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 This paper introduces a novel approach for solving uncertain linear 

equations systems through Monte Carlo simulation. The study delves into 

the uncertainty distributions of variables within a linear equation system, 

establishing a fresh concept for solving such systems. The proposed 

method utilizes both inverse uncertainty distribution techniques and 

Monte Carlo simulation. Through examples, the paper illustrates the 

efficacy of this approach in effectively solving linear equation systems. 
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1. Introduction 

Linear equation systems are fundamental to many fields, including engineering, physics, finance, 

and social sciences. However, real-world problems often involve uncertainties in coefficients and 

parameters, making deterministic approaches insufficient. Traditional methods, such as fuzzy logic 

and probabilistic models, attempt to handle these uncertainties but face challenges in computational 

feasibility and scalability [1]. 

Uncertainty theory, first introduced by Liu [2], provides a mathematical foundation for dealing with 

imprecise data. One established approach is the inverse uncertainty distribution method [3], which 

transforms uncertain variables into deterministic equivalents. However, this method suffers from 

computational inefficiency when handling high-dimensional systems. 

This paper proposes an alternative approach: Monte Carlo simulation. Unlike the inverse uncertainty 

distribution method, Monte Carlo does not require matrix inversion, making it more suitable for 

large-scale problems [4]. Our study contributes by developing a Monte Carlo-based framework for 

solving uncertain linear equation systems and validating the approach with numerical examples. 
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The following sections explore the theoretical foundation, implementation details, and comparative 

analysis of the proposed method 

2. Basic definitions and concepts 

Several approaches have been proposed to solve uncertain linear systems. The most common 

include: 

1. Fuzzy Logic Methods – These represent uncertainty using fuzzy sets and membership 

functions (Zadeh, 1965). However, they lack a rigorous probability interpretation and can 

yield inconsistent results [5]. 

2. Probabilistic Approaches – Bayesian inference and stochastic methods treat uncertainty as 

random variables [6]. While powerful, they require precise prior distributions, which may not 

always be available. 

3. Inverse Uncertainty Distribution Method – Proposed by Li & Zhu [3], this approach 

transforms uncertain variables into deterministic equivalents. However, matrix inversion can 

become computationally infeasible in high-dimensional problems. 

Monte Carlo simulation, widely used in risk analysis and statistical modeling, offers a scalable 

alternative. It approximates solutions by generating random samples from the uncertainty 

distributions and estimating the system behavior. This paper extends Monte Carlo methods to 

uncertain linear equation systems, demonstrating their efficiency and accuracy compared to the 

inverse uncertainty distribution method 

Suppose we have a measurable space (Γ, ℒ). The initial step in uncertainty theory involves renaming 

the measurable set Λ as an event. It is important to note that every member Λ in ℒ is a measurable 

set. The second task is to define an uncertain measure ℳ on the 𝜎-algebra. In this case, the value 

ℳ{Λ} assigned to each event Λ represents the level of certainty that it will occur. It is evident that 

the assignment of certainty levels is not arbitrary, and the uncertain measure ℳ must adhere to 

specific mathematical properties. To effectively handle degrees of belief, Liu proposed the 

following four axioms [7]: 

Axiom 1 (Normality Axiom): For any universal set Γ, ℳ{Γ} = 1. 

Axiom 2 (Duality Axiom): For any event Λ, ℳ{Λ} +ℳ{Λ𝑐} = 1. 

Axiom 3 (Subadditivity Axiom): For every countable sequence of events Λ1, Λ2, . .., we have 

 ℳ{⋃∞𝑖=1 Λ𝑖} ≤ ∑
∞
𝑖=1 ℳ{Λ𝑖} 

Axiom 4 (Product Axiom): Let (Γ𝑘,ℳ𝑘, ℒ𝑘) be uncertainty spaces for 𝑘 = 1,2, . ... The 

uncertain measure ℳ is an uncertain measure that satisfies 

 ℳ{∏∞
𝑘=1 Λ𝑘} = ∧

𝑘=1

∞
ℳ𝑘{Λ𝑘} 

Definition 1 An uncertain variable ξ is considered normal when it exhibits a normal uncertainty 

distribution 
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 Φ(𝑥) = (1 + exp (
𝜋(𝑒−𝑥)

√3𝜎
))

−1

,      𝑥 ∈ ℜ 

 denoted by 𝒩(𝑒, 𝜎) where 𝑒 and 𝜎 are real numbers with 𝜎 > 0. 

Definition 2 The inverse uncertaint distribution for a normal uncertain variable 𝒩(e, σ) can be 

expressed as 

 Φ−1(𝛼) = 𝑒 +
𝜎√3

𝜋
ln

𝛼

1−𝛼
 

Definition 3 The uncertain variables ξ1, ξ2, . . . , ξn are considered independent [1], if for any Borel 

sets B1, B2, . . . , Bn of real numbers  

 ℳ{⋂𝑛𝑖=1 (𝜉𝑖 ∈ 𝐵𝑖)} = ∧
𝑖=1

𝑛
ℳ{𝜉𝑖 ∈ 𝐵𝑖} 

Theorem 1 Suppose ξ1, ξ2, . . . , ξn be independent uncertain variables with regular uncertainty 

distribution Φ1, Φ2, . . . , Φn, respectively. If f is a continuous and strictly increasing function, then  

 𝜉 = 𝑓(𝜉1, 𝜉2, . . . , 𝜉𝑛) 

 has an inverse uncertainty distribution  

 Ψ−1(𝛼) = 𝑓(Φ1
−1(𝛼),Φ2

−1(𝛼), . . . , Φ𝑛
−1(𝛼)). 

For proof, see [8]. 

Definition 4 Let X = (X1, X2, . . . , Xn) be a random vector generated from the cumulative distribution 

function FX(x). If X = X1, X2, . . . , Xn variables are independent, the combined density function will 

be as follows 

 𝑓𝑋1,𝑋2,...,𝑋𝑛(𝑥1, 𝑥2, . . . , 𝑥𝑛) = ∏𝑛
𝑖=1 𝑓𝑖(𝑥𝑖) 

where 𝑓𝑖(𝑥𝑖) is equal to the marginal probability density function of 𝑋𝑖. 

The cumulative distribution function 𝐹𝑋(𝑥) can be used to generate the random vector 𝑋 =

(𝑋1, 𝑋2, . . . , 𝑋𝑛) easily, the inverse transformation method can be used separately for each of the 

variables. 

 𝑋𝑖 = 𝐹𝑖
−1(𝑈𝑖), 𝑋 ∈ ℛ 

Example 1 We want to simulate the uncertain variable X ∼ 𝒩(e, σ). Where e and σ are real 

numbers and σ > 0. We know its uncertainty distribution as 

 Φ(𝑥) = (1 + exp (
𝜋(𝑒−𝑥)

√3𝜎
))

−1

,      𝑥 ∈ ℜ 

and its inverse uncertainty distribution is 

 Φ−1(𝛼) = 𝑒 +
𝜎√3

𝜋
ln

𝛼

1−𝛼
 

 herefore, we generate 𝛼 from 𝑢(0,1) andplace it in the inverse normal uncertainty distribution.In 

this way, this has simulated 𝑋 ∼ 𝒩(𝑢, 𝜎). 
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3. Uncertain linear equations system 

An uncertain linear equation system can be expressed as: 

𝑨𝑥 = 𝜉, 

where 𝐀 is a known n × n coefficient matrix, x is the vector of unknown uncertain variables as x =

(x1, x2, . . . , xn)
t and ξ is the known uncertain vector with a probability distribution. ξ =

(ξ1, ξ2, . . . , ξn)
t [3].  

 

{
 
 

 
 
𝑎11𝑥1 + 𝑎12𝑥2+. . . +𝑎1𝑛𝑥𝑛 = 𝜉1
𝑎21𝑥1 + 𝑎22𝑥2+. . . +𝑎2𝑛𝑥𝑛 = 𝜉2
⋮
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2+. . . +𝑎𝑛𝑛𝑥𝑛 = 𝜉𝑛

 (1) 

 There are 𝑛 equations and 𝑛 unknowns in this equations system. 

Give 𝜉1, 𝜉2, . . . , 𝜉𝑛 a set of uncertain variables with regular uncertainty distributions 𝜓1, 𝜓2, . . . , 𝜓𝑛, 

respectively. Lets assume 𝑥1, 𝑥2, . . . , 𝑥𝑛 are independent uncertain variables with regular uncertainty 

distributions 𝜙1, 𝜙2, . . . , 𝜙𝑛 respectively. Then we will define a concept of a solution to an uncertain 

linear system (1).  

Definition 5 An uncertain vector (x1, x2, . . . , xn)
t is called a solution of the uncertain linear system 

(1) in distribution if for any α ∈ (0,1), we have  

 

{
 
 

 
 
𝑎11Φ1

−1(𝜀11) + 𝑎12Φ2
−1(𝜀12)+. . . +𝑎1𝑛Φ𝑛

−1(𝜀1𝑛) = Ψ1
−1(𝛼)

𝑎21Φ1
−1(𝜀21) + 𝑎22Φ2

−1(𝜀22)+. . . +𝑎2𝑛Φ𝑛
−1(𝜀2𝑛) = Ψ2

−1(𝛼)
⋮
𝑎𝑛1Φ1

−1(𝜀𝑛1) + 𝑎𝑛2Φ2
−1(𝜀𝑛2)+. . . +𝑎𝑛𝑛Φ𝑛

−1(𝜀𝑛𝑛) = Ψ𝑛
−1(𝛼)

 (2) 

 where  

 𝜀𝑖𝑗 = {

𝛼, 𝑖𝑓  𝑎𝑖𝑗 ≥ 0

1 − 𝛼, 𝑖𝑓  𝑎𝑖𝑗 < 0 (3) 

 In general, the uncertainty distributions 𝜙1, 𝜙2, . . . , 𝜙𝑛 of the solutions (𝑥1, 𝑥2, . . . , 𝑥𝑛); in (1) with 

uncertain distributions of 𝜉1, 𝜉2, . . . , 𝜉𝑛 are related. In other words, 𝜉1, 𝜉2, . . . , 𝜉𝑛 are normal uncertain 

variables. 

3.1. Solving the uncertain linear equations system by the inverse uncertain distribution 

method 

Let 𝜉 ∼ 𝒩(𝑒𝑖, 𝜎𝑖), 1 ≤ 𝑖 ≤ 𝑛, where 𝜎𝑖 are larger than zero. 

Theorem 2 Suppose that xi ∼ 𝒩(ui, vi), 1 ≤ i ≤ n. Then (2) is equal to 

 𝐀𝐮 = 𝐛𝑒 (4) 

and  
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 𝐀1𝐯 = 𝐛𝜎 (5) 

 where  

 𝐀 = (𝑎𝑖𝑗)𝑛×𝑛, 𝐮 =
(𝑢1, 𝑢2, . . . , 𝑢𝑛)

𝑡, 𝐛𝑒 = (𝑒1, 𝑒2, . . . , 𝑒𝑛)
𝑡 

 𝐀1 = (|𝑎𝑖𝑗|)𝑛×𝑛, 𝐯 =
(𝑣1, 𝑣2, . . . , 𝑣𝑛)

𝑡, 𝐛𝜎 = (𝜎1, 𝜎2, . . . , 𝜎𝑛)
𝑡 

Theorem 3 Suppose that xi ∼ 𝒩(ui, vi), 1 ≤ i ≤ n. If A and A1 are non-singular matrices. So 

 (

𝑢1
𝑢2
⋮
𝑢𝑛

) = 𝐀−1(

𝑒1
𝑒2
⋮
𝑒𝑛

) ,(

𝑣1
𝑣2
⋮
𝑣𝑛

) = 𝐀1
−1

(

 
 

𝜎1
𝜎2
⋮
𝜎𝑛
)

 
 

 (6) 

where in 𝐀 = (𝑎𝑖𝑗)𝑛×𝑛 and 𝐀1 = (|𝑎𝑖𝑗|)𝑛×𝑛. 

Example 2 Consider the uncertain linear equations system 

 {
𝑥1 + 2𝑥2 = 𝜉1
𝑥1 − 𝑥2 = 𝜉2  

Where in 𝜉1 ∼ 𝒩(1,6) , 𝜉2 ∼ 𝒩(2,4). Suppose 𝑥1 ∼ 𝒩(𝑢1, 𝑣1) and 𝑥2 ∼ 𝒩(𝑢2, 𝑣2).  

The coefficient matrices are as follows: 

 𝐀 = (
1 2
1 −1) , 𝐀1 = (

1 2
1 1 ) 

From the above theorem, we can get 

 (

𝑣1
𝑣2) = (

−1 2
1 −1)(

6
4 ) = (

2
2 ) 

𝑣1 > 0 , 𝑣2 > 0. Then 

 (

𝑢1
𝑢2) = (

1

3

2

3
1

3

−1

3
)(

1
2 ) = (

5

3
−1

3

) 

Therefore, 𝑥1 ∼ 𝒩(
5

3
, 2) and 𝑥2 ∼ 𝒩(

−1

3
, 2) are the solutions of the uncertain linear equations 

system. 

Traditional methods solve for 𝑥 using the inverse uncertainty distribution. However, as matrix 

dimensions increase, inversion becomes computationally expensive. This motivates the use of 

Monte Carlo simulation, which estimates 𝑥 by repeatedly sampling from the probability 

distributions of 𝜉 and solving the system numerically. The next section outlines our proposed 

simulation approach. 
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4. Solving uncertain linear equation system by Monte Carlo simulation method 

Li and Zhu’s approach demonstrates a decrease in efficiency as the dimension of the matrix 

increases. Additionally, during the process of solving, it is possible to encounter an invertible system 

of equations. However, the Monte Carlo simulation method does not suffer from these issues. 

In this paper, we propose a novel technique for solving systems of linear uncertain equations by 

utilizing the Monte Carlo simulation. We consider the uncertain equations as 𝐴𝑥 = 𝜉, where 𝐴 

represents a square matrix with known real dimensions, 𝑥 denotes an unknown uncertain vector, 

and 𝜉 represents a known uncertain vector. The objective is to determine the uncertain distributions 

for the variables in vector 𝑥. Our innovation lies in simulating the values of 𝜉 using the Monte Carlo 

method. Once the values of 𝜉 are determined, we solve the uncertain linear equations system 𝐴𝑥 =

𝜉 using conventional numerical calculation methods. This simulation process is repeated 𝑁 times, 

and the parameters of the uncertain variables in vector 𝑥 are estimated using the values obtained 

from the simulation. 

Unlike the inverse uncertainty distribution method, Monte Carlo generates multiple random samples 

from ξ, solving the system for each realization and estimating the distribution of 𝑥. The process 

follows these steps:  

            1. Assume 𝜉 ∼ 𝒩(𝑒𝑖, 𝜎𝑖). Input 𝑒𝑖, 𝜎𝑖, where 𝑖 = 1,2, . . . , 𝑛.  

2. Input the coefficient matrix 𝐴.  

3. Simulate 𝛼𝑖, where 𝑖 = 1,2, . . . , 𝑛, from a uniform distribution on the interval (0,1).  

4. Calculate 𝜉𝑖, where 𝑖 = 1,2, . . . , 𝑛, using the inverse normal uncertainty distribution.  

5. Compute 𝑥𝑡 = 𝐴\𝜉𝑖, where 𝑡 = 1,2, . . . , 𝑛.  

6. Repeat steps 3, 4, and 5 for 𝑖 = 1, . . . ,100000.  

7. Return the mean of 𝑥𝑡, where 𝑡 = 1,2, . . . ,100000. 

These steps outline the Monte Carlo algorithm for solving uncertain linear equations systems, which 

effectively addresses the limitations of Li and Zhu’s method. 

5. Numerical application of the solution of uncertain linear equations system by Monte 

Carlo method 

To show the effectiveness of the presented method, examples have been examined and then we 

check in terms of mean and squared variance with the method of inverse uncertainty distribution. 

Example 3  Consider the uncertain linear equations system 

 {
𝑥1 + 2𝑥2 = 𝜉1
𝑥1 − 𝑥2 = 𝜉2  

where 𝜉1 ∼ 𝒩(1,6) , 𝜉2 ∼ 𝒩(2,4). Suppose 𝑥1 ∼ 𝒩(𝑢1, 𝑣1) and 𝑥2 ∼ 𝒩(𝑢2, 𝑣2).  
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In solving by the inverse uncertainty distribution method, 𝑥1 = 𝒩(
5

3
, 1) and 𝑥2 = 𝒩(−

1

3
, 2) are 

obtained. By utilizing the Monte Carlo method, we have successfully resolved this system of 

uncertain equations. The simulation results have been presented in Table 1. These findings provide 

evidence of the Monte Carlo method’s ability to estimate the parameters of a normal uncertainty 

distribution. In the subsequent sections, we will apply the proposed Monte Carlo algorithm to solve 

a practical example introduced in [3]. 

Table 1. Comparison of the solutions of the uncertain linear equation system of the simulation method and the inverse 

uncertainty distribution method 

inverse uncertainty 
distribution 

simulation 
N=10000 

simulation 
N=100000 

𝑥1 ∼ 𝒩(1.66667,2)   𝑥1
⋆ ∼ 𝒩(1.6716,2.15555)   𝑥1

⋆ ∼ 𝒩(1.6650,2.16054)  
𝑥2 ∼ 𝒩(−0.33333,2)   𝑥2

⋆ ∼ 𝒩(−0.3529,1.9201)   𝑥2
⋆ ∼ 𝒩(−0.3319,1.9469)  

  
Example 4  

A healthy diet is an important part of a healthy lifestyle in society. A proper diet helps to consume 

enough nutrients and avoid eating exces nutrients. Regultanously, the consumption of different 

nutrients for people is not very accurate. Experts suggest that people consume about 100 grams or 

approximately 100 ml [3]. These values are categorized as uncertain variables and can be 

represented by various uncertain distributions. These quantities are described using normal 

uncertain distributions. The example related to diet, based on the suggestions of nutrition experts, 

at a suitable time, the amount of daily consumption of calcium, vitamin 𝐶, and phosphor by a human 

being is approximately 1000, 850, and 700 mg, respectively. The diet of goat’s milk, jujube, and 

beef may contain these elements. The relationships between elements (calcium, vitamin 𝐶 and 

phosphor) and nutrients (goat’s milk, jujube and beef) are shown in Table 2. 

Table 2. Nutrition diet relations 

  Nutrients    Nutrient content per gram of food(mg)    Demands of nutrients (mg) 

2-4 Goat’s milk Jujube Beef  

Calcium 1.5 0.4  𝜉1 

Vitamin 𝐶 0.3 1.3  𝜉2 

Phosphor  0.2 1.5 𝜉3 

  

Let 𝜉𝑖 be uncertainty orders for the 𝑖th nutrient elements, 𝑖 = 1,2,3 respectively, where 𝜉1 ∼

𝒩(1000,50), 𝜉2 ∼ 𝒩(850,40) and 𝜉3 ∼ 𝒩(700,30). 

Let 𝑥1, 𝑥2 and 𝑥3 be the diet amount of Goat’s milk, Jujube and Beef, respectively. So according to 

the Table 2, we have the following uncertain linear system 

 {

1.5𝑥1 + 0.4𝑥2 = 𝜉1
0.3𝑥1 + 1.3𝑥2 = 𝜉2
0.2𝑥2 + 1.5𝑥3 = 𝜉3

 (7) 

The solution obtained from the inverse uncertainty distribution method in [3] are 𝑥1 ∼

𝒩(524.6,26.8), 𝑥2 ∼ 𝒩(532.8,24.6) and 𝑥3 ∼ 𝒩(395.6,16.7). Now we examine the problem by 

Monte Carlo simulation up to 100000 repeat. 
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The variables 𝑥1, 𝑥2 and 𝑥3 from the Monte Carlo simulation method are denoted by 𝑥1
⋆, 𝑥2

⋆ and 𝑥3
⋆. 

 

Table 3. Comparison of the solutions of the uncertain linear equation system from the Monte Carlo simulation method 

and the inverse uncertainty distribution method 

inverse uncertainty distribution 
Simulation 

N=10000 

Simulation 

𝑁 = 100000 

𝑥1 ∼ 𝒩(524.6,26.8) 𝑥1
⋆ ∼ 𝒩(524.7769,29.781) 𝑥1

⋆ ∼ 𝒩(524.5562,29.5468) 

𝑥2 ∼ 𝒩(532.8,24.6) 𝑥2
⋆ ∼ 𝒩(533.2285,28.0767) 𝑥2

⋆ ∼ 𝒩(532.80647,28.1952) 

𝑥3 ∼ 𝒩(395.6,16.7) 𝑥1
⋆ ∼ 𝒩(395.8296,19.4585) 𝑥1

⋆ ∼ 𝒩(395.6851,19.7432) 

  

The provided example effectively showcases the capability of the proposed methodology in 

successfully determining the parameters of the normal uncertainty distribution. The inverse 

uncertain distribution method is based on linear algebra calculations. However, as the dimension of 

the coefficients matrix increases, there is a chance that the matrix of coefficients may not be 

invertible, thus impeding the resolution of the system of uncertain equations. In contrast, the Monte 

Carlo method is not reliant on the invertibility of the matrix of coefficients and continues to operate 

efficiently as the dimension of the matrix grows. 

6. Conclusions 

In this paper, we investigated the uncertain linear equations system model, where A is a clear matrix 

and ξ is an uncertain vector. Solutions were presented using the methods of inverse uncertainty 

distribution and Monte Carlo simulation in MATLAB. Simulating x values using inverse 

uncertainty distributions offers several features and advantages. The inverse uncertainty distribution 

method is well-suited for low-dimensional linear equation systems; however, as the system's 

dimension increases and the coefficient matrix A becomes invertible, this method may encounter 

limitations. Additionally, in high dimensions and with repeated computations, the inverse 

uncertainty distribution method can lead to computational challenges and time constraints. 

Therefore, the Monte Carlo simulation method emerges as a suitable alternative for solving 

uncertain linear equations systems. It provides a fast estimation of the solution, saving 

computational effort and time, particularly when dealing with high-dimensional problems. Monte 

Carlo simulation provides an efficient and scalable approach for solving uncertain linear equations, 

outperforming traditional methods in high-dimensional settings. Future research could explore its 

extension to nonlinear uncertain systems, improve computational performance, and apply the 

method to real-world engineering and financial problems. 
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