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Abstract. This paper presents a novel bilevel optimization approach for a nonlinear partial differential
equation. The approach aims to enhance the quality of image denoising by estimating certain parameters
within this equation. Our work deals with both analytical and numerical results. Analytically, we estab-
lish the existence of a solution to the bilevel optimization problem and apply the Alternating Direction
Method of Multipliers algorithm to approximate this solution. Furthermore, the method fine-tunes the
restoration process, effectively reducing noise while preserving crucial image features. Finally, numer-
ical results validate the performance of our method, surpassing traditional denoising approaches. This
research makes an important contribution to image restoration, paving the way for high-quality practical
applications.
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1 Introduction and motivation

Image processing is a crucial field in applied sciences, touching on various sectors such as medical
imaging, remote sensing, and computer vision. In these contexts, captured images are often degraded
by noise, which can compromise the accuracy and reliability of analyses and interpretations. To address
these issues, various techniques have been developed to enhance image quality. Noise reduction is an
essential method, with techniques such as Gaussian filtering [17,18], median filtering [6], and anisotropic
diffusion [2, 16, 19, 21] helping to reduce noise while preserving important image features.

In particular, non-linear Partial Differential Equations (PDEs) [1, 8, 9, 16, 19] have proven their ef-
fectiveness in image denoising by capturing the complex features of visual structures. However, the
performance of these methods is strongly linked to the accuracy of the parameters involved in the PDEs,
which paves the way for an intensive exploration of optimization and parameter identification tech-
niques [3, 7, 12].
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A classic model of image degradation is given by u0 = u+ n, where u is the original image, u0 is
the noisy image, and n represents additive noise. This simplified model describes how noise can corrupt
images, presenting a significant challenge for denoising techniques.

To address this challenge, various mathematical approaches have been developed, generally catego-
rized into three main areas: statistical, algebraic, and variational and PDE. Each approach offers unique
tools and methods for tackling the denoising problem, each with its own advantages and limitations.
Among classical models, the heat equation is often used as an example of linear diffusion:

∂tu+∆u = 0, u(0) = u0. (1)

While this model effectively removes noise; it has a major drawback: it also removes important image
details, such as edges and fine textures, which can degrade the quality of the restored images.

To overcome this issue, Perona and Malik [16] proposed a modification to the diffusion equation by
introducing a non-constant diffusivity:

∂tu+div
(

1
1+ c|∇u|2

∇u
)
= 0, u(0) = u0. (2)

This approach reduces diffusion in regions of high gradient, such as edges, while increasing diffusion
in uniform regions. Additionally, Catt et al. [5] suggested scaling the diffusivity using the gradient of a
uniformly smoothed image:

∂tu+div
(

1
1+ c|∇uσ |2

∇u
)
= 0, u(0) = u0, (3)

where uσ = Kσ ∗u represents the convolution of u with a Gaussian kernel of variance σ2. This approach
helps to stop diffusion at edges, offering an improvement over previous models by better preserving
important image details.

A similar model to the Perona-Malik diffusion was developed by Aboulaich et al. in [1] and is given
by 

∂u
∂ t
−div

((
1√

1+|∇u(x)|2
+α(x)

)
∇u
)
+λ (u−u0) = 0 in Ω× (0,T ),〈(

1√
1+|∇u(x)|2

+α(x)
)

∇u,n
〉
= 0 on ∂Ω× (0,T ),

u(x,0) = u0 in Ω.

(4)

The simplified equation resembles the Perona-Malik one. This model incorporates a diffusion term that
depends on the image gradient, with 1√

1+|∇u(x)|2
∇u representing a velocity that modulates diffusion based

on gradient magnitude.
Despite advancements in these models, parameter selection remains a significant challenge. Manual

tuning of parameters such as the diffusivity in these models is often laborious and may not ensure optimal
results. This highlights the need for more sophisticated approaches that automate the parameter selection
process.

In this context, our work focuses on automating the selection of fundamental parameters within the
nonlinear PDEs (4) to improve the quality of noisy image restoration.
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We formulate a bilevel optimization problem to automate the selection of parameters α and λ as:

inf
α,λ∈Ead

J(α,λ ) =
1
2

∫
Ω

|u(x,T )−uσ
0 |2dx+ γ1

∫
Ω

|α(x)|2dx+ γ2

∫
Ω

|λ (x)|2dx, (5)

subject to: 
∂u
∂ t
−div

((
1√

1+|∇u(x)|2
+α(x)

)
∇u
)
+λ (u−u0) = 0 in Ω× (0,T ),〈(

1√
1+|∇u(x)|2

+α(x)
)

∇u,n
〉
= 0 on ∂Ω× (0,T ),

u(x,0) = u0 in Ω,

(6)

where γ1 and γ2 are positive constants, and Ead is the set of admissible functions defined by:

Ead = {(α,λ ) : α ∈ Uad , λ ∈Uad with (α,λ ) satisfying (6)}, (7)

with constraints:
Uad = {λ ∈ L2(Ω) : λa 6 λ (x)6 λb a.e in Ω}, (8)

Uad = {α ∈ L2(Ω) : αc 6 α(x)6 αd a.e in Ω}, (9)

where αc, αd , λa, λb > 0 in R, αc < αd , and 0 < λa < λb.
By automating the parameter selection process, our approach allows for more precise adjustment

of denoising processes while preserving essential image details. We propose using the Alternating Di-
rection Method of Multipliers (ADMM) algorithm to solve this problem and validate our approach with
numerical results demonstrating significant improvements over traditional denoising methods. This work
represents a significant advancement by introducing an automated method for parameter identification in
nonlinear PDEs, offering promising prospects for practical applications requiring accurate image restora-
tion.

2 Existence of a solution to the optimization problem

This section aims to establish the existence of a solution to the bilevel optimisation problem (5)-(6),
taking into account the constraints imposed on the domain (α,λ ) ∈ Ead . To this end, we assume that the
space L2(Ω)×L2(Ω) is equipped with the following norm:

||(α,λ )||L2(Ω)×L2(Ω) = ||α||L2(Ω)+ ||λ ||L2(Ω).

Proposition 1. Suppose that (αk,λk)k∈N ⊂ Ead is a minimizing sequence of (5) which converges to the
pair (α∗,λ ∗) ⊂ Uad×Uad in L2(Ω)×L2(Ω), and let uk denote the solution of (6) for all k ∈ N, where
uk ≡ u(αk,λk), then
1. there is a subsequence (uk)k that converges almost everywhere to u∗, which is a solution of equation
(6).
2. the functional cost J exhibits weak lower semi-continuity and fulfills the following property:

J(α∗,λ ∗)6 liminf
k→∞

J(αk,λk).
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Proof. 1. Since (αk,λk) is a minimizing sequence of (5), we have

lim
k→∞

J(αk,λk) = inf
(α,λ )∈Ead

J(α,λ ).

On the other hand, we have

J(αk,λk)> γ1

∫
Ω

|αk(x)|2dx+ γ2

∫
Ω

|λk(x)|2dx

> min(γ1,γ2)(||αk||2L2(Ω)+ ||λk||2L2(Ω)).

Therefore, there is µ = min(γ1,γ2)> 0, such that

J(αk,λk)> µ

(
||αk||2L2(Ω)+ ||λk||2L2(Ω)

)
,

hence ∃M > 0, such that
||αk||2L2(Ω)+ ||λk||2L2(Ω) 6 M.

As a result, the sequence (αk,λk)k is bounded in L2(Ω)×L2(Ω). Since L2(Ω)×L2(Ω) is reflexive, there
exists a subsequence, again denoted as (αk,λk), such that

αk ⇀ α
∗ in L2(Ω)

and
λk ⇀ λ

∗ in L2(Ω). (10)

Since (λk)k is a sequence of Uad , we have

λa 6 λk 6 λb a.e in Ω.

For a measurable subset B of Ω, we have∫
B

λadx 6
∫

B
λk(x)dx 6

∫
B

λbdx.

So ∫
B

λadx 6
∫

Ω

λk(x)1Bdx 6
∫

B
λbdx.

According to (10) and when k→ ∞∫
B

λadx 6
∫

Ω

λ
∗(x)1Bdx 6

∫
B

λbdx.

Then ∫
B

λadx 6
∫

B
λ
∗(x)dx 6

∫
B

λbdx.

Thus
λa 6 λ

∗ 6 λb a.e in Ω. (11)

Therefore λ ∗ ∈Uad . Similary, we have α∗ ∈ Uad .
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Consider the sequence (αk,λk)k ∈ Ead , where for each (α,λk), the corresponding solution uk satisfies
equation (6). Consequently, for every ψ ∈ H1

0 (Ω):〈
∂uk

∂ t
,ψ

〉
(H1(Ω))

′
,H1(Ω)

+
∫

Q

(
1√

1+ |∇uk(x)|2
+αk(x)

)
∇uk∇ψdxdt (12)

+
∫

Q
λk(uk−u0)ψdxdt = 0. (13)

Let t ∈ (0,T ) and choose ψ = uk(t) as test function in the variational formulation (13), we get

1
2

∫
Ω

u2
k(x, t)dx− 1

2

∫
Ω

u2
0(x)dx+

∫ t

0

∫
Ω

(
1√

1+ |∇uk(x)|2
+αk(x)

)
(∇uk)

2dxdt (14)

+
∫ t

0

∫
Ω

λku2
k(x, t)dxdt =

∫ t

0

∫
Ω

λkuk(x, t)u0(x)dxdt, (15)

By using Young’s inequality and the fact that αk ∈ Uad and λk ∈Uad , we can show that

1
2

∫
Ω

u2
k(x, t)dx− 1

2

∫
Ω

u2
0(x)dx+

∫ t

0

∫
Ω

(
1√

1+ |∇uk(x)|2
+αk

)
(∇uk)

2dxdt

+λa

∫ t

0

∫
Ω

u2
k(x, t)dxdt

6 λb

∫ t

0

∫
Ω

uk(x, t)u0(x)dxdt

6
λb

2

∫ t

0

∫
Ω

u2
k(x, t)dxdt +

λb

2

∫ t

0

∫
Ω

u2
0(x, t)dxdt,

then ∫
Ω

u2
k(x, t)dx 6 (T λb +1)

∫
Ω

u2
0(x, t)dx+λb

∫ t

0

∫
Ω

u2
k(x, t)dxdt.

By Gronwall inequality∫
Ω

u2
k(x, t)dx 6

(
(T λb +1)

∫
Ω

u2
0(x)dx

)
exp(tλb) ∀t ∈ (0,T ),

this implies that ∫
Ω

u2
k(x, t)dx 6C, (16)

for some constant C > 0 depending only on T and λb. Then ||uk||L∞(0,T ;L2(Ω)) 6 C. The function µ :
R+ −→ R+ defined as

µ(|∇u|) = 1√
1+ |∇u(x)|2

+αc,

is bounded (see [1]). Hence, we have
∫ t

0
||uk(τ)||2dτ 6C, ∀t ∈ [0,T ]. The operator A defined by

(Auk,ψ) =
∫

Ω

(
1√

1+ |∇uk(x)|2
+αc

)
∇uk∇ψdx,
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is a monotone operator. We deduce that the approximate solution uk of the problem (13) converges to a
weak solution u of problem (6).

2- We prove that J obeys the inequality

liminf
k→∞

J(αk,λk)> J(α∗,λ ∗),

where α∗ and λ ∗ are the optimal solutions of the optimization problem and αk and λk are the solutions
obtained by an iterative algorithm with step size k. We have

lim
k−→+∞

1
2

∫
Ω

|uk(x,T )−uσ
0 (x)|2dx =

1
2

∫
Ω

|u∗(x,T )−uσ
0 (x)|2dx,

γ1

2

∫
Ω

|α∗(x)|2dx 6 liminf
k−→+∞

γ1

2

∫
Ω

|αk(x)|2dx,

and
γ2

2

∫
Ω

|λ ∗(x)|2dx 6 liminf
k−→+∞

γ2

2

∫
Ω

|λk(x)|2dx,

then

J(α∗,λ ∗) =
γ2

2

∫
Ω

|λ ∗(x)|2dx+
γ1

2

∫
Ω

|α∗(x)|2dx+
1
2

∫
Ω

|u∗(x,T )−uσ
0 (x)|2dx

6 liminf
k−→+∞

1
2

∫
Ω

|uk(x,T )−uσ
0 (x)|2dx+

γ2

2
liminf
k−→+∞

∫
Ω

|λk(x)|2dx

+
γ1

2
liminf
k−→+∞

∫
Ω

|αk(x)|2dx

6 liminf
k−→+∞

(
1
2

∫
Ω

|uk(x,T )−uσ
0 (x)|2dx+

γ2

2

∫
Ω

|λk(x)|2dx+
γ1

2

∫
Ω

|αk(x)|2dx
)

6 liminf
k−→+∞

J(αk,λk).

The previous proposition provides evidence to support the following theorem.

Theorem 1. The bilevel optimization problem (5) has a solution (α,λ ) in Ead .

3 The proposed algorithm and numerical implementation.

3.1 Algorithm

In order to obtain an approximation of the solution to our problem (5), we develop an algorithm that aims
to overcome the challenges inherent in this problem, and we will analyze in depth the key features of this
algorithm. The algorithmic procedure outlined in this section is presented as a numerical optimization
method specifically designed to solve a well-defined problem. In 1976, Gabay, Mercier, Glowinski, and
Marrocco introduced the ADMM [10, 14]. This method combines the robustness of the method of mul-
tipliers with the ability to support decomposition. Additionally, the ADMM has proven to be a powerful
tool for solving a wide range of constrained optimization problems [11, 14, 15, 20]. In the following
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sections, we directly apply the ADMM to our parabolic optimal control problem with constraints (5)-(6).
The ADMM can be viewed as a fractional version of the classical augmented Lagrangian method; for
further insights, we refer to [20]. This approach allows us to partition the original problem into easily
solvable sub-problems, resulting in greater efficiency compared to the augmented Lagrangian method,
which utilizes Gauss-Seidel techniques at each iteration.

In many instances, pinpointing the exact parameters becomes challenging due to the presence of
numerous parameters, the intricate nature of the image, and the increased computational time with higher
iterations. Given that an image comprises pixels, any parameter chosen manually applies uniformly to
all pixels. Therefore, methods need to either identify these parameters or determine suitable parameters
for each pixel to achieve optimal image restoration. This process can be encapsulated by introducing the
operator G, which acts as an affine solution operator linked with the state equation (6), as follows:

G : Uad×Uad −→ L2(Ω)

(α,λ ) 7→ G(α,λ ) := u(x,T ).

The operator G is bounded, continuous and compact. For u = G(α,λ ), the problem (5)-(6) can be
reformulated as the following optimal control problem:

inf
α,λ∈Uad×Uad

G (G(α,λ ))+R(α,λ ),

with G is the fidelity term given by

G (G(α,λ )) =
1
2

∫
Ω

|G(α,λ )−uσ
0 (x)|2dx,

R is the regularization term defined by

R(α,λ ) =
γ1

2

∫
Ω

|α(x)|2dx+
γ2

2

∫
Ω

|λ (x)|2dx,

and γ1 and γ2 are two regularization parameters. Now, we consider the auxiliary variables y1,y2 ∈ L2(Ω)
such that (α,λ ) = (y1,y2), consequently the problem (5)-(6) becomes min

α,λ ,y1,y2

J(α,λ )+IUad (y1)+IUad (y2)

subjet to (α,λ ) = (y1,y2),
(17)

where IK(.) is the indicator functional of the set K defined by

IK(y) :=

{
0, if y ∈ K
+∞ if y ∈ L2(Ω)\K,

and
J(α,λ ) = G (G(α,λ ))+R(α,λ ).

To start applying the ADMM to the problem (5)-(6), we need to define the augmented Lagrangian func-
tional associated with the minimization problem (17) as

L(α,λ ,y1,y2,β1,β2,µ1,µ2) = J(α,λ )+IUad (y1)+IUad (y2)− (β1,α− y1)

+
µ1

2
||α− y1||2− (β2,λ − y2)+

µ2

2
||λ − y2||2,

(18)
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with µ1 and µ2 are positive penalty parameters and β1, β2 ∈ L2(Ω) are the Lagrange multipliers asso-
ciated to the constraint (α,λ ) = (y1,y2). Otherwise, finding the saddle point of the function (18) is
equivalent to obtaining the minimum of the problem (5)-(6). Then leads to ADMM steps:

α
k+1 = argmin

α
L(α,λ k,yk

1,y
k
2,β

k
1 ,β

k
2 ,µ

k
1 ,µ

k
2) (19a)

λ
k+1 = argmin

λ

L(αk,λ ,yk
1,y

k
2,β

k
1 ,β

k
2 ,µ

k
1 ,µ

k
2) (19b)

yk+1
1 = argmin

y1
L(αk+1,λ k+1,y1,yk

2,β
k
1 ,β

k
2 ,µ

k
1 ,µ

k
2) (19c)

yk+1
2 = argmin

y2
L(αk+1,λ k+1,yk

1,y2,β
k
1 ,β

k
2 ,µ

k
1 ,µ

k
2) (19d)

β
k+1
1 = β k

1 −α1(α
k+1− yk+1

1 ) (19e)

β
k+1
2 = β k

2 −α1(λ
k+1− yk+1

2 ) (19f)

In what follows, we are interested in solving the above minimization subproblems. The subproblems
(19a) and (19b) are equivalent to the following unconstrained optimal control problems

min
γ∈L2(Ω)

J(α,λ k)− (β k
1 ,α− yk

1)+
µ1

2
||α− yk

1||2, (20)

min
λ∈L2(Ω)

J(αk,λ )− (β k
2 ,λ − yk

2)+
µ2

2
||λ − yk

2||2. (21)

To solve the minimization (20) and (21), we need to compute the gradients of

Γ(α) = J(α,λ k)− (β k
1 ,γ− yk

1)+
µ1

2
||α− yk

1||2,

Λ(λ ) = J(αk,λ )− (β k
2 ,λ − yk

2)+
µ2

2
||λ − yk

2||2,

which are given as follows:DΓ(α) = γ1α +
[

∂G
∂α

]∗ (
G(α,λ k)

)
−β k

1 +µ1(α− yk
1),

DΛ(λ ) = γ2λ +
[

∂G
∂λ

]∗ (
G(αk,λ )

)
−β k

2 +µ2(λ − yk
2),

(22)

where [Z ]∗ is the adjoint operator of Z and the adjoint state equation is given as following

(A E )


−∂w

∂ t
+div

((
|∇u|2

(1+|∇u(x)|2)
3
2
− 1√

1+|∇u(x)|2
−α(x)

)
∇w
)
−λw = 0, on ]0,T [×Ω,

w(T,x) = u0(x)−u(x,T ), on ]0,T [×∂Ω,

u(0,x) = u0(x).

(23)

For the subproblems (19c) and (19d), we have

L(γk+1,λ k+1,y1,yk
2,β

k
1 ,β

k
2 ,µ

k
1 ,µ

k
2) = J(γk+1,λ )+IH1(Ω)(y1)− (β k

1 ,γ
k+1− y1)

+
µ1

2
||γk+1− y1||2,

L(γk+1,λ k+1,yk
1,y2,β

k
1 ,β

k
2 ,µ

k
1 ,µ

k
2) = J(γ,λ k+1)+IΛad (y2)− (β k

2 ,λ
k+1− y2)

+
µ2

2
||λ k+1− y2||2,

(24)
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and their solution can be computed by the projection on the admissible set Uad and Uad , hence
yk+1

1 = arg min
y1∈L2(Ω)

IUad (y1)− (β k
1 ,α

k+1− y1)+
µ1

2
||αk+1− y1||2,

yk+1
2 = arg min

y2∈L2(Ω)
IUad (y2)− (β k

2 ,λ
k+1− y)+

µ2

2
||λ k+1− y2||2,

(25)

so, yk+1
1 = ProjUad

(
αk+1− β k

1
µ1

)
= max

(
αc,min

(
αd ,α

k+1− β k
1

µ1

))
,

yk+1
2 = ProjUad

(
λ k+1− β k

2
µ2

)
= max

(
λb,min

(
λa,λ

k+1− β k
2

µ2

))
,

(26)

with ProjP(.) is the projection operator in P. Hence, the ADMM algorithm for the problem (5)-(6) is
summarized in Algorithm 1.

Algorithm 1 ADMM algorithm.

1: Choose u0,α0, λ 0, y0
1, y0

2, β 0
1 , β 0

2 , γ0
1 ,γ0

2 , αc, αd , λa, λb, τ0
1 and τ0

2 .

2: For k = 0, .....,N, compute

3: uk solution of problem (6).

4: wk solution of problem (23).

5: DΓ(α) and DΛ(λ ) from the equation (22):

6: Update αk+1 and λ k+1 by {
αk+1 = αk− τk

1DΓ(α

λ k+1 = λ k− τk
2DΛ(λ ),

(27)

with τk
1 and τk

2 being computed by the Armijo line search algorithm.

8: Update yk+1
1 and yk+1

2 by yk+1
1 = max

{
α,min

{
αk+1− β k

1
µ1
,α
}}

yk+1
2 = max

{
λ ,min

{
λ k+1− β k

2
µ2
,λ
}} (28)

9: Update the Lagrange multipliers: β
k+1
1 and β

k+1
2 by{

β
k+1
1 = β k

1 −µ1(α
k+1− yk+1

1 )

β
k+1
2 = β k

2 −µ2(λ
k+1− yk+1

2 )
(29)

10: end
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3.2 Convergence

The convergence of the ADMM algorithm for a PDE-constrained optimization problem has been treated
in the literature [11, 15], where the cost function was assumed to be convex. Here, we only focus on
proving the convexity of the cost function J. In following, we establish the convexity of the function J
with respect to the variable α , assuming that the parameter λ to be constant. The convexity with respect
to λ can then be justified in a similar way. Firstly, we suppose that the solution u is differentiable, which
can be proved in the same manner as in [13]. And the differentiable function u

′
= DG(α)h with h ∈Uad ,

is the unique solution to the following equation
∂u

′

∂ t
−div

(
g(u,α +h)∇u

′
)
−div

(
∂g(u,α)

∂α
h∇u

)
+λu

′
= 0 in Ω× (0,T ),〈

g(u,α +h)∇u
′
+

∂g(u,α)

∂α
h∇u,n

〉
= 0 on ∂Ω× (0,T ),

u
′
(x,0) = 0 in Ω,

(30)

where

g(u,α) =

(
1√

1+ |∇u(x)|2
+α(x)

)
.

Now, let us denote J(α) = J(α,λ ). For any α ∈ Uad , and h perturbation, we can show that

J′(α)h =
∫

Ω1

(u(x,T )−uσ
0 )u
′dxdt + γ1

∫
Ω

αhdx. (31)

In order to establish the convexity of J, we need the following two lemmas.

Lemma 1. Let α ∈ Uad and, h ∈ L2(Ω× (0,1)), uh and u be the solution of (5) associated to α +h and
α , respectively. Then

‖uh−u‖L∞(0,1;L2(Ω))+‖∇uh−∇u‖L2(0,1;L2(Ω)) ≤CT‖h‖2
L2(Ω×(0,1)).

Lemma 2. Let h ∈ L2(Ω× (0,1)) such that α +h ∈Uad and, let uh and u be the solutions of the problem
(5) associated to α +h and α , respectively. And let u

′
be the unique solution of (30), then

‖uh−u−u′‖2
L∞(0,1;L2(Ω)) ≤CT‖h‖2

L2(Ω×(0,1)). (32)

The proofs of these lemmas can be found easily, following a similar approach to that in [13]. We
justify the convexity of the functional cost J in the following theorem.

Theorem 2. For any γ1, the functional J is strictly convex.

Proof. Let α and α +h be in Uad and let u and uh be the associated solutions, respectively. We have

J(α +h)− J(α)− J′(α)h =
1
2

∫
Ω

|uh(x,T )−uσ
0 (x)|2dx+

γ1

2

∫
Ω

|α +h|2dx− 1
2

∫
Ω

|u(x,T )−uσ
0 (x)|2dx

− γ1

2

∫
Ω

|α|2dx−
∫

Ω1

(u(x,T )−uσ
0 )u
′dx− γ1

∫
Ω

αhdx.



A new bilevel optimization problem for the image restoration 543

After a simple calculation, we can show

J(α +h)− J(α)− J′(α)h =
1
2

∫
Ω

(uh(x,T )+u(x,T )−2uσ
0 (x))(uh(x,T )−u(x,T ))dx

−
∫

Ω

(u(x,T )−uσ
0 )u
′dx+

γ1

2

∫
Ω

|h|2dx.

It is easy to see that the last term is non-negative, it remains to show that the difference between the first
terms is positive, then

J(α +h)− J(α)− J′(α)h = J1 + J2 + J3 +
γ1

2

∫
Ω

|h|2dx, (33)

where

J1 =
1
2

∫
Ω

(
uh(x,T )−u(x,T )−u′(x,T ))

)
(u(x,T )−uσ

0 )dx, (34)

J2 =
1
2

∫
Ω

(
uh(x,T )−u(x,T )−u′(x,T ))

)
(uh(x,T )−uσ

0 )dx (35)

and

J3 =
1
2

∫
Ω

(uh(x,T )−u(x,T ))u′(x,T )dx. (36)

Using the Cauchy-Schwartz inequality and Lemmas 1 and 2, we obtain

|J1| ≤C1T‖h‖2
L2(Ω×(0,1)), (37)

|J2| ≤C2T‖h‖2
L2(Ω×(0,1)) (38)

and
|J3| ≤C3T‖h‖2

L2(Ω×(0,1)). (39)

By (37), (38) and (39) we conclude that

J(α +h)− J(α)− J′(α)h >
(

γ1

2
−CT

)
‖h‖2

L2(Ω×(0,1)). (40)

Thus, for T <
γ1

2C
, the functional J is strictly convex.

Concerning the convexity of the function F , where F(λ ) = J(α,λ ), it can be proven similarly the
convexity for the variable α . And we can prove that

F(λ +h)−F(λ )−F ′(λ )h >
(

γ2

2
−CT

)
‖h‖2

L2(Ω×(0,1)).

For T <
γ2

2C
, the functional F is strictly convex.
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Figure 1: The test images were used for comparison experiments.

3.3 Experimental results

In the digital section, we present some experimental results to demonstrate the effectiveness of the pro-
posed model. We compare it with several competing noise reduction methods to highlight its perfor-
mance. Note that we tested our model using the classical datasets BSD68 and Set12, some images of
which we show here in Figure 1.

We evaluate our results against various competing denoising techniques, including an optimal vari-
able exponent bilevel model as described in the work [12], the TGV (Total Generalized Variation)
model [4], the Perona Malik (PM) method proposed in [16], and the approach based on the total variation
function TV.

The peak signal-noise ratio (PSNR) ( the ratio between the maximum value of the image and the
mean square error between the original image and the restored image) and (SSIM) (calculated on multiple
windows of given image) are intended to measure the quality of the images obtained, which are defined
as follows

PSNR = 10log10

(
2552

mse

)
, (41)

with the mse is the mean squared error giving as follows

mse =
1

nm

m

∑
i=1

n

∑
j=1

(u(i, j)− v(i, j))2,

where u be the noise-free image of size m×n and v the restored image. Also

SSIM(u,v) =
(2σuσv + r2)(2µuµv + r1)(2covuv+ r3)
(µ2

u +µ2
v + r1)(σ2

u +σ2
v + r2)(σuσv + r3)

(42)



A new bilevel optimization problem for the image restoration 545

with covuv is covariance and r1 = (m1l)2 ,r2 = (m2l)2 are two stabilizing constants; and l the dynamics
of the pixel values. µu and µv; σ2

u and σ2
v are mean; variance of u and v, respectively.

Using various regularization techniques, we generated the diagrams shown in Figures 2-3, providing
an overview of the evolution of PSNR and SSIM for reconstructed outputs over 200 iterations, with a
fixed noise level of σnoise = 25. These measures enable us to assess the quality of the reconstructions as
we apply the different denoising methods.

Figure 2: Histogram of PSNR values

Our proposed method has been rigorously tested using a set of reference images, as illustrated in
Figure 1. To assess the performance of our method, we carried out a series of simulation experiments
in which we introduced Gaussian noise with a degradation factor σnoise = 25 into each of the original
images. In Figures 4, 5 and 6, where σnoise = 25, and in Figure 7 , where σnoise = 35, we tested our
denoising method alongside various other commonly employed techniques. The results of this evaluation
concern the restoration of original images from their degraded versions.

The results indicate that our method is particularly effective in restoring images with high quality and
efficiency. Compared with other image denoising approaches, our method stands out for its remarkable
restoration quality. The differences are clearly visible to the naked eye, highlighting the power of our
image restoration proposal.

To reinforce this qualitative assessment, we also collected digital data using the metrics PSNR and
SSIM, as illustrated in Figures 2 and 3 respectively. PSNR measures restoration fidelity by quantifying
the quality of the denoised image compared to the original image, while SSIM evaluates the structural
similarity between the denoised image and the original image. The figures obtained in these figures
convincingly confirm the superior performance of our method over the other denoising methods tested.
In particular, our model is able to reduce the staircasing and cartoon-like affects produced by the TV and
TGV models (see Figure 7).

In conclusion, our simulation experiments and quantitative evaluations convincingly demonstrate the
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Figure 3: Histogram of SSIM values.

effectiveness and robustness of our image denoising method. Visual results and numerical measurements
confirm its ability to restore images exceptionally well, making it a valuable tool for a variety of image
processing applications.

Figure 4: The outcomes achieved through the utilization of various techniques on the House image as contrasted
with our methodology (σnoisy = 25).
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Figure 5: The outcomes achieved through the utilization of various techniques on the Fly image as contrasted with
our methodology (σnoisy = 25).

Figure 6: The outcomes achieved through the utilization of various techniques on the Parrots image as contrasted
with our methodology (σnoisy = 25).
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Figure 7: The outcomes achieved through the utilization of various techniques on the House image as contrasted
with our methodology (σnoisy = 35).

Image PSNR
Noise Noisy PM [16] TV TGV [4] Method in [12] Our method

(a) 25 20.16 26.78 26.61 27.02 27.15 27.44
35 17.30 24.98 25.8 25.83 26.01 26.05

(b) 25 20.13 29.29 29.20 30.17 30.03 30.36
35 17.25 27.75 28.60 28.65 28.78 28.92

Table 1: The PSNR values.

Image SSIM
Noise Noisy PM [16] TV TGV [4] Method in [12] Our method

(a) 25 0.33 0.78 0.67 0.80 0.72 0.76
35 0.25 0.74 0.76 0.78 0.70 0.76

(b) 25 0.27 0.79 0.80 0.82 0.78 0.83
35 0.19 0.76 0.78 0.80 0.77 0.80

Table 2: The SSIM values.

Tables 1 and 2 provide a detailed analysis of the performance of our image denoising model, show-
casing numerical values for the PSNR and the SSIM. These evaluations were conducted under conditions
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of high Gaussian noise with degradation factors of σnoise = 25 and σnoise = 35. These high noise param-
eters are often encountered in real-world scenarios, where image restoration is particularly challenging.
One of the key features of our model is its ability to automatically select regularization parameters λ

and α based on input data. This automatic selection is crucial as it allows our model to adapt to vary-
ing noise levels without requiring laborious manual calibration. The results presented in Tables 1 and 2
once again confirm the outstanding performance of our model. Our PSNR and SSIM values significantly
outperform those achieved by other well-established image denoising approaches, as referenced in stud-
ies [16], [4], [12]. This indicates that our model is capable of restoring images even under extremely
high noise conditions, thereby preserving the details and fidelity of the original image. These remark-
able performances suggest that our model is particularly well-suited for demanding applications such as
object detection, computer vision, and medical imaging.

To demonstrate the robustness of our algorithm when applied to images with different noise levels
and features, we make comparisons with other competitive denoising PDEs. In fact, the results obtained
are compared with the optimal variable exponent model for image denoising, which in turn has been
compared with models involving either automatic parameter identification. We use three images ” Cam-
eraman ”, ” Barbara ” and ” Castle ” to select the proposed PDE constrained by the choice of α and λ

variables in space Both tests are performed using different levels of Gaussian noise, with σnoisy = 35 in
Figure 7 and σnoisy = 45 in Figure 8. The robustness of the proposed PDE is evident, as it effectively
avoids various artifacts compared to other methods. The parameters are adjusted based on the highest
PSNR achieved. For the [12] approach, the parameters used for the ” Cameraman ” image are: p = 0.98
(initial), β = 1, α = 0.00001, λ = 1. For our approach, the parameters used are: γ1 = 10−5, γ2 = 10−6,
β1 = 1, β2 = 1, α = 10−6 (initial), λ = 10−2 (initial), αc = 10−3, αd = 10−1, λa = 10−4, λb = 10−2. In
order to more precisely assess the quality of the reconstructions, we present a table showing the elapsed
CPU time (in seconds). Table 3 shows the elapsed CPU time (in seconds) for the different denoising
comparison approaches. The suggested method stands out for having lower values, confirming its ro-
bustness.

Image Method
σnoisy Metric PM [16] TV TGV [4] Method in [12] Our method

Barbara 35 CPU 80 71 83 97 122
Cameraman 35 CPU 72 69 78 95 112

Castle 35 CPU 97 89 102 134 141

Table 3: The elapsed CPU time (in seconds) for the tests above. The best (lowest) score in each row is shown in
bold.

In summary, our numerical results underscore the undeniable effectiveness of our image denoising
model, especially when faced with high noise levels. The automatic selection of regularization parame-
ters λ and α is a major asset of our approach, and our superior performance compared to other established
methods enhances the credibility and relevance of our model across a wide range of applications.
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Figure 8: The obtained denoised image compared to other PDE approach [12] with respect to both quality mea-
sures PSNR and SSIM. First row: Noisy images with σnoisy = 45. Second row: Approach of [12]. Third row: Our
approach.
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4 Conclusions

In conclusion, this study introduces a novel bilevel optimization approach for solving a nonlinear partial
differential equation proposed in [1], aimed at improving image denoising quality by estimating certain
parameters of the equation. Our work offers both analytical results, demonstrating the existence of min-
imizers and numerical approximations of the solution, and numerical results confirming the excellent
performance of our method compared to traditional denoising methods. This research represents a sig-
nificant contribution to image restoration, paving the way for high-quality practical applications in this
constantly evolving field.
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