
تعداد نشریات | 31 |
تعداد شمارهها | 797 |
تعداد مقالات | 7,617 |
تعداد مشاهده مقاله | 29,037,071 |
تعداد دریافت فایل اصل مقاله | 7,671,378 |
A numerical method for solving a variable-order fractional integral-differential equation | ||
Computational Sciences and Engineering | ||
مقاله 6، دوره 4، شماره 1، تیر 2024، صفحه 67-78 اصل مقاله (706.27 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22124/cse.2025.29847.1094 | ||
نویسنده | ||
Ahmad Sharif* | ||
Gonbad Kavous University | ||
چکیده | ||
In this paper, a numerical method based on finite differences is presented for numerically solving a fractional integral-differential equation of variable order with Prabhakar integral and Caputo-Prabhakkar fractional derivative. Using the proposed method, an approximate solution of the desired equation is obtained from solving a system of linear equations. The stability of the method is investigated and it is shown that the proposed method is stable under certain conditions. Three examples are presented to demonstrate the efficiency and accuracy of the proposed method. | ||
کلیدواژهها | ||
Fractional integral-differential equation؛ Finite difference method؛ Numerical solution؛ Derivative order؛ Caputo-Prabhakkar؛ Stability | ||
مراجع | ||
[1] Volterra V. Theory of functionals and of integral and integro-differential equations. 1959. [2] Zhao X-Q. Dynamical systems in population biology: Springer; 2003. [3] Najafi HS, Edalatpanah S, Sheikhani AR. Convergence analysis of modified iterative methods to solve linear systems. Mediterranean journal of mathematics. 2014; 11(3):1019-32. [4] Najafi HS, Edalatpanah S, Refahisheikhani A. An analytical method as a preconditioning modeling for systems of linear equations. Computational and Applied Mathematics. 2018; 37(2):922-31. [5] Dehghan M. Solution of a partial integro-differential equation arising from viscoelasticity. International Journal of Computer Mathematics. 2006; 83(1):123-9. [6] Makroglou A. Integral equations and actuarial risk management: Some models and numerics. Mathematical Modelling and Analysis. 2003; 8(2):143-54. [7] Hamlin D, Leary R. Methods for using an integro-differential equation as a model of tree height growth. Canadian Journal of Forest Research. 1987; 17(5):353-6. [8] Mukohyama S. Integro-differential equation for brane-world cosmological perturbations. Physical Review D. 2001; 64(6):064006. [9] Diethelm K. The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type: Springer Science & Business Media; 2010. [10] ARDJOUNİ A, DJOUDİ A. Existence and uniqueness of solutions for nonlinear implicit Caputo-Hadamard fractional differential equations with nonlocal conditions. Advances in the Theory of Nonlinear Analysis and its Application. 2019; 3(1):46-52. [11] Ammi MS, Torres DF. Analysis of fractional integro-differential equations of thermistor type. Handbook of Fractional Calculus with Applications. 2019; 1:327-46. [12] Mendes EM, Salgado GH, Aguirre LA. Numerical solution of Caputo fractional differential equations with infinity memory effect at initial condition. Communications in Nonlinear Science and Numerical Simulation. 2019; 69:237-47. [13] Mahboob Dana Z, Najafi HS, Refahi Sheikhani A. An efficient numerical method for solving Benjamin–Bona–Mahony–Burgers equation using difference scheme. Journal of Difference Equations and Applications. 2020:1-12. [14] Oldham K, Spanier J. The fractional calculus theory and applications of differentiation and integration to arbitrary order: Elsevier; 1974. [15] Podlubny I. Fractional Differential Equations, Academic Press, San Diego, CA, 1999. [16] Shariffar F, refahi Sheikhani A, Najafi HS. An efficient chebyshev semi-iterative method for the solution of large systems. University Politehnica of Bucharest Scientific Bulletin- Series A Applied Mathematics and Physics. 2018; 80(4):239-52. [17] Bahaa G, Abdeljawad T, Jarad F. On Mittag-Leffler Kernel-Dependent Fractional Operators with Variable Order. Fractional Calculus and Fractional Differential Equations: Springer; 2019. p. 41-58. [18] Abdeljawad T, Mert R, Torres DF. Variable order Mittag–Leffler fractional operators on isolated time scales and application to the calculus of variations. Fractional Derivatives with Mittag-Leffler Kernel: Springer; 2019. p. 35-47. [19] Sheng H, Sun H, Chen Y, Qiu T. Synthesis of multifractional Gaussian noises based on variable-order fractional operators. Signal Processing. 2011; 91(7):1645-50. [20] Momani S. A numerical scheme for the solution of multi-order fractional differential equations. Applied Mathematics and Computation. 2006; 182(1):761-70. [21] Ray SS, Bera R. An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method. Applied Mathematics and Computation. 2005; 167(1):561-71. [22] Saadatmandi A, Dehghan M. A new operational matrix for solving fractional-order differential equations. Computers & mathematics with applications. 2010; 59(3):1326-36. [23] Zhuang P, Liu F, Anh V, Turner I. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM Journal on Numerical Analysis. 2009; 47(3):1760-81. [24] Yang J, Yao H, Wu B. An efficient numerical method for variable order fractional functional differential equation. Applied Mathematics Letters. 2018; 76:221-6. [25] Babaei A, Jafari H, Banihashemi S. Numerical solution of variable order fractional nonlinear quadratic integro-differential equations based on the sixth-kind Chebyshev collocation method. Journal of Computational and Applied Mathematics. 2020:112908. [26] Mohebbi A, Saffarian M. Implicit RBF Meshless Method for the Solution of Two-dimensional Variable Order Fractional Cable Equation. Journal of Applied and Computational Mechanics. 2020 Apr 1; 6(2):235-47. [27] Solís-Pérez J, Gómez-Aguilar J, Atangana A. Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws. Chaos, Solitons & Fractals. 2018; 114:175-85. [28] Chen R, Liu F, Anh V. Numerical methods and analysis for a multi-term time–space variable-order fractional advection–diffusion equations and applications. Journal of Computational and Applied Mathematics. 2019; 352:437-52. [29] Hosseininia M, Heydari MH, Ghaini FM, Avazzadeh Z. A wavelet method to solve nonlinear variable-order time fractional 2D Klein–Gordon equation. Computers & Mathematics with Applications. 2019; 78(12):3713-30. [30] Garra R, Gorenflo R, Polito F, Tomovski Ž. Hilfer–Prabhakar derivatives and some applications. Applied mathematics and computation. 2014; 242:576-89. [31] Kilbas AA, Saigo M, Saxena RK. Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transforms and Special Functions. 2004; 15(1):31-49. [32] Prabhakar TR. A singular integral equation with a generalized Mittag Leffler function in the kernel. 1971. [33] Giusti A, Colombaro I, Garra R, Garrappa R, Polito F, Popolizio M, et al. A practical guide to Prabhakar fractional calculus. Fractional Calculus and Applied Analysis. 2020; 23(1):9-54. [34] Garra R, Garrappa R. The Prabhakar or three parameter Mittag–Leffler function: Theory and application. Communications in Nonlinear Science and Numerical Simulation. 2018; 56:314-29. [35] Mainardi F, Garrappa R. On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics. Journal of Computational Physics. 2015; 293:70-80. [36] Garrappa R. Grünwald–Letnikov operators for fractional relaxation in Havriliak–Negami models. Communications in Nonlinear Science and Numerical Simulation. 2016; 38:178-91. [37] Giusti A, Colombaro I. Prabhakar-like fractional viscoelasticity. Communications in Nonlinear Science and Numerical Simulation. 2018; 56:138-43. [38] Xu J. Time-fractional particle deposition in porous media. Journal of Physics A: Mathematical and Theoretical. 2017; 50(19):195002. [39] Suthar DL, Shimelis B, Abeye N, Amsalu H. New composition formulae for the generalized fractional calculus operators with the extended Mittag-Leffler function. Journal| MESA. 2020 May 24; 11(2):309-21. [40] Ascher UM. Numerical methods for evolutionary differential equations: SIAM; 2008. [41] Doha EH, Abdelkawy MA, Amin AZ, Lopes AM. On spectral methods for solving variable-order fractional integro-differential equations. Computational and Applied Mathematics. 2018 Jul 1; 37(3):3937-50. | ||
آمار تعداد مشاهده مقاله: 120 تعداد دریافت فایل اصل مقاله: 31 |