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Abstract. Stable random vectors are characterized by their characteristic functions. The multivariate
stable density and distribution functions generally do not have an analytic form. A few numerical
methods have been developed to compute density functions of parametric stable random vectors.
However, they have some limitations in terms of the range of the tail index. In this work, via the
inversion formula, we present a new analytical representation of the density function of a bivariate
isotropic stable random vector. We show that the analytical representation can be reduced to a closed
form at the origin.
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1 Introduction

There are a few assumptions in interpreting risk management or portfolio optimization in financial
data via mathematical modeling. The heavy-tail distribution is one of the most critical model-fitting
assumptions [9]. Heavy tail distributions play important roles in the modeling extreme events in
finance and risk management. They are crucial for capturing the empirical regularities of return
distributions, particularly for effective assessments of the tail risk and modeling of extreme events
in risk management. They help simulate portfolio values and assess risk, especially for assets with
skewed and heavy-tailed returns [3].

Stable random vectors are heavy-tailed distributions and exhibit chaotic behavior [4, 5]. Their
main limitation is the lack of a closed-form distribution and density functions.

To generalize the central limit theorem, stable random variables and vectors were characterized
through their characteristic functions by Paul Lévy in 1920 and Feldheim in 1937 [8]. The character-
istic function of an α-stable random vector is determined by a location vector and a spectral measure
[8].
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Byczkowski et al. [2] introduced an approximation for the numerical computation of the densities
of stable random vectors. Nolan and Balram [7] presented the necessary steps to calculate multivariate
stable densities by numerically inverting the characteristic function. They proposed a program to
calculate two-dimensional stable densities that uses a recent adaptive quadrature routine.

Zolotarev [10] introduces an integral form for the density function of isotropic stable vectors. The
density function of a bivariate isotropic symmetric stable X is given by:

fX(x1,x2) =


1

2π

1√
x2

1+x2
2

fR(
√

x2
1 + x2

2) if (x1,x2) 6= (0,0)

Γ(2/α)
α2πγ2 if (x1,x2) = (0,0)

(1)
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fR(r) =

∫
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0
rtJ0(rt)e−γα

0 tα

dt

, with stability index α ∈ (0,2], and scale parameter γ > 0, and
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∞

∑
m=0

(−1)m

(m!)2

( s
2

)2m
,

is the Bessel function of the first kind of order zero. A few integral form for isotropic stable vector
density is introduced in [6].

The R, Mathematica, Python, and MATLAB packages compute stable random variables’ density,
distribution, and quantile functions. The only package that can compute a multivariate stable density
function is available on robustanalysis.com. However, it is limited to a tail index between 0.8
and 2.

In this work, we present an analytical representation of the density functions of bivariate isotropic
stable. One can calculate the exact convolution, reliability, or regression of isotropic stable distribu-
tions or check the robustness of bivariate models.

In the next section, we drive the analytical representation of the symmetric bivariate isotropic sta-
ble density function. Section 3 compares the calculation method of bivariate isotropic stable density.
The paper concluded in Section 5. The Appendix contains sample codes of Section 3.

2 Bivariate isotropic stable density function

The characteristic function of a two dimensional isotropic symmetric stable random vector X =
(X1,X2)

ᵀ has the following form [8]:

φ(u) = E exp(i < u,X >) = exp(−γ
α |u|α) = exp

(
−γ

α(u2
1 +u2

2)
α

2
)
, (2)

where u = (u1,u2) ∈ R2.

Theorem 1. Suppose X = (X1,X2)
ᵀ has an isotropic characteristic function (2) with α ∈ (0,2], then

the analytical representation and closed form of the density function are as follows:
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fX(x1,x2) =
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where B is a beta function and B(r,s) = Γ(r)Γ(s)
Γ(r+s) , for r > 0 and s > 0.

Proof. Part 1: (x1,x2) 6= (0,0).
Using the inversion formula in [1], for the isotropic characteristic function (2), we have:
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Considering the Taylor expansion of cos(ux) as follows
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Since the factorial term (2N +2)! dominates both the polynomial growth of (ux)2N+2 and the expo-
nential decay presented in the integrand, the factorial growth in the denominator primarily controls
the error terms. This dominance leads to rapid convergence. Consequently, for N tends to infinity, we
have

R1→ 0 and R2→ 0. (8)

Using (8), the equation (7) reduces to:
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By considering u1 = r cos(θ), u2 = r sin(θ) and converting the integral part of (9) to polar coordinates
we have ∫ 2π

0
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Replacing (12) in (11) gives
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To solve the integral part of (13), we use the symmetry properties of trigonometric functions as
follows ∫ 2π
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where B is the Beta function. By substituting (16) in (15)∫
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and (15) in (14) we have ∫ 2π

0
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Finally, by replacing (17) in (13), we have (3), and the proof of part 1 is complete.

Part 2: (x1,x2) = (0,0).
By replacing (x1,x2) = (0,0) in (4), we have

fX (x1,x2) =
1

(2π)2

∫
∞

−∞

∫
∞

−∞

e−γα(u2
1+u2

2)
α
2

du1du2, (18)

using u1 = r cos(θ), u2 = r sin(θ) and transforming the (18) to polar coordinates, we have
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r = t1/α and dr =
1
α

t
1
α
−1dt,

it follows from (19) that
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and the proof of Part 2 is complete.

Remark 1. The density function in (3) at the origin
(
(x1,x2) = (0,0)

)
reduces to the bivariate

isotropic density function introduced in [6].
Figure 1 presents contour plots of the bivariate isotropic symmetric stable density function for

four distinct parameter sets. The axes labeled x1 and x2, represent the respective variables of the bi-
variate system. Varying shades within these plots indicate density levels, with darker shades denoting
higher densities. These plots effectively compare the behaviors of the density functions under stabil-
ity indices α = 0.5,0.7,1 and 1.7, alongside a scale parameter γ = 1, highlighting notable changes in
density concentration around the origin. Table 3 in the next section reports the density value of a few
points (x1,x2).

3 Computing density

The analytic density function for bivariate isotropic symmetric Cauchy is calculated, e.g., see [8]:

fX (x1,x2) =
γ

2π
(
x2

1 + x2
2 + γ2

)3/2 , −∞ < x1,x2 < ∞.
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Figure 1: Contour graphs of bivariate isotropic symmetric stable density with γ = 1. Top left: α = 0.5, top
right: α = 0.7, bottom left: α = 1 and bottom right: α = 1.7.

We use Robust Analysis’s package version 5.3 to compute the density function in R. We use the
inversion formula in (4) to see the accuracy. Table 1 presents the computation results. We see that all
the methods have the same accuracy.

Table 1: Comparing bivariate isotropic symmetric stable density function approximations for α = 1.

α = 1, γ=1

x= (x1,x2) (-1,-1) (0,1) (1,0) (1,1) (1,2) (2,1)
Exact 0.030629 0.056270 0.056270 0.030629 0.010829 0.010829
Nolan 0.030629 0.056270 0.056270 0.030629 0.010829 0.010829

Inversion formula 0.030629 0.056270 0.056270 0.030629 0.010829 0.010829

In Table 2, we increase the tail index to α=1.3 and compute the following densities. The exact value
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of the density function is not available. We use Theorem 1 to compute the density function via the
proposed method. The computed values in each column are to six decimal points.

Table 2: Comparing bivariate symmetric isotropic stable density function approximations for α > 1.

α = 1.3, γ=1

(x1,x2) (-1,-1) (0,1) (1,0) (1,1) (1,2) (2,1)
Nolan 0.039453 0.062606 0.062606 0.039453 0.014231 0.014231
Proposed Method∗ 0.039450 0.062601 0.062601 0.039450 0.014230 0.014230
∗The values at 0 are approximately computed at 0.0001.

Table 3 presents sample density values for different tail indices in Figure 1 using the inversion for-
mula.

Table 3: Bivariate symmetric isotropic stable density function approximations via inversion formula.

γ=1

(x1,x2) (-1,-1) (0,0) (0,1) (1,0) (1,1) (1,2) (2,1)
α = 0.5 0.015 1.9 0.029 0.029 0.015 0.006 0.006
α = 0.7 0.02 0.4 0.04 0.04 0.02 0.008 0.008
α = 1 0.03 0.159 0.056 0.056 0.030 0.011 0.011
α = 1.7 0.046 0.087 0.063 0.063 0.046 0.019 0.019

4 Running time comparison

This section compares the running time of computing bivariate isotropic stable density using Zolotarev
formula (1), the inversion formula (4) and the proposed method (3). Table 4 demonstrates that the pro-
posed method for computing bivariate isotropic stable densities has a lower average computation time
than the inversion and Zolotarev formulas. This efficiency gain underscores the effectiveness of our
approach in handling complex density computations within a reduced timeframe. Furthermore, the
computational accuracy of the inversion formula and the proposed method was found to be identical
and superior to that of the Zolotarev formula. All computations were conducted using Mathematica
on a workstation equipped with an Intel R© Pentium

TM
Processor G3250 operating at 3.20 GHz. For

the proposed method and Zolotarev formula, the first 30 terms of the series were utilized.
Figure 2 illustrates the running time averages presented in Table 4. The blue and red bars repre-

sent the running time averages of the inversion and Zolotarev formulas, respectively. The green bar
indicates the proposed method’s running time average, which is shorter than the other methods.

5 Conclusion

This work introduced an analytical representation for bivariate isotropic stable density functions.
We have demonstrated that using the inversion formula, bivariate isotropic stable density can be
computed without any limitations on the range of the tail index. Analytical representation can be
developed to calculate multivariate sub-Gaussian distribution and density functions as a more general
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Table 4: Average computation times (in seconds) over 10 iterations and computed bivariate isotropic stable
densities using the Inversion Formula (4), Zolotarev’s Formula (1), and the Proposed Method (3).

Average of computational time Computed density
(x1,x2) Inversion Zolatarev Proposed Inversion Zolotarev Proposed

(-2, -1.5) 2.77983 0.0379090 0.00912827 0.0103648 0.0103648 0.0103648
(-2, -1.4) 1.90631 0.0327080 0.00919678 0.0111092 0.0111092 0.0111092
(-2, 0.5) 1.48195 0.0319629 0.00919159 0.0176521 0.0176521 0.0176522
(-2, 1.5) 2.75197 0.0356501 0.00924685 0.0103648 0.0103648 0.0103648
(-2, -2) 2.75508 0.2474190 0.00916426 0.00712625 0.00712625 0.00714252
(-1.4, -1.5) 1.72137 0.0323467 0.00945639 0.0178672 0.0178672 0.0178672
(-1.4, -1.4) 2.52245 0.0268933 0.00925633 0.0195465 0.0195465 0.0195465
(-1.4, 0.5) 1.46872 0.0242274 0.00923911 0.0361464 0.0361464 0.0361464
(-1.4, 1.5) 1.72189 0.0291951 0.00931708 0.0178672 0.0178672 0.0178672
(-1.4, -2) 1.71350 0.0306215 0.00924075 0.0111092 0.0111092 0.0111092
(1.2, -1.5) 2.26589 0.0307974 0.00920460 0.0210454 0.0210454 0.0210454
(1.2, -1.4) 2.29585 0.0307990 0.00925497 0.0231821 0.0231821 0.0231821
(1.2, 0.5) 1.46706 0.0246160 0.00932812 0.0451417 0.0451417 0.0451417
(1.2, 1.5) 2.26798 0.0280298 0.00932533 0.0210454 0.0210454 0.0210454
(1.2, -2) 2.28792 0.0423362 0.00924429 0.0126575 0.0126575 0.0126575
(1.5, -1.5) 2.74446 0.0332080 0.00919001 0.0163893 0.0163893 0.0163893
(1.5, -1.4) 2.74142 0.0295952 0.00925244 0.0178672 0.0178672 0.0178672
(1.5, 0.5) 1.47970 0.0241755 0.00928791 0.0321886 0.0321886 0.0321886
(1.5, 1.5) 2.75232 0.0307820 0.00921067 0.0163893 0.0163893 0.0163893
(1.5, -2) 2.46838 0.0359593 0.00916300 0.0103648 0.0103648 0.0103648
(2, -1.5) 2.75803 0.0360555 0.00922833 0.0103648 0.0103648 0.0103648
(2, -1.4) 1.91134 0.0309745 0.00939851 0.0111092 0.0111092 0.0111092
(2, 0.5) 1.46690 0.0299433 0.00924763 0.0176521 0.0176521 0.0176522
(2, 1.5) 2.76243 0.0357955 0.00919519 0.0103648 0.0103648 0.0103648
(2, -2) 2.76798 0.2451580 0.00926998 0.00712625 0.00712625 0.00714252

parametric sub-class of stable distributions. However, complex calculations are required and may
not be solvable. The analytical representation could be reduced to a closed form at the origin and
used to verify the accuracy of stable distribution computation software. The Python and Mathematica
codes for computing bivariate isotropic stable density using Theorem 1 and the inversion formula are
provided in the Appendix.
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Appendix

1 import numpy as np

2 from scipy.special import beta , factorial

3

4 # Parameters

5 alpha = 1.3 # tail index alpha in (1,2)

6 g=1 # scale parameter

7 max_terms = 20 # number of terms to sum

8 # Variables

9 x1=1

10 x2=1

11 # Compute the density function at (x1, x2)

12 sum_result = 0

13 for i in range(max_terms):

14 for j in range(max_terms):

15 gamma_term = gamma ((2 * i + 2 * j + 2) / alpha)

16 term = ((-1)(i+j) * x1(2*i) * x2 **(2*j) * gamma_term *\

17 beta(j + 0.5, i + 0.5) ) / (factorial (2*i) *\

18 factorial (2*j) * alpha * g**(2*(i+j)+2))

19 sum_result += term

20

21 density = (2 / (2*np.pi)**2) * sum_result

22 print("Approximated density at (",x1,",",x2,") is:", density)

23

24 Approximated density at ( 1 , 1 ) is: 0.03944957569338398

25

Listing 1: Python code to calculate bivariate isotropic symmetric stable density function via analytic form in
Theorem 1.

1 In[1]:= Remove["Global ‘*"];

2 alpha = 1.3; x1 = 1; x2 = 1; g = 1; k = 20;

3 2/(2 Pi)^2 * Sum[Sum[(-1)^(i+j) x1^(2i) x2^(2j) Gamma [(2(i+j)

+2)/alpha] Beta[i + .5, j + .5]/(2i)!/(2j)!/ alpha^2 /g^(2(i+j)+2)

, {i, 0, k}], {j, 0, k}] // N

4

5 Out [1]= 0.0394496

6

7 (* Inversion Formula Method *)

8 In[2]:=

9 alpha = 1.3; x1 = 1; x2 = 1; g = 1;

10 NIntegrate[Exp[-g^alpha (Sqrt[t1^2 + t2^2])^alpha] Cos[t1 x1]

Cos[t2 x2], {t1 , -Infinity , Infinity}, {t2 , -Infinity , Infinity }]

1/(2 Pi)^2 // N

11

12 Out [2]= 0.0394496

13

Listing 2: Mathematica codes to calculate bivariate isotropic symmetric stable density function via the analytic
form in Theorem 1 and inversion formula in (3).
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