq. (3) that can be expressed as a finite series in  Ω(𝜉𝑛) as follows: 

𝜒(𝜉𝑛) = Θ0 +∑Θ𝕚

𝕄

𝕚=1

(Ω(𝜉𝑛))
𝕚
+∑Λ𝕛

𝕄

𝕛=1

(Ω(𝜉𝑛))
−𝕛
, (4) 

 

Where 

Ω(𝜉𝑛) =
𝜃1 𝑒𝑥𝑝(𝛼1 𝜉𝑛) + 𝜃2 𝑒𝑥𝑝(𝛼2 𝜉𝑛)

𝜃3 𝑒𝑥𝑝(𝛼3 𝜉𝑛) + 𝜃4 𝑒𝑥𝑝(𝛼4 𝜉𝑛)
, (5) 

 

In the assumed structures Eq. (4) and Eq. (5), the values of the constants 𝜃𝕁 , 𝛼𝕛's (where 1 ≤ 𝕛 ≤

4), Θ0 , Θ𝕛', and Λ𝕁 's} (where 1 ≤ 𝕛 ≤ 4) are ascertained by substituting the solution Eq. (4) into 

Eq. (3). In addition, the positive number of 𝕄 can be ascertained by using balance rules . 

Step 3. Substituting Eq. (4) into Eq. (3), collecting all powers of 𝑒𝑥𝑝(𝛼𝕛 𝜉𝑛) for 𝕛 = 1,… ,4 and 

equating the coefficients to zero results in a system of nonlinear equations. 

Step 4. Eventually, solutions to Eq. (1) are acquired after solving the obtained system and inserting 

the obtained values into Eq. (4). 
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4. Procedure of solution 

We will obtain analytical solutions of the following NFPDDEs equation, given by [38] 

𝐷 
𝐽

𝑡
𝛽
 𝑤𝑛 =

𝑤𝑛−1 −𝑤𝑛+1 + 2𝑤𝑛 − 𝑤𝑛−1𝑤𝑛+1 + 2𝑤𝑛𝑤𝑛+1 − 2𝑤𝑛
2

1 + 𝑤𝑛−1 −𝑤𝑛+1
,   0 <  𝛽 ≤ 1, (6) 

 

To find new analytical solutions of Eq. (6), the following transformations in Eq. (2) are utilized, 

where ℚ = ℕ = 1, and we assume 𝑑1 = 𝑑, 𝑘1 = 𝑘 and  𝑡1 = 𝑡. we get 

𝑘𝜒𝑛
′ (1 + 𝜒𝑛−1 − 𝜒𝑛+1) − 𝜒𝑛−1 − 𝜒𝑛+1 + 2𝜒𝑛−1𝜒𝑛 + 2𝜒𝑛𝜒𝑛+1 − 2𝜒𝑛−1𝜒𝑛+1 − 2𝜒𝑛

2 = 0, (7) 

 

Then, by balancing 𝜒𝑛
2 and 𝜒𝑛

′  in Eq. (7), 𝕄 = 1. Substituting 𝕄 = 1 into Eq. (4) yields the form: 

𝜒(𝜉𝑛) = Θ0 + Θ1(Ω(𝜉𝑛)) + Λ1(Ω(𝜉𝑛))
−1
, (8) 

 

After implementing the GEERAF method, we obtain the following various solutions of Eq. (6): 

Family I. By assuming  𝜃 = [−1,1,1,1], 𝛼 = [1,−1,1, −1] in Eq. (5), 

Ω(𝜉𝑛) =
−𝑒𝜉𝑛 + 𝑒−𝜉𝑛

𝑒𝜉𝑛 + 𝑒−𝜉𝑛
=

−𝑒𝜉𝑛 + 𝑒−𝜉𝑛

2
𝑒𝜉𝑛 + 𝑒−𝜉𝑛

2

= − 𝑡𝑎𝑛ℎ(𝜉𝑛), (9) 

 

By substituting Eq. (9) into Eq. (8), the following values can be obtained 

Θ0 = Θ0, Θ1 =
1 − 𝑒8𝑑

4 + 4𝑒8𝑑
, Λ1 =

1 − 𝑒8𝑑

4 + 4𝑒8𝑑
, 𝑘 = −

1

4
𝑒−4𝑑(−1 + 𝑒8𝑑),  

 

Taking the above values and substituting them into Eq. (4) gives the following result 

𝜒(𝜉𝑛) = Θ0 +
1

2
 𝑐𝑜𝑡ℎ(2𝜉𝑛) 𝑡𝑎𝑛ℎ(4𝑑), (10) 

 

Thus, an analytical solution to Eq. (6) is obtained as follows: 

𝑤(𝑛, 𝑡) = Θ0 +
1

2
 𝑐𝑜𝑡ℎ (2(𝑑𝑛 + 𝜁) −

𝑡 𝑠𝑖𝑛ℎ(4𝑑)

Γ(1 + 𝛾)
)  𝑡𝑎𝑛ℎ(4𝑑), (11) 

 

  
 

Figure 1. 3D, contour and 2D plots of the solution w1(n, t) for Θ0 =  2.5, d =  1, γ =  4 and ζ =  0. 
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Family II. By assuming  𝜃 = [1,−1,2,0], 𝛼 = [1,−1,−1,0] in Eq. (5), 

Ω(𝜉𝑛) = 𝑐𝑜𝑠ℎ(𝜉𝑛) 𝑠𝑖𝑛ℎ(𝜉𝑛) + 𝑠𝑖𝑛ℎ(𝜉𝑛)
2, (12) 

 

By substituting Eq. (12) into Eq. (8), the following values can be obtained 

Θ0 = Θ0, Θ1 = 0, Λ1 =
1

2
 𝑡𝑎𝑛ℎ(2𝑑), 𝑘 = −𝑠𝑖𝑛ℎ(2𝑑),  

 

Taking the above values and substituting them into Eq. (4) gives the following result 

𝜒(𝜉𝑛) = Θ0 +
𝑡𝑎𝑛ℎ(2𝑑)

−1 + 𝑒2𝜉𝑛
, (13) 

 

Thus, an analytical solution to Eq. (6) is obtained as follows: 

𝑤(𝑛, 𝑡) = Θ0 +
𝑡𝑎𝑛ℎ(2𝑑)

−1 + 𝑒
2+2𝑑𝑛−

𝑡 𝑠𝑖𝑛ℎ(4𝑑)
Γ(1+𝛾)

, (14) 

 

  
 

Figure 2. 3D, contour and 2D plots of the solution 𝒘𝟐(𝒏, 𝒕) for 𝜣𝟎 = −𝟏, 𝒅 = 𝟐. 𝟒, 𝜸 = 𝟑 and ζ = 1. 

 

Family III. By assuming  𝜃 = [1,−1,2,0], 𝛼 = [1,−1,−1,0] in Eq. (5), 

Ω(𝜉𝑛) = −
2

5
𝑐𝑜𝑠ℎ(𝜉𝑛) 𝑠𝑖𝑛ℎ(𝜉𝑛) +

2 𝑠𝑖𝑛ℎ(𝜉𝑛)
2

5
, (15) 

 

By substituting Eq. (12) into Eq. (8), the following values can be obtained 

Θ0 = Θ0, Θ1 = 0, Λ1 =
1 − 4𝑒4𝑑

5 + 5𝑒4𝑑
 , 𝑘 = −

1

2
 𝑒−2𝑑(−1 + 𝑒4𝑑),  

 

Taking the above values and substituting them into Eq. (4) gives the following result 

𝜒(𝜉𝑛) = Θ0 +
𝑒2𝜉𝑛(−1 + 𝑒4𝑑)

(1 − 𝑒4𝑑)(−1 + 𝑒2𝜉𝑛)
, (16) 

 

Thus, an analytical solution to Eq. (6) is obtained as follows: 

𝑤(𝑛, 𝑡) = Θ0 +  𝑐𝑜𝑡ℎ (𝑑𝑛 + 𝜁 −
𝑡 𝑠𝑖𝑛ℎ(2𝑑)

Γ(1 + 𝛾)
)  𝑡𝑎𝑛ℎ(2𝑑), (17) 
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Figure 3. 3D, contour and 2D plots of the solution 𝒘𝟑(𝒏, 𝒕) for 𝜣𝟎  =  −𝟏, 𝒅 =  𝟐. 𝟒, 𝜸 =  𝟑 and 𝜻 =  𝟏. 

 

Family IV. By assuming  𝜃 = [−3,−1,1,1], 𝛼 = [1,−1,1, −1] in Eq. (5), 

Ω(𝜉𝑛) = −2 − 𝑡𝑎𝑛ℎ(𝜉𝑛), (18) 

 

By substituting Eq. (18) into Eq. (8), the following values can be obtained 

Θ0 = Θ0, Θ1 = 0, Λ1 =
3

2
 𝑡𝑎𝑛ℎ(2𝑑), 𝑘 = −2 𝑐𝑜𝑠ℎ(𝑑)𝑠𝑖𝑛ℎ(2𝑑),  

 

Taking the above values and substituting them into Eq. (4) gives the following result 

𝜒(𝜉𝑛) = Θ0 +
3(1 + 𝑒2𝜉𝑛)𝑡𝑎𝑛ℎ(2𝑑)

2 + 6𝑒2𝜉𝑛
, (19) 

 

Thus, an analytical solution to Eq. (6) is obtained as follows: 

𝑤(𝑛, 𝑡) = Θ0 +
𝑒2(𝑑𝑛+𝜁)(−1 + 𝑒4𝑑)

(1 + 𝑒4𝑑)𝑒
2(𝑑𝑛+𝜁)−

𝑡 𝑠𝑖𝑛ℎ(22𝑑)
Γ(1+𝛾)

, (20) 

 

  
 

Figure 4. 3D, contour and 2D plots of the solution 𝒘𝟒(𝒏, 𝒕) for 𝜣𝟎  =  𝟐, 𝒅 =  𝟏, 𝜸 =  𝟑 and 𝜻 =  𝟐. 𝟓. 

 

Family V. By assuming  𝜃 = [2 + i, 2 − i, 1,1], 𝛼 = [−i, i, −i, i] in Eq. (5), 

Ω(𝜉𝑛) = 2 + 𝑡𝑎𝑛(𝜉𝑛), (21) 

 

By substituting Eq. (21) into Eq. (8), the following values can be obtained 
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Θ0 = Θ0, Θ1 = 0, Λ1 = −
5𝑖 (−1 + 𝑒4𝑖𝑑)

2(1 + 𝑒4𝑖𝑑)
, 𝑘 =

1

2
 𝑖 𝑒−2𝑖𝑑 (−1 + 𝑒4𝑖𝑑),  

 

Taking the above values and substituting them into Eq. (4) gives the following result 

𝜒(𝜉𝑛) = Θ0 +
5 𝑐𝑜𝑠(𝜉𝑛)𝑡𝑎𝑛(2𝑑)

2 (2𝑐𝑜𝑠(𝜉𝑛) + 𝑠𝑖𝑛(𝜉𝑛))
, (22) 

 

Thus, an analytical solution to Eq. (6) is obtained as follows: 

𝑤(𝑛, 𝑡) = Θ0 +
𝑒
2(𝑑𝑛+𝜁)+

𝑖 𝑒−2𝑖𝑑(−1+𝑒4𝑖𝑑) 𝑡

Γ(1+𝛾)  (−1 + 𝑒4𝑑)

(1 + 𝑒4𝑑) (−1 + 𝑒
2𝑑𝑛+2𝜁+

𝑖 𝑒−2𝑖𝑑(−1+𝑒4𝑖𝑑) 𝑡

Γ(1+𝛾) )

, (23) 

 

  
 

Figure 5. 3D, contour and 2D plots of the solution 𝒘𝟓(𝒏, 𝒕) for 𝜣𝟎 =  𝟖, 𝒅 =  𝟐, 𝜸 =  𝟒 and 𝜻 =  𝟏. 

 

Family VI. By assuming  𝜃 = [i, −i, 1,1], 𝛼 = [−i, i, −i, i] in Eq. (5), 

Ω(𝜉𝑛) = 𝑡𝑎𝑛(𝜉𝑛), (24) 

 

By substituting Eq. (24) into Eq. (8), the following values can be obtained 

Θ0 = Θ0, Θ1 =
𝑖 (−1 + 𝑒2𝑖𝑑)(1 + 𝑒2𝑖𝑑 + 𝑒4𝑖𝑑)2

4(1 + 3𝑒2𝑖𝑑 + 3𝑒8𝑖𝑑 + 𝑒10𝑖𝑑)
, Λ1 = −

𝑖 (−1 + 𝑒2𝑖𝑑)(1 + 𝑒2𝑖𝑑 + 𝑒4𝑖𝑑)2

4(1 + 3𝑒2𝑖𝑑 + 3𝑒8𝑖𝑑 + 𝑒10𝑖𝑑)
,

𝑘 =
1

4
 𝑖 𝑒−4 𝑖𝑑  (−1 + 𝑒8𝑖𝑑), 

 

 

Taking the above values and substituting them into Eq. (4) gives the following result 

𝜒(𝜉𝑛) = Θ0 +
(1 + 2 𝑐𝑜𝑠(2𝑑))

2
 𝑐𝑜𝑡(𝜉𝑛) 𝑠𝑖𝑛(2𝑑)

2 (3  𝑐𝑜𝑠(3𝑑) +  𝑐𝑜𝑠(5𝑑))
, (25) 

 

Thus, an analytical solution to Eq. (6) is obtained as follows: 

𝑤(𝑛, 𝑡) = Θ0 +
1

2
 (1 + 𝑐𝑜𝑡 (𝑑𝑛 + 𝜁 −

𝑡 𝑠𝑖𝑛(4𝑑)

2Γ(1 + 𝛾)
))  𝑡𝑎𝑛(2𝑑), (26) 
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Figure 6. 3D, contour and 2D plots of the solution 𝒘𝟔(𝒏, 𝒕) for 𝜣𝟎 =  𝟏, 𝒅 =  𝟐. 𝟓, 𝜸 =  𝟔 and 𝜻 =  𝟐. 

 

5. Conclusion 

The advances that have been made in various analytical methods are due to years of effort by 

scientists. In this paper, we analyze and investigate NFPDDEs using the GEERAF method. It is 

worth noting that the basic idea of this technique is to convert FDDEs into ODEs. The notable 

point in this method is the search for soliton-type solutions of ODEs derived from the given 

FDDEs. This method is more general than other methods because it produces a variety of exact 

soliton solutions, such as rotations, gaps, compactons, and so on. In addition, graphical diagrams 

related to the solutions presented in the article are provided, and these diagrams provide 

significant assistance in predicting the dynamic behaviors of the phenomenon under study. The 

results obtained can be very useful in advancements related to quantum mechanics, physics, and 

beyond. 
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