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A GRAPH ASSOCIATED WITH MINIMAL IDEALS OF
A RING

B. BARMAN ∗ AND K. K. RAJKHOWA

Abstract. In this paper, a new kind of graph is introduced and
investigated. The minimal ideal graph for a ring R with unity
is an undirected graph whose vertex set contains all non-trivial
ideals of R. We denote the graph by mI(R) and the vertex set
by V (mI(R)). Two vertices P,Q ∈ V (mI(R)) are adjacent if a
minimal ideal p of R exists with p ⊂ P and p ⊂ Q. We study the
correlation of algebraic properties and graph theoretic properties
of mI(R). In this article, connectedness, diameter, clique number,
chromatic number, regular character, cut vertex etc. are discussed.

1. Introduction

In recent times, the study of algebraic structures using graph the-
oretic tools attracts a lot of researchers. There are many correspon-
dences which relate graph theory with ring theory. Some of them are
seen in [1, 2, 5, 6, 7, 8, 16, 17, 18, 19]. In [7], Gaur and Sharma in-
troduced the maximal graph of a commutative ring. They considered
the vertex set as the elements of a commutative ring and any two ver-
tices are adjacent if there exists a maximal ideal which contains both
the vertices. The prime objective of their paper is to find the clique
number, chromatic number of the graph and isomorphism classes of
the corresponding ring. We, in this paper, define a graph, denoted by
mI(R), associated with the minimal ideals of a ring R with unity and
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interpret the connectedness, clique number, chromatic number, inde-
pendence number and domination number of mI(R).

We recall certain ring theoretic and graph theoretic terminologies
and notations that are needed in this sequel.

In this discussion, all graphs are simple and undirected. Let G be
a graph with vertex set V (G) and edge set E(G). For any two x, y ∈
V (G), {x, y} ∈ E(G) if and only if x− y is a path in G. For x ∈ V (G),
deg(x) = |{y ∈ V (G) : {x, y} ∈ E(G)}|. A complete graph with n
vertices is denoted by Kn. G is said to be r-regular if degree of each
vertex of G is r. The length of shortest path between x and y is denoted
by d(x, y), and d(x, y) = ∞ if there exist no such paths. The diameter
of G, denoted by diam(G), ismax{d(x, y) : x, y ∈ V (G)}, and the girth
is the length of smallest cycle in G, denoted by girth(G). The clique
number, ω(G) is the number of vertices in the maximum complete
subgraph of G. The chromatic number of G, denoted by χ(G), is the
least number of colors to color all the vertices of G such that no two
adjacent vertices receive the same color. An independence set is a set
of mutually non adjacent vertices of G. We denote the independence
number of G by α(G), which is the number of vertices in the largest
independence set of G. A dominating set is a set of vertices such that
any vertex of G is either a member of the set or is adjacent to a vertex
of the set. The domination number is the cardinalty of the minimum
dominating set of G and is denoted by γ(G). If the vertex set of G can
be partitioned in an independent set and a clique, then G is said to be
a split. By n(S), we mean the number of elements present in the set
S.

The set of minimal ideals and the set of maximal ideals of a ring R
are denoted by minR and MaxR, respectively. A local ring contains
exactly one maximal ideal. R is said to be a Gorstein local ring if and
only if for any two ideals of R intersect non-trivially. Unless other wise
specified, all rings are artinian and contain the unity element. The sum
of all minimal ideals of R is denoted by Soc(R).

2. Connectedness of mI(R)

Some properties related with connectedness, girth, diameter, com-
pleteness, regular character, cut vertex are studied in this section.

Remark 2.1. If R contains a unique minimal ideal, then mI(R) is com-
plete.

Remark 2.2. In mI(R), an independent set is formed by the set of
minimal ideals of R.
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Remark 2.3. The graph mI(F ) is null if F is a field.

Theorem 2.4. For a local ring R, mI(R) is complete if and only if R
is a Gorenstein ring.

Proof. Let R be a Gorenstein ring. Consider any two vertices S, T ∈
V (mI(R)), then S ∩ T ̸= 0. As R is an artinian ring, so there exists
some minimal ideal p of R with p ⊆ S∩T , which implies p ⊆ S and p ⊆
Q. Therefore S, T are adjacent. Hence mI(R) is complete. Conversely,
assume that mI(R) is complete and P,Q are any two distinct vertices
of mI(R). Clearly P,Q are adjacent in mI(R). So, there exists atleast
one minimal ideal p such that p ⊆ P and p ⊆ Q, which asserts that
0 ̸= p ⊆ S ∩ T . Hence R is Gorenstein. □
Theorem 2.5. For an integral domain R, mI(R) is complete.

Proof. Let R be an integral domain and I, J ∈ V (mI(R)) be two non-
trivial ideals. The there exist two non-zero element x, y such that x ∈ I
and y ∈ J , respectively. As R is an integral domain, xy ̸= 0. Clearly,
xy ∈< x >,< y > which implies 0 ̸= xy ∈< x > ∩ < y >⊆ I ∩ J . As
R is artinian, there exists a minimal ideal m of R such that m ⊆ I ∩J ,
which infers m ⊆ I and m ⊆ J . So, I, J are adjacent. Hence the
result. □
Remark 2.6. The converse of above theorem is not true, as Z16 is not
an integral domain but mI(Z16) is complete.

Theorem 2.7. The graph mI(R) is empty if and only if every ideal of
R is minimal.

Proof. If every ideal of R is minimal, then it is obvious that mI(R) is
empty. In opposite direction, let mI(R) be empty and I ∈ V (mI(R))
be any vertex. If possible, we assume that I is not minimal. As R is
artinian, there exist some minimal ideal m such that m ⫋ I. Clearly
I, J are adjacent. This contradiction affirms that every ideal of R is
minimal. □
Theorem 2.8. The graph mI(R) is disconnected if and only if R is a
direct sum of two minimal ideals.

Proof. Let R = m1

⊕
m2, where m1 and m2 are minimal ideals of

R. Clearly, m1,m2 ∈ V (mI(R)) are two non adjacent vertices. If
possible, consider that mI(R) is connected. Then there exists some
I ∈ V (mI(R)) such that I contains both m1 and m2. This implies
that R = m1 +m2 ⊆ I, which is a contradiction. Therefore mI(R) is
disconnected. Conversely, let mI(R) be disconnected. Then there exist
atleast two vertices I, J , which are not connected. As R is artinian,
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there exists two distinct minimal ideals m1 and m2 contained in I and
J , respectively. If m1+m2 ̸= R, then I− (m1+m2)−J is a path. This
contradiction concludes that m1

⊕
m2 = R. Hence the theorem. □

Theorem 2.9. If mI(R) is disconnected for a commutative ring R,
then it is empty.

Proof. Assume that mI(R) is disconnected. So, there exist at least
two vertices I, J such that there is no path connecting them. Now,
there exist two distinct minimal ideals m1 and m2 such that m1 ⊆ I
and m2 ⊆ J . Consider the ideal m1 + m2. Clearly m1 + m2 = R,
otherwise I − (m1 +m2)− J is a path. Again R

m1

∼= m2 and R
m2

∼= m1,
which implies that m1 and m2 are maximal. Therefore m1 = I and
m2 = J . This asserts that any two disconnected ideals are minimal.
Thus mI(R) is empty. □

Theorem 2.10. For a commutative ring R, diam(mI(R)) = 1, 2,∞.

Proof. If R is a direct sum of two minimal ideals, then diam(mI(R)) =
∞, by Theorem 2.8 and Theorem 2.9. If R is local Gorenstein ring,
then diam(mI(R)) = 1, by Theorem 2.4. Consider that mI(R) is
connected and I, J are two non-adjacent vertices. Now there exist
two distinct minimal ideals m1 and m2 of R which are contained in I
and J , respectively. Take the ideal m1 + m2. If m1 + m2 = R, then
mI(R) becomes disconnected. So, m1 + m2 ̸= R. This implies that
I − (m1 +m2)− J is a path. Therefore diam(mI(R)) = 2. □

Example 2.11. Consider the ring F = F1×F2×· · ·×Fn with Fi’s are

fields. An ideal of F is of the form L =
n∏

i=1

Pi, where Pi = 0 or Fi. The

minimal ideals of F is of the form qk =
n∏

i=1

Pi, where Pi = 0 for i ̸= k

and Pk = Fk. So, F has n minimal ideals. Assume that S and T are
any two ideals of R. The following two cases arise:
Case-i: Suppose there exists some qk, k ∈ {1, 2, . . . , n} with qk ⊆ S, T .
Then we get the path S − qk − T .
Case-ii: Assume that there does not exist any qk, k ∈ {1, 2, . . . , n}
with qk ⊆ S, T . Consider qy ⊆ S and qz ⊆ T , where y, z ∈ {1, 2, . . . , n}.
Take the ideal D =

n∏
i=1

Hi, where Pi = 0 for i ̸= y, z and Pi = Fi for

i = y, z. Thus, the path S − D − T is present in mI(F ). Therefore,
diam(mI(F )) = 2.

Theorem 2.12. If mI(R) contains a cycle then girth(mI(R)) = 3.
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Proof. If R is a local Gorenstein ring, then mI(R) is complete. So,
girth(mI(R)) = 3. Notice that there exists at least one vertex I /∈
min(R), otherwise mI(R) is empty. Consider two adjacent vertices I
and J . If both of I and J are not minimal, then there there exists a
minimal ideal m such that m ⫋ I and m ⫋ J . Thus we get the cycle
I − J −m− I, which implies that girth(mI(R)) = 3. If one of I and
J is minimal, say I, then I ⫋ J . If R contains exactly one minimal
ideal, then for any vertex K( ̸= I, J), we get m ⫋ K. This infers that
I − J −K − I is a cycle. If R contains more than one minimal ideal,
then there exists at least one I ̸= m ∈ min(R). Clearly m + I ̸= R,
otherwise mI(R) is empty. This implies that (m+ I)−J − I− (m+ I)
is a cycle. Therefore girth(mI(R)) = 3. □
Example 2.13. Consider the ring F = F1 × F2 × · · · × Fn with Fi’s

are fields. An ideal of F is of the form L =
n∏

i=1

Pi, where Pi = 0 or Fi.

Consider the ideal X =
n∏

i=1

Pi, where Pi = Fi for i = 1, 2 and 0,

otherwise; Y =
n∏

i=1

Pi, where Pi = Fi for i = 1, 3 and otherwise 0, Z =

n∏
i=1

Pi, where Pi = Fi for i = 2, 3 and otherwise 0. Also a minimal ideal

of F is of the form qk =
n∏

i=1

Pi, where Pi = 0 for i ̸= k and Pk = Fk.

Thus, F has n minimal ideals. It is easily seen that X − Y −Z −X is
a cycle. This asserts that girth(mI(F )) = 3.

Theorem 2.14. If S is a cut vertex of mI(R), then K = m1+m2, for
some m1,m2 ∈ min(R).

Proof. Observe that if mI(R) has a cut vertex, then |minR| ≥ 2. Let S
be a cut vertex. Then mI(R)\{S} is disconnected. So, there exist two
vertices P and Q such that S lies in every path joining P and Q. By
Theorem 2.10, we find that d(P,Q) = 2. Therefore, P−S−Q is a path.
This implies that there must exist m1,m2 ∈ minR with m1 ⫅ P, S and
m2 ⫅ Q,S, respectively. Ifm1 = m2, then P and Q are adjacent, which
is a contradiction. So, m1 ̸= m2. Also, using Theorem 2.9, we get that
m1 +m2 ̸= R. Thus, we obtain the path P − (m1 +m2)−Q. Since S
is cut vertex, therefore, S = m1 +m2. This completes the proof. □
Theorem 2.15. The following holds for mI(R):

(i) If I and J are two vertices of mI(R) such that I ⊆ J , then
deg(I) ≤ deg(J).

(ii) If mI(R) is r − regular graph, then mI(R) = Kr+1.
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Proof. (i) Let I and J be two vertices of mI(R) such that I ⊆ J .
Suppose K is any vertex which is adjacent to I. This gives that there
must exist a minimal ideal m such that m ⊆ I,K. Since I ⊆ J , we
get m ⊆ J . This implies that K and J are adjacent. Thus, we obtain
that every ideal which is adjacent to I is also adjacent to J . Therefore,
deg(I) ≤ deg(J).

(ii) Let mI(R) be an r − regular graph. Therefore, deg(mi) =
r, for each mi ∈ minR. Clearly, mi is adjacent to each mi + mj,
where mj ∈ minR and i ̸= j. This asserts that minR is finite. Again,
deg(mi + mj) > deg(mi), as mj is adjacent to mi + mj, but not to
mi. Therefore, |minR| = 1. This gives that mI(R) is a complete graph
with r + 1 vertices. Thus mI(R) = Kr+1. □
Theorem 2.16. If mI(R) is connected and V (mI((R)) = minR ∪
maxR, then mI(R) is split.

Proof. Take the subgraph of mI(R) induced by maxR. Let M1,M2 ∈
maxR with M1 ̸= M2. If M1 ∩M2 = 0, then R

M1

∼= M2 and R
M2

∼= M1.
This asserts that M1 and M2 are also minimal ideals, a contradiction
to the fact that mI(R) is connected. Thus, M1 ∩M2 ̸= 0. It is obvious
that M1 ∩M2 /∈ maxR. Therefore, P ∩ Q ∈ minR. Hence, we obtain
that the subgraph induced by maxR is complete. Again, by Remark
2.2, the subgraph induced byminR is empty. ThusmI(R) is a split. □

3. Clique number, chromatic number, independence
number and domination number of mI(R)

In this section, we obtain some results related with coloring, clique
number, chromatic number, independence number and domination num-
ber.

Theorem 3.1. If R has two minimal ideals m1 and m2 with deg(m1) ≥
deg(m2), then ω(mI(R)) = χ(mI(R)) = deg(m1).

Proof. Assume that S is the set of vertices that contains m1 and Q
is the the set of vertices that contains m2, respectively. Then any
two vertices of S are adjacent. Thus to color these vertices, we need
deg(m1) different colors. Also, S forms a clique of mI(R). Therefore,
ω(mI(R)) ≥ deg(m1). Now, consider the set Q. Some of the vertices
of Q are already colored, precisely those vertices that belong to S ∩Q.
The set Q \ S contains the uncolored vertices. Clearly, no vertex of S
is adjacent to any vertex of Q\S. Also, n(Q\S) = n(Q)−n(S ∩Q) =
deg(m2)−n(S∩Q) and n(S\Q) = n(S)−n(S∩Q) = deg(m1)−n(S∩Q).
Since deg(m1) ≥ deg(m2), we get n(Q \ S) ≤ n(S \ Q). As no vertex
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of Q \ S is adjacent to any vertex of S \ Q, therefore, the vertices of
Q\S can be colored using the colors used in color the vertices in S \Q.
Thus, we obtain χ(mI(R)) = deg(m1). Since ω(mI(R)) ≤ χ(mI(R)),
hence, ω(mI(R)) = χ(mI(R)) = deg(m1). The proof is complete. □

Theorem 3.2. If R contains a finite number of minimal ideals m1,m2,
. . . ,mn such that deg(m1) ≥ deg(m2) ≥ · · · ≥ deg(mn), then
ω(mI(R)) = deg(m1).

Proof. For n = 1, the result is obivious. For n = 2, the result is
established in Theorem 3.1. Consider that the result is true for n− 1,
where n ≥ 3. Take Pi to denote the set of vertices adjacent to mi, i ∈
{1, 2, . . . , n}. Clearly, ω(mI(R)) ≥ deg(m1), as the elements of P1 form
a clique. Toward a contradiction, assume that ω(mI(R)) > deg(m1).
Then, there exists a clique S of mI(R) containing more than deg(m1)
elements. If I, J ∈ S, then there exists some mi ∈ min(R) such that
mi ⊆ I, J . If I ∈ S contains mn only, then I is adjacent to only those
vertices which are adjacent to mn. This implies that |S| ≤ deg(mn) ≤
deg(m1), which is a contradiction. Thus I contains somemj ∈ min(R),
j ∈ {1, 2, ..., n − 1}. Now consider the ring R

′
= R

mn
. Clearly, R

′

has n − 1 minimal ideals. By assumption, ω(mI(R
′
)) = deg(m1).

For any I ∈ S, we have mn ⊈ I, and therefore S
mn

forms a clique of

mI(R
′
) and | S

mn
| = |S|. Thus, we obtain that deg(m1) = ω(mI(R

′
)) ≥

| S
mn

| = |S| > deg(m1), which is a contradiction. Hence ω(mI(R)) =

deg(m1). □

Corollary 3.3. ω(mI(R)) is finite if and only if deg(mi) is finite for
every mi ∈ minR, whenever |minR| < ∞.

Theorem 3.4. If Soc(R) ̸= R, then γ(mI(R)) = 1, 2.

Proof. For a ring with unique minimal ideal, it is obvious that γ(mI(R)) =
1, by Remark 2.1. Let |minR| ≥ 2. Consider the setD = {m1,

∑
k ̸=1mk}.

Assume that u ∈ V (mI(R)) \ D. It is clear that either u − m1 or
u −

∑
k ̸=1 mk is a path in mI(R). Thus, in this case γ(mI(R)) = 2.

Hence, we conclude that γ(mI(R)) = 1, 2. □

Example 3.5. Consider the ring R = R1×R2, where Ri is an artinian

ring for i = 1, 2. Any ideal of R is of the form I =
2∏

i=1

Ki, where Ki is

an ideal of Ri . If qi is a minimal ideal of Ri, then that of R are q1× (0)
and (0)× q2, respectively. Consequently, the set {q1 × (0), (0)× q2} is
a dominating set. Hence, γ(mI(R)) = 2.
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Example 3.6. Consider the ring R =
n∏

i=1

Ri, where Ri is an artinian

ring and i ∈ {1, 2, . . . , n}. Also, assume that qi is a minimal ideal of

Ri. Any ideal of R is of the form I =
n∏

i=1

Ki, where Ki is an ideal of

Ri. Take S =
n∏

i=1

Ki, where K1 = q1, Ki = 0 for i ̸= 1, and T =
n∏

i=1

Ki,

where K1 = 0 , Ki = qi for i ̸= 1. It is easy to observe that {S, T} is a
dominating set. Hence, γ(mI(R)) = 2.

Example 3.7. If Fi is a field for i = 1, 2, then γ(mI((F1 × F2)) = 2.

Example 3.8. Consider the ring F =
n∏

i=1

Fi, where Fi is a field. An

ideal of F is of the form A =
n∏

i=1

Ki, where Ki = 0 or Fi. Consider two

ideals S =
n∏

i=1

Ki, where K1 = F1, Ki = 0 for i ̸= 1, and T =
n∏

i=1

Ki,

where K1 = 0 , Ki = Fi for i ̸= 1. It is easy to observe that the vertex
not belonging to {S, T} is adjacent to either S or T or both. Hence,
γ(mI(R)) = 2.

Theorem 3.9. If minR is finite, then α(mI(R)) = |minR|.

Proof. Assume thatminR = {m1,m2,m3, . . . ,mn} is the set of minimal
ideals of R. By Remark 2.1, minR is an independent set. Therefore,
n ≤ α(mI(R)). Consider the largest possible independent set S =
{l1, l2, l3, . . . , lp} . Thus, α(mI(R)) = p. For each l ∈ S, there exists a
mi ∈ minR such that mi ⊆ l. If p > n, then there exist at least two
vertices li, lj ∈ S which contain the same minimal ideal. This implies
that li−lj is a path, a contradiction to the fact that S is an independent
set. Therefore p = n, that is α(mI(R)) = n. Hence the result. □
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