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Abstract. Asset prices typically follow significant trends influenced by the economic environment or
overall investor sentiment. Regime-switching is commonly employed to capture asset price dynamics,
as it effectively describes significant trends and reflects the changing correlations of asset returns over
various periods. This paper explores multi-period mean-variance portfolio optimization under regime-
switching with path-dependent returns. Unlike conventional models, this paper assumes that asset returns
depend on the entire path of market states rather than just the current one. Consequently, investors base
their decisions on all observed states up to the current moment. Utilizing dynamic programming tech-
niques, we derive the path-dependent optimal portfolio strategy and the mean-variance efficient frontier
in closed form. Furthermore, we demonstrate that the results from the traditional regime-switching
model, can be viewed as specific cases of our proposed model.
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1 Introduction

The mean-variance (M-V) portfolio selection problem was first formulated by Markowitz [21], who in-
troduced a static model aimed at minimizing the portfolio return variance for a specified level of expected
return. Alternatively, this problem can also be approached by maximizing the portfolio’s expected re-
turn for a fixed level of return variance. Merton [22] provided the first analytical solution for the static
version when negative weights are allowed. However, dynamic versions faced challenges due to the
non-separability of variance in dynamic programming. Li and Ng [18] and Zhou and Li [32] overcame
this with an embedding technique, providing closed-form solutions for multi-period and continuous-
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time settings. Later works expanded on this, exploring various constraints, such as no-shorting [11, 19],
bankruptcy prevention [4, 34], and asset-liability management [9, 17].

The studies mentioned above assume that risky asset returns are independent across time periods.
However, numerous empirical analyses suggest that returns often exhibit intertemporal dependency.
Therefore, it is reasonable to consider M-V portfolio models with correlated returns. General correlation
structures have been explored in the portfolio selection models, see [12, 14, 15, 27, 28, 30].

A practical approach to capture return correlations is through Markov chains. In Markov regime-
switching models, asset returns depend on the market regime, which is modeled as a finite-state Markov
chain. These regimes represent underlying economic conditions, investor sentiment, and other factors.
Many portfolio selection models incorporate regime-switching, such as M-V portfolio selection [5, 33],
expected utility maximization [1], and M-V asset-liability management [7, 8]. Other studies include
no bankruptcy restriction [10], time-consistent M-V portfolio selection [23], and the optimal R&D
investment problem [24]. Models with uncertain exit-times under regime-switching were explored
in [6, 13, 16, 26, 29]. Hidden Markov regime-switching models were also studied in [3, 25, 31].

In the traditional regime-switching model, asset returns and investor decisions depend on the current
market state. We extend this assumption by considering that asset returns in each period depend on
all market states from the beginning to the present, making returns path-dependent. This means that
past market conditions influence the current performance of assets. For instance, one of the primary
indicators of a bull market is the sustained increase in asset prices. This price growth typically results
from high investor demand, driven by confidence in the market’s upward trend and a stronger inclination
to purchase assets. To illustrate this trend, we can analyze the path of market states over time. Recently,
Keykhaei [16] applied the concept of path-dependency to model the random exit-time from the market.
He assumed that the investor makes a definitive decision to exit and end investment period based on
information about the market state up to the current moment, meaning that the exit-time is a stopping
time with respect to the market filtration. This model effectively examines the impact of the market path
on the investment duration and the decision-making process of investors.

To the best of our knowledge, the multi-period portfolio optimization problem in the M-V framework
under path-dependency for asset returns has not been studied. To address this gap, we model key market
parameters as path-dependent variables, capturing richer market dynamics compared to the traditional
state-dependent approaches. Using a path-dependent value function technique via dynamic program-
ming, we introduce a generalized Bellman equation that incorporates path-dependent state variables.
Furthermore, we employ Lagrange multipliers and duality theory to derive the optimal portfolio strategy
analytically. These developments allow us to compute the M-V efficient frontier explicitly and to de-
termine optimal strategies and risks by modeling key parameters recursively and providing their explicit
forms. Our results demonstrate that the optimal portfolio strategy is inherently dependent on the market
path rather than solely on the current state. As expected, the results from Cakmak and Ozekici [5] for
the traditional model are recovered as special cases of our model.

The rest of the paper is organized as follows: Section 2 introduces the basic notations, model assump-
tions, and M-V portfolio formulation. Section 3 provides the analytical solutions and the M-V efficient
frontier. In Section 4, we examine portfolio selection with state-dependent returns. An illustrative exam-
ple is presented in Section 5, and Section 6 discusses an empirical study. Finally, conclusions are drawn
in Section 7.
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2 Problem formulation

Consider an investor entering a financial market at time 0 with initial wealth w0 and planning investments
over T periods. Let the market state at time n (n = 0,1, . . . ,T ) be denoted by Xn. The market consists
of N + 1 risky assets, where the returns over period n (n = 0,1, . . . ,T − 1) depend on the market path
(X0,X1, . . . ,Xn). For k = 0,1, . . . ,N, denote the return of the k-th asset over period n by Rk

n(X0, . . . ,Xn).
We assume {Xn; n = 0,1, . . . ,T} is a Markov chain with state space S= {1,2, . . . ,L} and time-dependent
transition matrices Qn such that Qn(i, j) = Pr(Xn = j|Xn−1 = i), where i, j ∈ S.

We make the following assumption about the Markov chain:

(A1) Qn(i, j)> 0 for all i, j ∈ S.

For the given market path (X0, . . . ,Xn) = (i0, . . . , in), let

Rn(i0, . . . , in) =
(
R0

n(i0, . . . , in),R
1
n(i0, . . . , in), . . . ,R

N
n (i0, . . . , in)

)′
,

and
Re

n(i0, . . . , in) =
(
R1

n(i0, . . . , in)−R0
n(i0, . . . , in), . . . ,R

N
n (i0, . . . , in)−R0

n(i0, . . . , in)
)′
,

be the vectors of asset returns and excess returns, respectively, where A′ denotes the transpose of a matrix
or vector A.

Let E
[
·
]

represent the expectation operator. We make the following assumptions about asset returns
for all m,n = 0,1, . . . ,T −1 and market paths (i0, . . . , in) and ( j0, . . . , jm):

(A2) E
[
Re

n(i0, . . . , in)
]
6= 0;

(A3) E
[
Rn(i0, . . . , in)Rn(i0, . . . , in)′

]
is positive definite;

(A4) Rn(i0, . . . , in) is independent of Rm( j0, . . . , jm) for all n 6= m;

(A5) Rn(i0, . . . , in) is independent of the market state Xn+1 = in+1.

For n = 0,1, . . . ,T −1 and a given market path (i0, . . . , in), we define

hn(i0, . . . , in) = re
n(i0, . . . , in)

′Vn(i0, . . . , in)−1re
n(i0, . . . , in),

gn(i0, . . . , in) = rn(i0, . . . , in)− re
n(i0, . . . , in)

′Vn(i0, . . . , in)−1Un(i0, . . . , in),

fn(i0, . . . , in) = r2
n(i0, . . . , in)−Un(i0, . . . , in)′Vn(i0, . . . , in)−1Un(i0, . . . , in),

where

Vn(i0, . . . , in) = E
[
Re

n(i0, . . . , in)R
e
n(i0, . . . , in)

′],Un(i0, . . . , in) = E
[
R0

n(i0, . . . , in)R
e
n(i0, . . . , in)

]
,

re
n(i0, . . . , in) = E

[
Re

n(i0, . . . , in)
]
,rn(i0, . . . , in) = E

[
R0

n(i0, . . . , in)
]
,r2

n(i0, . . . , in) = E
[
(R0

n(i0, . . . , in))
2].

We use the following lemma to ensure the existence of an optimal solution. The proof is similar to [26,
Lemmas 2 and 3] and is omitted here for brevity.

Lemma 1. Vn(i0, . . . , in) is positive definite, and hn(i0, . . . , in), fn(i0, . . . , in)> 0.
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Let πk
n represent the capital allocated to asset k, and πn = (π1

n ,π
2
n , . . . ,π

N
n )
′ ∈ RN as the investor’s

portfolio at time n. The investor’s portfolio strategy is the investment sequence π = {π0,π1, . . . ,πT−1}.
Additionally, W π

n signifies the investor’s wealth level at time n given the portfolio strategy π . The invest-
ment in asset 0 at time n is π0

n =W π
n −∑

N
k=1 πk

n . Consequently, within the self-financing framework, the
wealth evolution under π can be described as:

W π
n+1 =W π

n R0
n(X0, . . . ,Xn)+π

′
nRe

n(X0, . . . ,Xn), n = 0,1, . . . ,T −1.

In this context, we make the following assumptions:

(A6) The investor’s current wealth W π
n = wn is assumed not to influence the vector return Rn(i0, . . . , in)

and the market state Xn+1;

(A7) Short selling is permitted, and there are no associated transaction costs.

Let E0[·] = E[· | X0 = i0;W π
0 = w0] and V0[·] = E0[·]2−E2

0[·] represent the conditional expectation
and variance under initial conditions i0 and w0. Using the M-V criterion, the multi-period portfolio
selection problem is formulated through the following three optimization problems:

MV 1 :


max

π
E0
[
W π

T
]

s.t. V0
[
W π

T
]
= σ

2,

W π
n+1 =W π

n R0
n(X0, . . . ,Xn)+π

′
nRe

n(X0, . . . ,Xn), n = 0,1, . . . ,T −1,

MV 2 :


min

π
V0
[
W π

T
]

s.t. E0
[
W π

T
]
= µ,

W π
n+1 =W π

n R0
n(X0, . . . ,Xn)+π

′
nRe

n(X0, . . . ,Xn), n = 0,1, . . . ,T −1,

MV 3 :

{
max

π
E0
[
W π

T
]
−ωV0

[
W π

T
]
(ω > 0)

s.t. W π
n+1 =W π

n R0
n(X0, . . . ,Xn)+π

′
nRe

n(X0, . . . ,Xn), n = 0,1, . . . ,T −1.

In problem MV 1, an investor seeks the optimal investment strategy to maximize the expected terminal
wealth while maintaining the variance of the terminal wealth at a preselected risk level σ2. In problem
MV 2, the investor aims to minimize the variance of the terminal wealth, ensuring that the expected
terminal wealth equals a preselected level µ . In problem MV 3, the focus is on the investor’s risk aversion,
represented by the parameter ω . The larger the value of ω , the more risk-averse the investor is, reflecting
their preference for safer investments with lower variance.

Remark 1. It is worth noting that the problem MV 1 (or equivalently MV 2 and MV 3) can be inter-
preted as a specific case of the Bolza form commonly used in investment-consumption problems. Here,
the absence of consumption simplifies the model to the Mayer form, focusing only on terminal wealth
optimization.

Remark 2. It is well known that the three optimization problems above are equivalent in the sense that
they yield the same optimal solution for some specific values of the parameters µ , σ2, and ω . More
precisely, if the efficient strategy π∗ (to be defined later) is the optimal solution of MV 2, then it also is
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the optimal solution of MV 1 with σ2 = V0
[
W π∗

T

]
. Similarly, if π∗ is the optimal solution of MV 1, it also

is the optimal solution of MV 2 with µ = E0
[
W π∗

T

]
. On the other hand, if π∗ is the optimal solution of

MV 3, it also is the optimal solution of MV 2 with µ = E0
[
W π∗

T

]
and the optimal solution of MV 1 with

σ2 = V0
[
W π∗

T

]
. Furthermore, at the optimal solution of MV 3, the following relation holds:

dV0
[
W π

T

]
dE0
[
W π

T

] = 1
ω
. (1)

3 Analytical solutions

Initially, we will tackle the optimization problem MV 2 by employing the Lagrangian dual method along-
side a dynamic programming framework. Subsequently, the optimal solutions for the problems MV 1 and
MV 3 will be derived from the interrelations outlined in Remark 2.

Now, let us examine the optimization scenario MV 2. By considering the constraint E0
[
W π

T

]
= µ and

the variance definition, we can reformulate the problem as follows:

MV 2 :


min

π
E0
[
(W π

T −µ)2]
s.t. E0

[
W π

T −µ
]
= 0,

W π
n+1 =W π

n R0
n(X0, . . . ,Xn)+π

′
nRe

n(X0, . . . ,Xn), n = 0,1, . . . ,T −1.

MV 2 is identified as a convex problem. To solve it, we employ a Lagrange multiplier 2λ ∈ R and
reformulate MV 2 into an unconstrained auxiliary problem, expressed as follows:

MV 4 :

{
min

π
E0
[
(W π

T −µ)2]+2λE0
[
W π

T −µ
]

s.t. W π
n+1 =W π

n R0
n(X0, . . . ,Xn)+π

′
nRe

n(X0, . . . ,Xn), n = 0,1, . . . ,T −1.

By letting d = λ −µ and d0 = µ2−2λ µ , we can recast the problem as:

MV 4 :

{
min

π
E0
[
(W π

T )2 +2dW π
T +d0

]
s.t. W π

n+1 =W π
n R0

n(X0, . . . ,Xn)+π
′
nRe

n(X0, . . . ,Xn), n = 0,1, . . . ,T −1.

By disregarding the constant term d0 in the objective function of MV 4, we formulate the following
equivalent optimization problem:

MV 5 :

{
min

π
E0
[
(W π

T )2 +2dW π
T
]

s.t. W π
n+1 =W π

n R0
n(X0, . . . ,Xn)+π

′
nRe

n(X0, . . . ,Xn), n = 0,1, . . . ,T −1.

Prior to solving this problem, we will introduce some definitions and notations, along with auxiliary
results that will be referenced throughout the paper.

3.1 Matrix expressions overview

In the subsequent section, we will perform intricate matrix computations to derive the explicit optimal
solution. To facilitate these calculations, we will use some notations introduced in [16], which will
simplify the forthcoming expressions.
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Let k,m, and n be non-negative integers. For 2 ≤ m ≤ n we define matrices A and B as follows: A
is an L×L×·· ·×L︸ ︷︷ ︸

m times

matrix, and B is an L×L×·· ·×L︸ ︷︷ ︸
n times

matrix. We denote (A •B) as an L×L×·· ·×L︸ ︷︷ ︸
n times

matrix and B as an L×L×·· ·×L︸ ︷︷ ︸
(n−1) times

matrix defined by the equations:

(A•B)(i1, . . . , in) = A(in−m+1, . . . , in)B(i1, . . . , in),

B(i1, . . . , in−1) = ∑
in∈S

B(i1, . . . , in−1, in).

For 1≤ n< k, let Ak−n, . . . ,Ak represent a sequence of L×L matrices, while Bk− j ( j = 1, . . . ,n) and αk de-
note an L×L×·· ·×L︸ ︷︷ ︸

(k− j+1) times

matrix and an L×L×·· ·×L︸ ︷︷ ︸
(k+1) times

matrix, respectively. Using the notation established

earlier, we define

k−1

∏
j=k−n

(A j •B j)• (Ak •αk) := ((Ak−n •Bk−n)• (. . .• ((Ak−1 •Bk−1)• (Ak •αk)) . . .)) (2)

as an L×L×·· ·×L︸ ︷︷ ︸
(k−n) times

matrix. To facilitate our calculations, we define ∏ /0(A j •B j)• (Ak •αk) = (Ak •αk).

Additionally, we have ∑ /0(.) = 0 and ∏ /0(.) = I where I denotes the identity matrix.
The subsequent lemma provides a more detailed characterization of the structure represented in (2).

The proofs of Lemmas 2 and 3 are similar to those presented in [16] and have therefore been omitted.

Lemma 2. For n≥ 0,

k−1

∏
j=k−n

(A j •B j)• (Ak •αk)(i0, . . . , ik−n−1) =

∑
ik−n∈S

. . . ∑
ik−1∈S

∑
ik∈S

Ak−n(ik−n−1, ik−n)Bk−n(i0, . . . , ik−n) . . .Ak−1(ik−2, ik−1)Bk−1(i0, . . . , ik−1)

×Ak(ik−1, ik)αk(i0, . . . , ik).

Lemma 3. Let {An}T
n=1 represent a sequence of L×L matrices, while {βn}T

n=0 and {θn}T−1
n=0 denote se-

quences of L×L×·· ·×L︸ ︷︷ ︸
(n+1) times

matrices. Define {αn}T
n=0 as a recursive sequence of L×L×·· ·×L︸ ︷︷ ︸

(n+1) times

matrices

with backward-defined components given by

αn(i0, . . . , in) = βn(i0, . . . , in)+θn(i0, . . . , in)(An+1 •αn+1)(i0, . . . , in),

with the terminal condition αT = βT . Then, explicitly we have

αn(i0, . . . , in) = βn(i0, . . . , in)+θn(i0, . . . , in)
T

∑
k=n+1

k−1

∏
j=n+1

(A j •θ j)• (Ak •βk)(i0, . . . , in).
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3.2 Solution to problem MV 5

The dynamic programming approach is used to solve stochastic optimization problems. This approach is
particularly useful when the decision-making process is multi-stage, as it allows for the decomposition
of the problem into smaller and more manageable subproblems. In dynamic programming, the value
function vn(Xn) typically represents the minimum (or maximum) cost (or reward) from time n onwards
under the random state variable Xn. The problem is formulated by considering the optimization objective
starting from time 0, expressed as

v0(x0) = min
u0,...,uT−1

E

[
T−1

∑
n=0

cn(Xn,un)+g(XT )

]
,

under the given initial state X0 = x0 where cn(Xn,un) is the cost at time n, g(XT ) is the terminal cost, and
un represents the decision variables. The value function vn(xn) represents the optimal value starting from
time n under the current state Xn = xn, i.e.,

vn(xn) = min
un,...,uT−1

E

[
T−1

∑
k=n

ck(Xk,uk)+g(XT ) | Xn = xn

]
,

and can be expressed as

vn(xn) = min
un

E [cn(xn,un)+ vn+1(Xn+1) | Xn = xn] .

This recursive relationship, known as the Bellman equation, with the terminal condition vT (xT ) = g(xT ),
provides the connection between the value functions at consecutive time steps and is a key feature of dy-
namic programming in stochastic optimization problems. Note that, if the running cost cn(Xn,un) is zero
for all n, the problem reduces to the Mayer form, focusing solely on the terminal cost g(XT ). Conversely,
if the terminal cost g(XT ) is zero, the formulation corresponds to the Lagrange form, minimizing the cu-
mulative running cost. When both g(XT ) and cn(Xn,un) are non-zero, the problem represents the Bolza
form, combining terminal and running costs. In this study, the Mayer form is adopted, as the objective
focuses exclusively on optimizing terminal wealth. For further details, see [2].

We utilize dynamic programming approach to address the problem MV 5. To achieve this, we intro-
duce a path-dependent value function method that relies on observations of market states. Let the value
function of MV 5 at time n be defined based on the market state path (i0, . . . , in) and the wealth amount
wn as follows

vn(i0, . . . , in;wn) = min
πn,...,πT−1

Ei0,...,in;wn

[
(W π

T )2 +2dW π
T
]
,

where Ei0,...,in;wn

[
·
]
= E

[
· | X0 = i0, . . . ,Xn = in;W π

n = wn
]
.

Remark 3. The key distinction between the current model and other multi-period portfolio selection
frameworks involving regime-switching lies in how value functions and optimal portfolios are formulated.
In our approach, at each time n, both the value function and the resulting optimal portfolio are influenced
by the market state path (i0, . . . , in) from the start until time n. In contrast, previous models typically
assume that value functions and optimal portfolios are determined solely by the present market state in.
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Based on our assumptions and the dynamic programming principle, the Bellman equation for solving
problem MV 5 is given as follows

vn(i0, . . . , in;wn) = min
πn

E
[
vn+1(i0, . . . , in,Xn+1;W π

n+1)|X0 = i0, . . . ,Xn = in,W π
n = wn

]
= min

πn
∑

in+1∈S
Qn+1(in, in+1)E

[
vn+1(i0, . . . , in+1;wnR0

n(i0, . . . , in)+π
′
nRe

n(i0, . . . , in))
]
,

with the terminal condition vT (i0, . . . , iT ;wT ) = w2
T + 2dwT . The subsequent theorem provides a more

comprehensive description of the structure of the value functions.

Theorem 1. The value functions for problem MV 5 and respective optimal policies can be expressed as

vn(i0, . . . , in;wn) = an(i0, . . . , in)w2
n +bn(i0, . . . , in)wn + cn(i0, . . . , in), (3)

π
∗
n (i0, . . . , in;wn) =−Vn(i0, . . . , in)−1[wnUn(i0, . . . , in)+

(Qn+1 •bn+1)(i0, . . . , in)

2(Qn+1 •an+1)(i0, . . . , in)
re

n(i0, . . . , in)
]
,

where the coefficients an, bn, and cn satisfy the following recursive relationships

an(i0, . . . , in) = fn(i0, . . . , in)(Qn+1 •an+1)(i0, . . . , in),

bn(i0, . . . , in) = gn(i0, . . . , in)(Qn+1 •bn+1)(i0, . . . , in),

cn(i0, . . . , in) = en(i0, . . . , in)+(Qn+1 • cn+1)(i0, . . . , in),

en(i0, . . . , in) =−
((Qn+1 •bn+1)(i0, . . . , in))2

4(Qn+1 •an+1)(i0, . . . , in)
hn(i0, . . . , in).

Proof. To establish the result, we employ backward induction on n. For the case n = T , Eq. (3) holds
directly by setting aT (i0, . . . , iT ) = 1,bT (i0, . . . , iT ) = 2d, and cT (i0, . . . , iT ) = 0. Now, consider n = T −1
for an arbitrary market path (i0, . . . , iT−1) and a wealth level of wT−1. Then

vT−1(i0, . . . , iT−1;wT−1)

=min
πT−1

E
{

∑
iT∈S

QT (iT−1, iT )vT
(
i0, . . . , iT ;wT−1R0

T−1(i0, . . . , iT−1)+π
′
T−1Re

T−1(i0, . . . , iT−1)
)}

=min
πT−1

E
{

∑
iT∈S

QT (iT−1, iT )aT (i0, . . . , iT )
[
wT−1R0

T−1(i0, . . . , iT−1)+π
′
T−1Re

T−1(i0, . . . , iT−1)
]2

+ ∑
iT∈S

QT (iT−1, iT )bT (i0, . . . , iT )
[
wT−1R0

T−1(i0, . . . , iT−1)+π
′
T−1Re

T−1(i0, . . . , iT−1)
]

+ ∑
iT∈S

QT (iT−1, iT )cT (i0, . . . , iT )
}

=min
πT−1

E
{
(QT •aT )(i0, . . . , iT−1)

[
wT−1R0

T−1(i0, . . . , iT−1)+π
′
T−1Re

T−1(i0, . . . , iT−1)
]2

+(QT •bT )(i0, . . . , iT−1)
[
wT−1R0

T−1(i0, . . . , iT−1)+π
′
T−1Re

T−1(i0, . . . , iT−1)
]

+(QT • cT )(i0, . . . , iT−1)
}



Portfolio optimization under regime-switching 505

= (QT •aT )(i0, . . . , iT−1)r2
T−1(i0, . . . , iT−1)w2

T−1 +(QT •bT )(i0, . . . , iT−1)rT−1(i0, . . . , iT−1)wT−1

+(QT • cT )(i0, . . . , iT−1)+min
πT−1

{
(QT •aT )(i0, . . . , iT−1)π

′
T−1VT−1(i0, . . . , iT−1)πT−1

+π
′
T−1
[
2(QT •aT )(i0, . . . , iT−1)wT−1UT−1(i0, . . . , iT−1)

+(QT •bT )(i0, . . . , iT−1)re
T−1(i0, . . . , iT−1)

]}
. (4)

Given that (QT •aT )(i0, . . . , iT−1) > 0 and that VT−1(i0, . . . , iT−1) is positive definite, as established by
Lemma 1, the optimal policy meets the following necessary and sufficient condition for optimality

(QT •aT )(i0, . . . , iT−1)VT−1(i0, . . . , iT−1)πT−1 +(QT •aT )(i0, . . . , iT−1)wT−1UT−1(i0, . . . , iT−1)

+
1
2
(QT •bT )(i0, . . . , iT−1)re

T−1(i0, . . . , iT−1) = 0.

Consequently, the optimal policy can be determined as follows

π
∗
T−1(i0, . . . , iT−1;wT−1) =−VT−1(i0, . . . , iT−1)

−1[wT−1UT−1(i0, . . . , iT−1)

+
(QT •bT )(i0, . . . , iT−1)

2(QT •aT )(i0, . . . , iT−1)
re

T−1(i0, . . . , iT−1)
]
.

By substituting π∗T−1(i0, . . . , iT−1;wT−1) back into (4), we obtain

vT−1(i0, . . . , iT−1;wT−1) = aT−1(i0, . . . , iT−1)w2
T−1 +bT−1(i0, . . . , iT−1)wT−1 + cT−1(i0, . . . , iT−1),

where

aT−1(i0, . . . , iT−1) = fT−1(i0, . . . , iT−1)(QT •aT )(i0, . . . , iT−1),

bT−1(i0, . . . , iT−1) = gT−1(i0, . . . , iT−1)(QT •bT )(i0, . . . , iT−1),

cT−1(i0, . . . , iT−1) =−
((QT •bT )(i0, . . . , iT−1))

2

4(QT •aT )(i0, . . . , iT−1)
hT−1(i0, . . . , iT−1)+(QT • cT )(i0, . . . , iT−1).

Observe that aT−1(i0, . . . , iT−1)> 0 by Lemma 1.
Now, assume that (3) is valid for n+ 1, and that an+1(i0, . . . , in+1) > 0 holds for every market path

(i0, . . . , in+1). We will prove the statement for n under the given market path (i0, . . . , in) and wealth
amount wn. By employing the induction hypothesis, we obtain

vn(i0, . . . ,in;wn)

=min
πn

E
{

∑
in+1∈S

Qn+1(in, in+1)vn+1
(
i0, . . . , in+1;wnR0

n(i0, . . . , in)+π
′
nRe

n(i0, . . . , in)
)}

=min
πn

E
{

∑
in+1∈S

Qn+1(in, in+1)an+1(i0, . . . , in+1)
[
wnR0

n(i0, . . . , in)+π
′
nRe

n(i0, . . . , in)
]2

+ ∑
in+1∈S

Qn+1(in, in+1)bn+1(i0, . . . , in+1)
[
wnR0

n(i0, . . . , in)+π
′
nRe

n(i0, . . . , in)
]

+ ∑
in+1∈S

Qn+1(in, in+1)cn+1(i0, . . . , in+1)
}
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=min
πn

E
{
(Qn+1 •an+1)(i0, . . . , in)

[
wnR0

n(i0, . . . , in)+π
′
nRe

n(i0, . . . , in)
]2

+(Qn+1 •bn+1)(i0, . . . , in)
[
wnR0

n(i0, . . . , in)+π
′
nRe

n(i0, . . . , in)
]
+(Qn+1 • cn+1)(i0, . . . , in)

}
=(Qn+1 •an+1)(i0, . . . , in)r2

n(i0, . . . , in)w
2
n +(Qn+1 •bn+1)(i0, . . . , in)rn(i0, . . . , in)wn

+(Qn+1 • cn+1)(i0, . . . , in)+min
πn

{
(Qn+1 •an+1)(i0, . . . , in)π ′nVn(i0, . . . , in)πn

+π
′
n
[
2(Qn+1 •an+1)(i0, . . . , in)wnUn(i0, . . . , in)+(Qn+1 •bn+1)(i0, . . . , in)re

n(i0, . . . , in)
]}

. (5)

Given that an+1(i0, . . . , in+1) > 0, it follows that (Qn+1 •an+1)(i0, . . . , in) > 0. Furthermore, by Lemma
1, Vn(i0, . . . , in) is positive definite. The minimization problem in (5) mirrors the structure of (4). Using
the same reasoning, the optimal policy can be determined as follows

π
∗
n (i0, . . . , in;wn) =−Vn(i0, . . . , in)−1[wnUn(i0, . . . , in)+

(Qn+1 •bn+1)(i0, . . . , in)

2(Qn+1 •an+1)(i0, . . . , in)
re

n(i0, . . . , in)
]
.

By substituting π∗n (i0, . . . , in;wn) back into (5), we obtain

vn(i0, . . . , in;wn) = an(i0, . . . , in)w2
n +bn(i0, . . . , in)wn + cn(i0, . . . , in),

where

an(i0, . . . , in) = fn(i0, . . . , in)(Qn+1 •an+1)(i0, . . . , in),

bn(i0, . . . , in) = gn(i0, . . . , in)(Qn+1 •bn+1)(i0, . . . , in),

cn(i0, . . . , in) =−
((Qn+1 •bn+1)(i0, . . . , in))2

4(Qn+1 •an+1)(i0, . . . , in)
hn(i0, . . . , in)+(Qn+1 • cn+1)(i0, . . . , in).

As before, we have an(i0, . . . , in)> 0.

Corollary 1. Let an, bn, and cn be the components as defined in Theorem 1. Then

an(i0, . . . , in) = fn(i0, . . . , in)
T−1

∏
j=n+1

(Q j • f j)• (QT •1T )(i0, . . . , in),

bn(i0, . . . , in) = 2dgn(i0, . . . , in)
T−1

∏
j=n+1

(Q j •g j)• (QT •1T )(i0, . . . , in),

cn(i0, . . . , in) = en(i0, . . . , in)+
T

∑
k=n+1

k−1

∏
j=n+1

(Q j •1 j)• (Qk • ek)(i0, . . . , in),

where we set 1n(i0, . . . , in) = 1 (n = 1,2, . . . ,T ). Also, eT (i0, . . . , iT ) = cT (i0, . . . , iT ) = 0 and, for n =
0,1, . . . ,T −1,

en(i0, . . . , in) =−d2

[
∏

T−1
j=n+1(Q j •g j)• (QT •1T )(i0, . . . , in)

]2

∏
T−1
j=n+1(Q j • f j)• (QT •1T )(i0, . . . , in)

hn(i0, . . . , in).
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The optimal policy π∗n (i0, . . . , in;wn) is then given by

π
∗
n (i0, . . . , in;wn) =−Vn(i0, . . . , in)−1

[
wnUn(i0, . . . , in)

+d
∏

T−1
j=n+1(Q j •g j)• (QT •1T )(i0, . . . , in)

∏
T−1
j=n+1(Q j • f j)• (QT •1T )(i0, . . . , in)

re
n(i0, . . . , in)

]
.

(6)

Proof. Using Lemmas 3 and 2, the assertions for an, bn, cn, and consequently for en and π∗n , are derived.
To obtain an, set βn(i0, . . . , in) = 0 for n = 0,1, . . . ,T −1 and βT (i0, . . . , iT ) = aT (i0, . . . , iT ) = 1 according
to Lemma 3. For bn, set βn(i0, . . . , in) = 0 for n = 0,1, . . . ,T −1 and βT (i0, . . . , iT ) = bT (i0, . . . , iT ) = 2d.
Finally, to obtain cn, set θn(i0, . . . , in) = 1.

3.3 Solutions to problems MV 1, MV 2 and MV 3

The optimal value of problem MV 5, given the initial conditions X0 = i0 and W π
0 = w0, is represented by

v0(i0;w0). Therefore, according to Theorem 1 and Corollary 1, the optimal value of problem MV 4 can
be expressed as follows

v0(i0;w0)+d0 =a0(i0)w2
0 +b0(i0)w0 + c0(i0)+d0

=a0(i0)w2
0 +2db(i0)w0−d2c(i0)+d0

=a0(i0)w2
0 +2(λ −µ)b(i0)w0− (λ −µ)2c(i0)+µ

2−2λ µ,

(7)

where

a0(i0) = f0(i0)
T−1

∏
j=1

(Q j • f j)• (QT •1T )(i0),

b(i0) = g0(i0)
T−1

∏
j=1

(Q j •g j)• (QT •1T )(i0),

c(i0) = e∗0(i0)+
T−1

∑
k=1

k−1

∏
j=1

(Q j •1 j)• (Qk • e∗k)(i0),

and e∗n = −(1/d2)en. To derive c(i0), observe that for k = T we have eT (i0, . . . , iT ) = 0. By Lemma 2,
it follows that ∏

T−1
j=1 (Q j •1 j)• (QT • e∗T )(i0) = 0. As observed, the optimal value of problem MV 4 is a

function of the Lagrange multiplier λ . We define this function as follows

L(λ ) := v0(i0;w0)+d0.

According to the Lagrange duality theorem (refer to [20]), the optimal value for the problem MV 2,
denoted as V∗0(µ), can be determined by maximizing the expression in (7) with respect to λ ∈ R. Thus,
we have

V∗0(µ) = max
λ∈R

L(λ ).
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Note that e∗n(i0, . . . , in)≥ 0 and e∗T−1(i0, . . . , iT−1) = hT−1(i0, . . . , iT−1)> 0 according to Lemma 1. There-
fore, the assumption (A1) guarantees that

T−2

∏
j=1

(Q j •1 j)• (QT−1 • e∗T−1)(i0) = ∑
i1∈S

. . . ∑
iT−1∈S

Q1(i0, i1) . . .QT−1(iT−2, iT−1)e∗T−1(i0, . . . , iT−1)> 0.

Consequently, we have

c(i0)≥
T−2

∏
j=1

(Q j •1 j)• (QT−1 • e∗T−1)(i0)> 0.

Thus, it follows that L(λ ) attains its maximum at λ ∗ = b(i0)w0−µ

c(i0)
+µ . Now, it suffices to substitute

d = λ
∗−µ =

b(i0)w0−µ

c(i0)
(8)

into Eq. (6) to derive the optimal strategy for problem MV 2. By substituting λ ∗ into (7), we obtain the
expression for the minimum variance in problem MV 2 as follows

V∗0(µ) =
1− c(i0)

c(i0)

(
µ− b(i0)w0

1− c(i0)

)2
+
(
a0(i0)−

(b(i0))2

1− c(i0)

)
w2

0. (9)

We recall that a portfolio strategy π∗ is considered M-V efficient if there exists no other portfolio
strategy π such that E0

[
W π

T

]
≥ E0

[
W π∗

T

]
and V0

[
W π

T

]
≤V0

[
W π∗

T

]
, with at least one of these inequalities

being strict. A point of the form (E0
[
W π∗

T

]
,V0
[
W π∗

T

]
) is referred to as an M-V efficient point in the M-V

plane. The collection of all efficient points constitutes the efficient frontier. This frontier can be derived
by varying the parameter values of µ , σ2, and ω in the problems MV 2, MV 1, and MV 3, respectively. It
is important to note that for any optimal portfolio strategy with a mean and variance of terminal wealth
located on the lower branch of the parabola described by (9), there exists an alternative optimal portfolio
strategy with the same variance but a higher expected terminal wealth. Therefore, the M-V efficient
frontier corresponds to the upper branch of the parabola (9) in the M-V plane, associated with values of
µ ≥ b(i0)w0

1−c(i0)
.

Based on the discussion above, we state the following theorem along with its corollary.

Theorem 2. Assume that µ ≥ b(i0)w0
1−c(i0)

. The efficient portfolio strategy for problem MV 2 is market path-
dependent and is provided by (6), where

d =
b(i0)w0−µ

c(i0)
. (10)

The efficient frontier is generated by varying µ according to (9).

Corollary 2. The global minimum variance, σ2
min =

(
a0(i0)− (b(i0))2

1−c(i0)

)
w2

0, corresponding to the expected

wealth µmin =
b(i0)w0
1−c(i0)

, can be achieved under the portfolio strategy provided by (6) with d = b(i0)w0
c(i0)−1 .
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For determining the optimal portfolio strategy in problem MV 1, as noted in Remark 2, we can set
σ2 = V∗0(µ) and express µ in terms of σ2 using Eq. (9) as follows

µ =

√
c(i0)

1− c(i0)

[
σ2 +

( (b(i0))2

1− c(i0)
−a0(i0)

)
w2

0

]
+

b(i0)w0

1− c(i0)
.

Substituting µ in (8) yields

d =
b(i0)w0

c(i0)−1
−

√
1

c(i0)(1− c(i0))

[
σ2 +

( (b(i0))2

1− c(i0)
−a0(i0)

)
w2

0

]
. (11)

Once again, by substituting the above value of d into (6), we obtain the optimal portfolio strategy for
problem MV 1. To determine the optimal solution for problem MV 3, we refer to Eq. (1) and use the
following relation at the optimal solution

1
ω

=
dV∗0(µ)

dµ
=

2(1− c(i0))
c(i0)

(
µ− b(i0)w0

1− c(i0)

)
.

We can express µ in terms of ω and then substitute this value into (8) to obtain

d =
1+2ωb(i0)w0

2ω(c(i0)−1)
. (12)

Now, substituting this value of d into (6) provides the optimal portfolio strategy for problem MV 3. The
following corollary provides a summary of these discussions.

Corollary 3. The efficient portfolio strategies for MV 1 and MV 3 are market path-dependent and follow
(6), with

d =


b(i0)w0
c(i0)−1 −

√
1

c(i0)(1−c(i0))

[
σ2 +

(
b(i0)2

1−c(i0)
−a0(i0)

)
w2

0

]
, for MV 1,

1+2ωb(i0)w0
2ω(c(i0)−1) , for MV 3.

4 Portfolio selection with state-dependent asset returns

In this section, we examine the M-V portfolio selection in a Markovian regime-switching market where
asset returns are influenced solely by the current state of the market. Under this framework, we define
the vectors of returns and excess returns as Rn(in) =

(
R0

n(in),R
1
n(in), . . . ,R

N
n (in)

)′ and Re
n(in) =

(
R1

n(in)−
R0

n(in), . . . ,R
N
n (in)−R0

n(in)
)′, where Rk

n(in) represents the return of the k-th asset over period n associated
with the current state in. This model has been analyzed by Cakmak and Ozekici [5], albeit under more
restrictive conditions, specifically in the presence of a riskless asset. We demonstrate that the findings
in Cakmak and Ozekici [5] are particular cases of our broader results. Importantly, in contrast to their
approach, we do not require the Markov chain to be time-homogeneous, we allow for the possibility of
the absence of a riskless asset in the market, and we acknowledge that the returns of risky assets are
contingent on both the market state and the time period.
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Given our assumption that market parameters are dependent on the current state, we redefine the
model’s key parameters accordingly. The new definitions are as follows

hn(in) = re
n(in)

′Vn(in)−1re
n(in),

gn(in) = rn(in)− re
n(in)

′Vn(in)−1Un(in),

fn(in) = r2
n(in)−Un(in)′Vn(in)−1Un(in),

where the parameters are defined as

Vn(in) = E
[
Re

n(in)R
e
n(in)

′], Un(in) = E
[
R0

n(i)R
e
n(in)

]
,

re
n(in) = E

[
Re

n(in)
]
, rn(in) = E

[
R0

n(in)
]
, r2

n(in) = E
[
(R0

n(in))
2].

To streamline our calculations, we introduce some notations. Let A and B be L×L matrices while
α and 1 = (1, . . . ,1)′ represent L-column vectors. We define Aα as the L×L matrix where Aα(i, j) =
A(i, j)α( j). It is important to note that we can express the vector sum as A = A1. Consequently, we
have AB = AB1 = AB and Aα = Aα . Let n be a positive integer. For convenience in notation, we define
Aαn = (An)αn for any L×L matrix An and L-column vector αn. Given that the new model parameters
depend on the current state, we have gn(i0, . . . , in) = gn(in). By applying Lemma 2 and our notations, we
obtain

T−1

∏
j=n+1

(Q j •g j)• (QT •1T )(i0, . . . , in)

= ∑
in+1∈S

. . . ∑
iT−1∈S

∑
iT∈S

Qn+1(in, in+1)gn+1(i0, . . . , in+1) . . .QT−1(iT−2, iT−1)gT−1(i0, . . . , iT−1)

×QT (iT−1, iT )1T (i0, . . . , iT )

= ∑
in+1∈S

. . . ∑
iT−1∈S

∑
iT∈S

Qn+1(in, in+1)gn+1(in+1) . . .QT−1(iT−2, iT−1)gT−1(iT−1)QT (iT−1, iT )

= ∑
in+1∈S

. . . ∑
iT−1∈S

Qgn+1(in, in+1) . . .QgT−1(iT−2, iT−1) ∑
iT∈S

QT (iT−1, iT )

= ∑
in+1∈S

. . . ∑
iT−1∈S

Qgn+1(in, in+1) . . .QgT−1(iT−2, iT−1)1(iT−1)

=
(
(

T−1

∏
j=n+1

Qg j)1
)
(in) = (

T−1

∏
j=n+1

Qg j)(in).

Following similar manipulations, we derive ∏
T−1
j=n+1(Q j • f j)• (QT •1T )(i0, . . . , in) = (∏T−1

j=n+1 Q f j)(in).
The parameters outlined here rely solely on the current market state in. Under this condition,

e∗n(i0, . . . , in) = e∗n(in) :=

[
(∏T−1

j=n+1 Qg j)(in)
]2

(∏T−1
j=n+1 Q f j)(in)

hn(in), n = 0, . . . ,T −1,

e∗T (i0, . . . , iT ) = e∗T (iT ) := 0.
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Using a similar approach, we derive ∏
k−1
j=n+1(Q j •1 j)• (Qk • e∗k)(i0, . . . , in) =

(
(∏k

j=n+1 Q j)e∗k
)
(in). Con-

sequently, we find

a0(i0) = f0(i0)
[
(

T−1

∏
j=1

Q f j)(i0)
]
,

b(i0) = g0(i0)
[
(

T−1

∏
j=1

Qg j)(i0)
]
,

c(i0) = e∗0(i0)+
T−1

∑
k=1

(
(

k

∏
j=1

Q j)e∗k
)
(i0) =

T−1

∑
k=0

(
(

k

∏
j=1

Q j)e∗k
)
(i0).

Based on Eq. (6), the optimal portfolios are structured as follows

π
∗
n (i0, . . . , in;wn) = π

∗
n (in;wn) =−Vn(in)−1

[
wnUn(in)+d

(∏T−1
j=n+1 Qg j)(in)

(∏T−1
j=n+1 Q f j)(in)

re
n(in)

]
.

Thus, as anticipated, the optimal portfolios depend solely on the current market state.
In Cakmak and Ozekici [5], the market setup includes both risky assets and a risk-free asset, with

returns dependent solely on the market state and assuming a time-homogeneous Markov chain. The
parameters defined there, i.e., h(i), g(i), f (i), a1(i), a2(i), and b(i), align with our parameters as follows

h(i) = hn(i), g(i) = gn(i), f (i) = fn(i), a1(i) = b(i0), a2(i) = a0(i0), b(i) = c(i0)/2.

Through straightforward adjustments, it becomes clear that the optimal portfolios and M-V efficient
frontier in Corollaries 4 and 5 of Cakmak and Ozekici [5] correspond with our findings.

5 A numerical example

Consider a market comprising two assets: one riskless and one risky. The market shifts between two
regimes, labeled as regime 1 (downward or bearish) and regime 2 (upward or bullish), representing
unfavorable and favorable economic conditions, respectively. Assume that the log-return of the risky
asset follows a normal distribution dependent on the market path as follows

logR1
n(i0, . . . , in)∼ N

(
µ(i0, . . . , in),σ2(i0, . . . , in)

)
,

µ(i0, . . . , in) =
n

∑
m=0

(−1)im0.5−m+n+1, σ
2(i0, . . . , in) = 0.05+n10−2.

In fact, we assume that the good performance of the economy in the past increases the expected return
of the risky asset for the next periods, while the bad performance decreases it. More specifically, these
parameters reflect the influence of market paths, particularly the proximity of states to the current state.
In particular, states closer to the present have a greater impact on asset returns. Additionally, we suppose
that the return of the riskless asset follows the equation

R0
n(i0, . . . , in) = 1.02+

n

∑
m=0

(−1)1+im0.02−m+n+1.
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In this case, unlike the risky asset, the return of the riskless asset increases under unfavorable conditions
for the risky asset and decreases under favorable conditions.

Suppose an investor enters the financial market in the initial state i0 = 1 with an initial wealth w0 =
100 and plans to invest over the next three periods, i.e., T = 3. We examine the time-homogeneous case
defined by the transition probability matrix Q =

(
0.4 0.6
0.3 0.7

)
. We then proceed to calculate the necessary

parameters to derive the optimal portfolios as follows

U0(1) =
(
−0.4348

)
, V0(1) =

(
0.1946

)
, re

0(1) =
(
−0.4181

)
,

U1(1, :) =
(
−0.5760 0.3229

)
, V1(1, :) =

((
0.3212 0.2124

))
, re

1(1, :) =
(
−0.5536 0.3227

)
,

U2(1, :, :) =
(
−0.6333 0.1732
−0.3408 0.9348

)
, V2(1, :, :) =

(
0.3840 0.1298
0.1442 1.1460

)
, re

2(1, :, :) =
(
−0.6087 0.1731
−0.3278 0.9352

)
,

h0(1) =
(
0.8981

)
, g0(1) =

(
0.1059

)
, f0(1) =

(
0.1102

)
,

h1(1, :) =
(
0.9544 0.4903

)
, g1(1, :) =

((
cc0.0475 0.5099

))
, f1(1, :) =

(
0.0494 0.5101

)
,

h2(1, :, :) =
(

0.9648 0.2308
0.7453 0.7632

)
, g2(1, :, :) =

(
0.0366 0.7695
0.2648 0.2368

)
, f2(1, :, :) =

(
0.0381 0.7698
0.2753 0.2367

)
.

Additionally, we calculate the following

ĝ0(1) =
(
0.0840

)
, f̂0(1) =

(
0.0854

)
,

ĝ1(1, :) =
(
0.4763 0.2452

)
, f̂1(1, :) =

(
0.4771 0.2483

)
,

ĝ2(1, :, :) =
(

1 1
1 1

)
, f̂2(1, :, :) =

(
1 1
1 1

)
,

where

ĝn(i0, . . . , in) =
T−1

∏
j=n+1

(Q•g j)• (Q•1T )(i0, . . . , in), f̂n(i0, . . . , in) =
T−1

∏
j=n+1

(Q• f j)• (Q•1T )(i0, . . . , in).

The optimal strategies for problems MV 2, MV 1, and MV 3 can be determined using (6) with the val-
ues calculated above and an appropriate value for d based on (10), (11), and (12). For example, the
optimal portfolio strategy for problem MV 2 with µ = 130, given the market path (i0, i1, i2) = (1,2,1)
and wealth levels (w0,w1,w2) = (100,115,120), is calculated under d = −130.2151 as (π∗0 ,π

∗
1 ,π

∗
2 ) =

(−51.8771,20.5916,−12.4172). As observed, in unfavorable market conditions for the risky asset, the
investment in it decreases (taking negative values), whereas in favorable conditions, the investment in-
creases (taking positive values).

The M-V efficient frontier is represented by the following equation, illustrated in Figure 1

V∗0(µ) =
1− c(1)

c(1)
(
µ− b(1)100

1− c(1)
)2

+(a0(1)−
(b(1))2

1− c(1)
)10000,

where, a0(1) = 0.0094,b(1) = 0.0089, and c(1) = 0.9915. As shown in Figure 1, according to Corollary
2, the minimum level of risk is σ2

min = 0.7103, corresponding to µmin = 104.9. In fact, achieving zero
risk is not possible, even with full investment in the riskless asset. Note that while the return of the
riskless asset is certain for a given state, the uncertainty of future market states makes the riskless return
uncertain in subsequent stages, leading to the presence of risk.
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Figure 1: M-V efficient frontiers corresponding to i0 = 1.

To examine the impact of market paths on the results (compared to the impact of the current market
state), we studied the optimal investment strategy in problem MV 2 (for a desired return of µ = 130 under
the path (i0, i1, i2) = (1,2,1) and wealth levels (w0,w1,w2) = (100,115,120)) as well as the efficient
frontier, under the assumptions of return dependency on the path and the current market state. The
results of these two cases are shown in Figures 1 and 2. Regarding the optimal strategies (Figure 2),
although they initially suggest almost identical portfolios, they begin to diverge as time progresses and
the path develops. In the current model, since the favorable state i1 = 2 following the unfavorable past
i0 = 1 is expected to yield a lower return increase (compared to the classical model), the investment in
the risky asset increases to compensate for this and achieve the desired final wealth. On the other hand,
in the unfavorable state i2 = 1 followed by the favorable past i1 = 2, the return increase for the riskless
asset is smaller (compared to the classical model), and as a result, the investment in the riskless asset
increases to compensate for this and achieve the desired final wealth (equivalently, the investment in the
risky asset decreases).

Regarding the efficient frontiers, as shown in the Figure 1, the efficient frontier in the present model
lies below that of the classical model. This indicates that, to achieve a specified expected terminal wealth
(e.g., µ = 160), the investor in the current model bears a higher level of risk compared to the classical
model (17.6 < 26.69). This increased risk stems from the heightened uncertainty in the present model,
where parameters depend on additional random variables, namely the market path, as opposed to solely
relying on the current market state in the classical model. The greater stochastic nature introduced by
this dependency translates into higher risk.

6 An empirical study

In this section, we demonstrate how the daily returns of an asset can be influenced by the historical
path or memory of the market. To this end, we utilize the historical data of the Tehran Stock Exchange
(TSE) index from November 2019 to June 2024. It is assumed that the market exhibits two states each
day: bullish (upward) and bearish (downward). The daily candlestick chart mechanism is employed
to identify market states and calculate daily rate of returns, considering both path-dependence and the
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Figure 2: Optimal portfolios corresponding to problem MV 2 for µ = 130.

current state. For simplicity, it is assumed that returns are time-independent and rely solely on the length
and type of the market path. The following approach is employed to determine the daily rate of return
in the interval [n,n+ 1) under the path (i0, . . . , in). First, the observed (n+ 1)-day paths of the form
(i0, . . . , in) are identified. Next, the rate of return for the last day is calculated using the corresponding
candlestick as Pl/Pf − 1, where Pl and Pf denote the last and first prices of the day, respectively. The
average return of return of these last-day candlesticks under the path (i0, . . . , in) is then considered as the
expected daily return of return of the TSE index for the given path (i0, . . . , in).

Some of the average daily returns, denoted by R̄, corresponding to different paths are presented in
Table 1. In this table, the returns associated with single-state paths, such as (1) and (2), represent returns
dependent on the current state, while the returns for other paths reflect their dependence on the entire
market path. As observed, the return corresponding to each state is significantly influenced by the path
leading to that state. For instance, under the traditional model, for an upward day (state (1)), an expected
return of return 0.0078 is predicted. However, if the prior day or the two days prior were also upward
(paths (1,1) and (1,1,1)), the expected rate of returns for an upward day increase to 0.0095 and 0.0097,
respectively, which are noticeably higher. This phenomenon is also evident in the reverse for downward
states. Overall, the effect of market paths–considering their length, the type of states, or the distance of
past states from the current one– on the daily returns is apparent.

Additionally, the long-term impact of market paths on daily returns is examined in Table 2 for con-
secutive upward and downward paths. The data from Table 2 are visualized in Figure 3, respectively,
based on the number of consecutive upward and downward states. As observed in these figures, the trend
of increasing or decreasing returns reverses over the long term. For instance, as the number of consec-
utive downward states increases, the magnitude of negative returns decreases. This phenomenon can be
interpreted as follows: in the short term, an increase in consecutive downward states, accompanied by
negative sentiment, intensifies the decline in value. However, over the long term, as market sentiment
stabilizes and assets become more attractive for purchase, the extent of the value decline diminishes. A
similar but inverse phenomenon is observed for consecutive upward paths.
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Table 1: Expected daily rate of returns under different market paths.

Path (1) (2) (1,1) (2,1) (1,2) (2,2)
R̄ 0.0078 -0.0079 0.0095 0.0056 -0.0063 -0.0088
Path (1,1,1) (2,1,1) (1,2,1) (2,2,1) (1,1,2) (1,2,2) (2,1,2) (2,2,2)
R̄ 0.0097 0.0094 0.0057 0.0056 -0.0058 -0.0084 -0.0070 -0.0091
Path (1,1,1,1) (2,1,1,1) (1,2,1,1) (1,1,2,1) (2,2,1,1) (2,1,2,1) (1,2,2,1) (2,2,2,1)
R̄ 0.0096 0.0097 0.0102 0.0064 0.0088 0.0041 0.0066 0.0048
Path (1,1,1,2) (2,1,1,2) (1,2,1,2) (1,1,2,2) (2,2,1,2) (2,1,2,2) (1,2,2,2) (2,2,2,2)
R̄ -0.0053 -0.0065 -0.0079 -0.0073 -0.0067 -0.0094 -0.0086 -0.0093

Table 2: Expected daily rate of returns for consecutive upward and downward paths.

Path (1) (1,1) (1,1,1) (1,1,1,1) (1,1,1,1,1) (1,1,1,1,1,1) (1,1,1,1,1,1,1)
R̄ 0.0078 0.0097 0.0095 0.0096 0.0099 0.0106 0.0101
Path (2) (2,2) (2,2,2) (2,2,2,2) (2,2,2,2,2) (2,2,2,2,2,2) (2,2,2,2,2,2,2)
R̄ -0.0079 -0.0088 -0.0091 -0.0093 -0.0101 -0.0089 -0.0092
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Figure 3: Expected daily returns for consecutive upward (left) and downward (right) paths.

7 Conclusion

In this paper, we explore the multi-period version of Markowitz’s mean-variance portfolio selection
model within a distinct framework of Markov regime-switching. Unlike traditional regime-switching
models, we propose that asset returns are path-dependent, not solely reliant on the current state. Specif-
ically, we assume that asset returns depend on the market states observed from the outset up to the
decision point. As time progresses, investors observe more market states and base their decisions on all
previously observed conditions. To address this problem, we employ the Lagrange duality method along
with a dynamic programming approach. This path-dependent assumption significantly complicates the
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optimal portfolio selection problem, making it challenging to derive a closed-form solution. To overcome
this, we introduce a path-dependent value function method to derive the closed forms of optimal port-
folio strategies and the efficient frontier. Our findings reveal that optimal portfolios are path-dependent.
Furthermore, we demonstrate that the results from the traditional model, where asset returns are only
dependent on the current state, can be viewed as special cases of the outcomes presented in our model.
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