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ON THE MAXIMAL SUBSEMIGROUPS AND RANK
PROPERTIES OF CERTAIN SEMIGROUPS OF

PARTIAL INJECTIVE CONTRACTIONS OF A FINITE
CHAIN

M. M. ZUBAIRU ∗ AND N. M. MANGGA

Abstract. Denote [n] to be a finite n chain {1, 2, . . . , n}. Let
CIn be the semigroup of partial injective contractions on [n]. De-
note ODDPn,ODCIn and OCIn to be the semigroups of order-
preserving order-decreasing partial isometries, order-preserving order-
decreasing and order-preserving partial injective contractions, re-
spectively. In this paper, we characterize all the maximal sub-
semigroups of ODDPn, ODCIn and OCIn, respectively. We also
characterize the regular elements, Green’s relations, their Starred
analogues and rank properties of ODCIn.

1. Introduction

Denote [n] to be a finite chain {1, 2, . . . , n} and let Pn denote the
semigroup of partial transformations of [n], and let In be the subsemi-
group of Pn of all injective partial transformation of [n]. A transforma-
tion α ∈ In is said to be order preserving if (for all x, y ∈ Dom α, where
Dom α means the domain set of α here and elsewhere) x ≤ y implies
xα ≤ yα ; order decreasing if (for all x ∈ Dom α) xα ≤ x; an isometry
(i.e., distance preserving) if (for all x, y ∈ Dom α) |xα− yα| = |x− y|;
a contraction if (for all x, y ∈ Dom α,) |xα− yα| ≤ |x− y|. Let

CIn = {α ∈ In : (for all x, y ∈ Dom α) |xα− yα| ≤ |x− y|}
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be the semigroup of partial injective contractions on [n] and

DPn = {α ∈ In : (for all x, y ∈ Dom α) |xα− yα| = |x− y|}

be the semigroup of partial injective isometries on [n], as such CIn and
DPn are subsemigroups of In. Various algebraic and combinatorial
properties of CIn and DPn have been investigated by several authors,
for example see [2, 3, 27, 4, 20].

Let

DFn = {α ∈ Pn : (for all x ∈ Dom α, ) xα ≤ x},

CPn = {α ∈ Pn : (for all x, y ∈ Dom α) |xα− yα| ≤ |x− y|},

OCIn = {α ∈ CIn : (for all x, y ∈ Dom α) x ≤ y implies xα ≤ yα},
(1.1)

OIn = {α ∈ In : (for all x, y ∈ Dom α) x ≤ y implies xα ≤ yα}

ODIn = {α ∈ OIn : (for all x ∈ Dom α) xα ≤ x},

ODCIn = {α ∈ OCIn : (for all x ∈ Dom α) xα ≤ x }, (1.2)

ODPn = {α ∈ DPn : (for all x, y ∈ Dom α) x ≤ y implies xα ≤ yα}
and

ODDPn = {α ∈ ODPn : (for all x ∈ Dom α) xα ≤ x }

be the subsemigroup of order decreasing partial transformations ; the
subsemigroup of partial contractions ; the subsemigroup of order pre-
serving partial injective transformations ; the subsemigroup of order
preserving order decreasing partial injective transformations ; the sub-
semigroup of order preserving partial injective contractions ; the sub-
semigroup of order preserving and order decreasing partial injective
contractions ; the subsemigroup of order preserving partial isometries
and the subsemigroup of order preserving and order decreasing par-
tial isometries on [n], respectively. Then it is obvious that OCIn and
ODCIn are subsemigroups of CIn, while ODPn and ODDPn are sub-
semigroups of DPn.

For a semigroup S, a subsemigroup T ⊂ S is called maximal provided
that T 6= S and for any subsemigroup X ⊂ S the inclusion T ⊂ X
implies T = X, or X = S. Let S and P be two semigroups and
α : S 7→ P be any mapping. Denote α|X to be the restriction of α to
the subset X ⊆ S, that is α|X : X 7→ P is defined by x(α|X) = xα
(x ∈ X).

There are several subsemigroups of transformations whose maximal
subsemigroups have been completely characterized, see for example
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[5, 7, 22, 23, 29]. Yang [28] classified all the maximal inverse subsemi-
groups of In of all finite symmetric inverse semigroup on [n]. The max-
imal subsemigroups and maximal inverse subsemigroups of OIn of all
order-preserving partial bijections on [n] were recorded in Ganyushkin
and Marzorchuk [9], while Dimitrova and Koppitz [6] obtained the max-
imal subsemigroups of the ideals of OIn and IMn of all isotone (order
preserving) partial injections and all monotone (order preserving or
order reversing) partial injections on [n].

The study of various semigroups of contractions mappings on chain
was recently initiated, as such it is not surprising that the maximal
subsemigroups of the semigroups OCIn and its subsemigroups ODCIn
and ODDPn are yet to be investigated. However, the rank of the
semigroup ODDPn have been investigated by Kehinde et al.,[20]. In
[3], Al-Kharousi et al., studied the rank of the larger semigroup OCIn.
It seems nothing have been done on the study of rank of the semigroup
ODCIn and its maximal subsemigroups. In this paper, we classify
all the maximal subsemigroups of the semigroups OCIn, ODCIn and
ODDPn; and study the rank of the semigroup ODCIn. We begin
by recalling some definitions and notations that will be used in the
subsequent sections. For basic concepts in semigroup theory, we will
not failed to refer the reader to [17, 18, 10]. Let α ∈ In, we denote
Dom α, Im α and h(α)(referred to the height of α) to be the domain
set of α, image set of α and |Im α|, respectively. For A ⊂ [n], id[n]
denotes the partial identity on A, as such id[n] is the identity map on
[n]. For a semigroup S and A ⊂ S, the notation 〈A〉 = S means that
A generate the semigroup S.

Let S ∈ {OCIn, ODCIn, ODDPn}, then for 0 ≤ k ≤ n, let

Jk := {α ∈ S | h(α) = k} (1.3)

be the set of elements in S of height k and

I(n, k) := {α ∈ S : h(α) ≤ k}

be the two sided ideal of S. Then it is obvious that I(n, k) is the union
of the J -classes J0, J1, · · · , Jk. We will pay attention to the J -classes
precisely to the sets Jn−1 and Jn. Notice that the set Jn contains only
the identity mapping id[n]. Moreover, every element α ∈ S of height k
can be expressed as

α =

(
a1 · · · ak
b1 · · · bk

)
. (1.4)
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Let us briefly discuss the presentation of the paper. In section 1,
we give a brief introduction, notations and definitions for proper un-
derstanding of the content of the subsequent sections. In section 2,
we classify all the maximal subsemigroups of the semigroup OCIn and
proved that it has n + 1 maximal subsemigroups. Furthermore, in
section 3, we proved that the rank of the semigroup ODCIn is 2n.
Moreover, in this section we classify all its maximal subsemigroups
and proved that it has 2n maximal subsemigroups. In section 4, we
characterise the Green’s relations and their Starred analogues on the
semigroup ODCIn. Finally, in section 5, we classify all the maximal
subsemigroups of the semigroup ODDPn and proved that it has n+ 2
maximal subsemigroups.

Let S be a finite semigroup and M be a maximal subsemigroup of S.
Then by [[16], Proposition 1], S\M is contained in a single J -class of S.
We note the following lemma which gives the necessary and sufficient
conditions for the existence of a maximal subsemigroup arising from a
particular J -class.

Lemma 1.1. [[7], Lemma 2.1]. Let S be a finite monoid, and let J be
a J -class of S. There exists a maximal subsemigroup arising from J
if and only if every generating set for S intersects J non-trivially.

2. Maximal Subsemigroups of OCIn
In this section, we characterize all the maximal subsemigroups of

the semigroup OCIn. We also compute the total number of all the
maximal subsemigroups of the semigroup OCIn. For α, β ∈ OCIn and
elsewhere, the composition of α and β is defined as x(α ◦β) = ((x)α)β
for all x ∈ Dom α. Without ambiguity, we shall be using the notation
αβ to denote the composition of α and β (i.e., α ◦ β ). We begin with
the following definition.

Definition 2.1. Let S be a semigroup and a ∈ S. We say that an
element a ∈ S is non-factorizable in S if there does not exists b 6= c
∈ S\{a} such that a = bc. An element a ∈ S is said to be generated
by some a1, . . . , ai ∈ S for some i > 1, if a = a1a2 · · · ai.

Notice that there does not exists β 6= γ ∈ OCIn\{id[n]} such that
id[n] = βγ, as such id[n] is non-factorizable in OCIn.

Definition 2.2. A subset A of Jk (0 ≤ k ≤ n) is said to be a generating
set of Jk, if Jk ⊆ 〈A〉 and if Jk is a semigroup, then Jk = 〈A〉.

Now, for i ∈ [n] and j ∈ {2, 3, . . . , n − 1}, the elements of the set
Jn−1 in the semigroup OCIn are of the following forms:
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εi =

(
1 · · · i− 1 i+ 1 · · · n
1 · · · i− 1 i+ 1 · · · n

)
,

βj =

(
1 · · · j − 1 j + 1 · · · n
1 · · · j − 1 j · · · n− 1

)
,

γj =

(
1 · · · j − 1 j + 1 · · · n
2 · · · j j + 1 · · · n

)
,

α =

(
2 3 · · · n− 1 n
1 2 · · · n− 2 n− 1

)
and α−1 =

(
1 2 · · · n− 2 n− 1
2 3 · · · n− 1 n

)
.

(2.1)

Notice that εi is a partial identity on [n] \ {i} (i.e., εi = id[n]\{i}), and
moreover, it is also easy to verify that:

αα−1 =

(
2 · · · n
2 · · · n

)
= ε1, α−1α =

(
1 · · · n− 1
1 · · · n− 1

)
= εn;

βjα
−1 =

(
1 · · · j − 1 j + 1 · · · n
1 · · · j − 1 j · · · n− 1

)(
1 2 · · · n− 2 n− 1
2 3 · · · n− 1 n

)
=

(
1 · · · j − 1 j + 1 · · · n
2 · · · j j + 1 · · · n

)
= γj;

γjα =

(
1 · · · j − 1 j + 1 · · · n
2 · · · j j + 1 · · · n

)(
2 3 · · · n− 1 n
1 2 · · · n− 2 n− 1

)
=

(
1 · · · j − 1 j + 1 · · · n
1 · · · j j · · · n− 1

)
= βj;

αεn =

(
2 3 · · · n− 1 n
1 2 · · · n− 2 n− 1

)(
1 · · · n− 1
1 · · · n− 1

)
=

(
2 3 · · · n− 1 n
1 2 · · · n− 2 n− 1

)
= α;

ε1α =

(
2 · · · n
2 · · · n

)(
2 3 · · · n− 1 n
1 2 · · · n− 2 n− 1

)
=

(
2 3 · · · n− 1 n
1 2 · · · n− 2 n− 1

)
= α;
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εnα
−1 =

(
1 · · · n− 1
1 · · · n− 1

)(
1 2 · · · n− 2 n− 1
2 3 · · · n− 1 n

)
=

(
1 2 · · · n− 2 n− 1
2 3 · · · n− 1 n

)
= α−1;

α−1ε1 =

(
1 2 · · · n− 2 n− 1
2 3 · · · n− 1 n

)(
2 · · · n
2 · · · n

)
=

(
1 2 · · · n− 2 n− 1
2 3 · · · n− 1 n

)
= α−1;

βjεn =

(
1 · · · j − 1 j + 1 · · · n
1 · · · j − 1 j · · · n− 1

)(
1 · · · n− 1
1 · · · n− 1

)
=

(
1 · · · j − 1 j + 1 · · · n
1 · · · j − 1 j · · · n− 1

)
= βj

and

γjε1 =

(
1 · · · j − 1 j + 1 · · · n
2 · · · j j + 1 · · · n

)(
2 · · · n
2 · · · n

)
=

(
1 · · · j − 1 j + 1 · · · n
2 · · · j j + 1 · · · n

)
= γj.

Remark 2.3. It is now clear from the foregoing computations that:

(i) ε1, εn can be generated by α and α−1; γj can be generated
by βj and α−1; βj can be generated by γj and α; as such the
elements ε1, εn need not to be in any generating set of Jn−1.
More so, βj and γj need not to be both in the generating set
of Jn−1 and h(εiλ) < n − 1. Similarly, h(λεi) < n − 1 for all
i ∈ {2, . . . , n− 1} and λ ∈ Jn−1. In particular, {α, α−1, βj} or
{α, α−1, γj} generates Jn−1.

(ii) α 6= τθ and α−1 6= τ ′θ′ for all τ 6= θ and τ ′ 6= θ′ ∈ Jn−1, as such
α, α−1 ∈ OCIn are non-factorizable elements.

Remark 2.4. It is known that {εi, α, α−1, βj : i, j ∈ {2, . . . , n−1}} gen-
erates the semigroupOCIn (see [3], Lemma 4.3), and {εi, α, α−1, βj : i, j ∈
{2, . . . , n−1}} ∩ Jn−1 is non-trivial. Therefore by the Lemma 1.1, there
exists a maximal subsemigroup arising from Jn−1.

Hence we have proved an enhance version of [[3] Lemma 4.3] in the
following proposition.

Proposition 2.5. [[3], Lemma 4.3] Let S = OCIn and Jn−1 be the
elements of S of height n− 1. Then
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(i) Jn−1 ⊆ 〈εi, α, α−1, βj : i, j ∈ {2, 3, ..., n− 1}〉;
(ii) Jn−1 ⊆ 〈εi, α, α−1, γj : i, j ∈ {2, 3, ..., n− 1}〉.

Proof. The proof of (i) is as in [3], and (ii) is similar to the proof of
(i). �

Now let S = OCIn and Jk be as defined in equation (1.3). We now
have the following proposition.

Proposition 2.6. For 0 ≤ k ≤ n− 2, Jk ⊆ 〈Jk+1〉.

Proof. Let α ∈ Jk be as expressed in equation (1.4). We will show
that there exists β, γ ∈ Jk+1 such that α = βγ. We consider the
following cases for the elements in Dom α = {a1, . . . , ak} and Im α =
{b1, . . . , bk}.
Case 1. Suppose Im α is not convex, i.e., there exists i ∈ {1, · · · , k−

1} such that bi+1− bi ≥ 2 which implies ai+1−ai ≥ 2. This means that
there exists v ∈ [n]\ Dom α and u ∈ [n]\ Im α such that ai < v < ai+1

and bi < u < bi+1.
Now let t = max{v ∈ [n]\Dom α : ai < v < ai+1}, s = max{u ∈

[n]\Im α : bi < u < bi+1}, s′ = max([n]\Im α) and s′′ = min([n]\Im α).
Then we consider two subcases:
1.1. If bk < n, define

β =

(
a1 · · · ai t ai+1 · · · ak
b1 · · · bi s bi+1 · · · bk

)
and γ =

(
b1 · · · bk s′

b1 · · · bk s′

)
.

1.2. If bk = n, define β =

(
a1 · · · ai t ai+1 · · · ak
b1 · · · bi s bi+1 · · · bk

)
and

γ =



(
b1 · · · bi s′′ bi+1 · · · bk
b1 · · · bi s′′ bi+1 · · · bk

)
, if bi < s′′ < bi+1 for some

i ∈ {1, . . . , k − 1}(
s′′ b1 · · · bi bi+1 · · · bk
s′′ b1 · · · bi bi+1 · · · bk

)
, if s′′ < b1.

Case 2. Suppose that Im α is convex, i.e., Im α = {b+ 1, . . . , b+ k}
for some b ∈ Z+. Thus, α can be expressed as

α =

(
a1 · · · ak
b+ 1 · · · b+ k

)
∈ Jk.

If ai < t < ai+1 then t 7→ b + i and therefore, γ(b + i) is not defined.
If b+ k = n then take t = max([n]\Dom α). We consider the following
subcases for the elements in Dom α = {a1, a2, . . . , ak} and Im α =
{b+ 1, . . . , b+ k}.
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Subcase (1):
1.1. Suppose i ∈ {1, . . . , k − 1} such that ai < t < ai+1. Define

β =

(
a1 a2 · · · ai t ai+1 · · · ak
b b+ 1 · · · b+ i− 1 b+ i b+ i+ 1 · · · b+ k

)
and

γ =

(
b− 1 b · · · b+ i− 1 b+ i+ 1 · · · b+ k
b b+ 1 · · · b+ i b+ i+ 1 · · · b+ k

)
.

1.2. If t < a1, define β =

(
t a1 · · · ak
b b+ 1 · · · b+ k

)
and

γ =

(
t b+ 1 · · · b+ k
t b+ 1 · · · b+ k

)
.

1.3. If t > ak, define

β =

(
a1 a2 · · · ak t
b b+ 1 · · · b+ k − 1 b+ k

)
and

γ =

(
b− 1 b · · · b+ k − 2 b+ k − 1
b b+ 1 · · · b+ k − 1 b+ k

)
.

Subcase (2): If b+1 = 1 then b = 0 as such α =

(
a1 a2 · · · ak
1 2 · · · k

)
.

2.1. If t > ak, define β =

(
a1 a2 · · · ak t
1 2 · · · k k + 1

)
and

γ =

(
1 · · · k k + 2
1 · · · k k + 2

)
.

2.2. If t < a1, define β =

(
t a1 · · · ak
1 2 · · · k + 1

)
and

γ =

(
2 3 · · · k + 2
1 2 · · · k + 1

)
.

2.3. If ai < t < ai+1, for some i ∈ {1, . . . , k − 1}. Define

β =

(
a1 · · · ai t ai+1 · · · ak
1 · · · i i+ 1 i+ 2 · · · k + 1

)
and

γ =

(
1 · · · i i+ 2 · · · k + 2
1 · · · i i+ 1 · · · k + 1

)
.

Subcase (3): If 1 < b+ 1 < . . . < b+ k < n.

3.1. If t > ak, define β =

(
a1 · · · ak t
b+ 1 · · · b+ k b+ k + 1

)
and
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γ =

(
b b+ 1 · · · b+ k
b b+ 1 · · · b+ k

)
.

3.2. If t < a1, define β =

(
t a1 · · · ak
b b+ 1 · · · b+ k

)
and

γ =

(
b+ 1 · · · b+ k + 1
b+ 1 · · · b+ k + 1

)
.

3.3. If ai < t < ai+1 for some i ∈ {1, . . . , k − 1}. Define

β =

(
a1 · · · ai t ai+1 · · · ak
b+ 1 · · · b+ i b+ i+ 1 b+ i+ 2 · · · b+ k + 1

)
and

γ =

(
b b+ 1 · · · b+ i b+ i+ 2 · · · b+ k + 2
b b+ 1 · · · b+ i b+ i+ 1 · · · b+ k + 1

)
.

�

Hence in each case, it is clear that β, γ ∈ Jk+1 and α = βγ. As a
consequence we have the following corollary.

Corollary 2.7. For 0 ≤ k ≤ n− 1, I(n, k) = 〈Jk〉.

Proof. Observe that the two sided ideal I(n, k) is the union of J−classes
J0, J1, · · · , Jk. Thus by Proposition 2.6, I(n, k) = J0 ∪ J1 ∪ . . .∪ Jk ⊆
〈J0〉 ∪ 〈J1〉 ∪ . . . ∪ 〈Jk〉 ⊆ 〈Jk〉. This means that I(n, k) ⊆ 〈Jk〉 and
since Jk ⊆ I(n, k) then 〈Jk〉 ⊆ I(n, k) . Hence I(n, k) = 〈Jk〉, as
required. �

Theorem 2.8. Let OCIn be as defined in equation (1.1). Then OCIn =
〈Jn−1 ∪ {id[n]}〉.

Proof. The proof follows directly from Proposition 2.6 and Corollary
2.7. �

Now, we present the classification of the maximal subsemigroups of
the semigroup OCIn.

Lemma 2.9. Every maximal subsemigroup S of OCIn contains the
ideal I(n, n− 2) .

Proof. Let S be a maximal subsemigroup ofOCIn. Suppose that Jn−1 ⊆
S. Notice that by Corollary 2.7, I(n, n−2) ⊆ I(n, n−1) ⊆ 〈Jn−1〉 ⊆ S,
it follows that I(n, n − 2) ⊆ S. Suppose Jn−1 * S. Notice that
Jn−1∩I(n, n−2) = ∅, as such Jn−1 * S∪I(n, n−2) ⊆ 〈S∪I(n, n−2) 〉.
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Thus by the maximality of S, it follows that I(n, n−2) ⊆ S, and since
S is taken arbitrary, in either of the ways, the result follows. �

Theorem 2.10. Let α, α−1, εi, βj and γj be as defined in equation (2.1).
A subsemigroup S of OCIn is maximal if and only if S belongs to one
of the following four types:

(i) S{id[n]} := OCIn\{id[n]};
(ii) Sα := OCIn\{α};

(iii) Sα−1 := OCIn\{α−1};
(iv) Sεi := OCIn\{εi}, i ∈ {2, . . . , n− 1}.

Proof. Suppose S is a maximal subsemigroup ofOCIn. Then by Lemma
2.9, S = I(n, n− 2) ∪K, where K ⊆ ( Jn−1 ∪ {id[n]}) .

If {id[n]} * K then K ⊆ OCIn\{id[n]}. Thus, S = I(n, n−2)∪K ⊆
I(n, n−2)∪OCIn\{id[n]}. Since S is maximal then S = OCIn\{id[n]} =
S{id[n]}. As such (i) follows.

Now, if {id[n]} ⊆ K, then Jn−1 * K (otherwise S = OCIn). Then
by Proposition 2.5, Jn−1 ⊆ 〈εi, α, α−1, βj〉 or Jn−1 ⊆ 〈εi, α, α−1, γj〉
(for i, j ∈ {2, . . . , n− 1}). However, γj = βjα

−1 and βj = γjα as such
the set K is contained in Jn−1\{τ} for some τ ∈ {εi, α, α−1}. Therefore,
by maximality of S, S = Sτ and hence (ii)− (iv) follows.

Conversely, suppose (i) − (iv) holds. Notice that OCIn\{id[n]} =
I(n, n − 1) and I(n, n − 1) ∪ {id[n]} = OCIn, hence S{id[n]} is max-

imal. Notice that by Remark 2.3, for all x ∈ {α, α−1, εi, βj},
x /∈ Jn−1\〈α, α−1, εi, βj〉 and similarly, for all y ∈ {α, α−1, εi, γj},
y /∈ Jn−1\〈α, α−1, εi, γj〉, i, j ∈ {2, . . . , n−1}. Notice also that βj and
γj cannot be both in the generating set of Jn−1 and can also be gener-
ated. Therefore, since OCIn\{εi} ∪ {εi} = OCIn, OCIn\{α} ∪ {α} =
OCIn and OCIn\{α−1} ∪ {α−1} = OCIn. It follows that for all
i ∈ {2, . . . , n− 1}, Sεi , Sα and Sα−1 are maximal. �

The next corollary gives us the total number of maximal subsemi-
groups of the semigroup OCIn.

Corollary 2.11. The semigroup OCIn contains exactly n+1 maximal
subsemigroups.

Proof. Notice from Theorem 2.10, the semigroups S{id[n]}, Sα, Sα−1

and Sεi have 1, 1, 1 and n − 2 maximal subsemigroups, respectively.
Summing all together gives the required result. �

For the definitions of Green’s and Starred Green’s relations, we refer
the reader to Howie [18] and Foutain [8], respectively. A subsemigroup
K of a semigroup S is called an inverse ideal of S if for all k ∈ K,
there exists k′ ∈ S such that kk′k = k and kk′, k′k ∈ K.
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An element a of a semigroup S is called an idempotent if a2 = a,
the collection of all idempotent in S is usually denoted by E(S). A
semigroup S is called abundant if each L∗(S-class and each R∗(S-class
contains an idempotent. An abundant semigroup in which the set E(S)
is a semilattice is called adequate [8]. AL-Kharousi et al., deduced that
the semigroup OCIn is an adequate semigroup see [3]. As in [8] for
an element a of an adequate semigroup S, the (unique) idempotent in
the L∗(S)-class containing a is denoted by a∗ and the (unique) idem-
potent in the R∗(S)-class containing a is denoted by a+. An adequate
semigroup S is said to be ample if ea = a(ea)∗ and ae = (ae)+a for all
a in S and all idempotents e in S. An ample semigroup is also called
type A semigroup. Al-Kharousi et al., [3] characterized the Green’s and
Starred Green’s relations of the semigroup OCIn and also proved that
OCIn is an ample semigroup.

We next give the characterization of starred Green’s relations of the
maximal subsemigroups of the semigroup OCIn. Before we give the
characterization we first record the following lemma whose proof is
similar to that of [[3], Lemma 1.4].

Lemma 2.12. Let S ∈ {Sid[n]
, Sα, Sα−1} and α, β ∈ S. Then S is an

inverse ideal of OIn.

Theorem 2.13. Let S ∈ {Sid[n]
, Sα, Sα−1} and α, β ∈ S. Then

(i) (α, β) ∈ L∗(S) if and only if Im α = Im β;
(ii) (α, β) ∈ R∗(S) if and only if Dom α = Dom β.

Proof. Notice that by Lemma 2.12 S is an inverse ideal, hence by
[[25], Lemma 3.1.9] the results follow. �

Remark 2.14. Notice that the semigroup Sεi , i ∈ {2, . . . n− 1}} is not
an inverse ideal of OIn. This means that the proof of L∗(Sεi) and
R∗(Sεi) are different from that of Theorem 2.13. Therefore, we state
the characterization of L∗(Sεi) and R∗(Sεi) below. The proof is similar
to that of [[26], Theorem 1].

Theorem 2.15. Let S = Sεi , i ∈ {2, . . . n− 1} and α, β ∈ S. Then

(i) (α, β) ∈ L∗(S) if and only if Im α = Im β;
(ii) (α, β) ∈ R∗(S) if and only if Dom α = Dom β.

Remark 2.16. Notice that for εi ∈ OCIn, i ∈ {2, . . . , n − 1}, Im εi 6=
Im α for all α ∈ OCIn.

We now record the following results whose proof is similar to that of
[[26], Lemma 8].
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Theorem 2.17. The semigroup Sεi := OCIn\{εi}, i ∈ {2, . . . , n− 1}
is left abundant.

Proposition 2.18. The semigroup Sεi := OCIn\{εi}, i ∈ {2, . . . , n−
1} is not right abundant for n ≥ 3.

Proof. Let εi =

(
1 · · · i− 1 i+ 1 · · · n
1 · · · i− 1 i+ 1 · · · n

)
, i ∈ {2, . . . , n − 1}.

Notice that εi /∈ Sεi , for n ≥ 3. Notice also that

R∗εi =

{(
1 · · · i− 1 i+ 1 · · · n

1 + x · · · i− 1 + x i+ x · · · n− 1 + x

)∣∣∣∣
0≤x≤1

}
has

no idempotent. �

As a consequence we have the following corollary.

Corollary 2.19. The semigroup Sεi := OCIn\{εi}, i ∈ {2, . . . , n− 1}
is not ample.

Proof. It follows from Proposition 2.18. �

We now state the following theorem whose proof is similar to that
of [[3], Lemma 3.8].

Theorem 2.20. Let S ∈ {Sid[n]
, Sα, Sα−1 , Sβj , Sγj , j ∈ {2, . . . n − 1}}.

Then S is an ample semigroup.

Consequently we have the following corollary.

Corollary 2.21. Let S ∈ {Sid[n]
, Sα, Sα−1 , Sβj , Sγj}, j ∈ {2, . . . n− 1}.

Then S is ample maximal subsemigroup of OCIn.

3. Rank properties of the subsemigroups ODCIn
For a semigroup S, the rank of S (denoted as Rank(S)) is defined as

Rank(S) = min{|A| : A ⊆ S and 〈A〉 = S}.

The notation 〈A〉 = S means that A generate the semigroup S. The
rank of several semigroups of transformation were investigated by vari-
ous authors, see for example [1, 2, 11, 12, 13, 14, 19]. However, there are
several subsemigroups of partial contractions which their ranks seems
not to have been investigated. In fact the order and the rank of the
semigroup CPn is still under investigation. In this section, we inves-
tigate the rank properties of the semigroup ODCIn. We begin this
section by noting that id[n] is the only order-decreasing map of height
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n in ODCIn as such id[n] is non-factorizable. Now consider the ele-
ments of height n−1 in the semigroup ODCIn (i.e., elements of Jn−1).
These elements are of the following forms:

For i ∈ {1, . . . , n} and j ∈ {2, . . . , n− 1},

εi =

(
1 · · · i− 1 i+ 1 · · · n
1 · · · i− 1 i+ 1 · · · n

)
,

βj =

(
1 · · · j − 1 j + 1 · · · n
1 · · · j − 1 j · · · n− 1

)
and α =

(
2 3 · · · n− 1 n
1 2 · · · n− 2 n− 1

)
.

(3.1)

Therefore, Jn−1 = {εi, βj, α | i ∈ {1, . . . , n}, j ∈ {2, . . . , n−1}}. (3.2)

Thus, for j ∈ {2, . . . , n− 1}, it is worth noting that:

βjεn =

(
1 · · · j − 1 j + 1 · · · n
1 · · · j − 1 j · · · n− 1

)(
1 · · · n− 1
1 · · · n− 1

)
=

(
1 · · · j − 1 j + 1 · · · n
1 · · · j − 1 j · · · n− 1

)
= βj,

ε1α =

(
2 · · · n
2 · · · n

)(
2 3 · · · n− 1 n
1 2 · · · n− 2 n− 1

)
=

(
2 3 · · · n− 1 n
1 2 · · · n− 2 n− 1

)
= α

and

αεn =

(
2 3 · · · n− 1 n
1 2 · · · n− 2 n− 1

)(
1 · · · n− 1
1 · · · n− 1

)
=

(
2 3 · · · n− 1 n
1 2 · · · n− 2 n− 1

)
= α.

Notice that from the foregoing computations α, ε1, εn and βj cannot be
generated by the elements of height n− 1 in ODCIn. As such α, ε1, εn
and βj must be part of the generating set of Jn−1.

We now have the following lemma.

Lemma 3.1. Let α ∈ ODCIn be as expressed in equation (1.4). If
bk = ak then α is a partial identity.

Proof. Let α ∈ ODCIn be as expressed in equation (1.4) and suppose
that ak = bk. Notice that α is order decreasing as such br ≤ ar for all
r ∈ {1, . . . , k − 1}.

Suppose that br < ar, for any r ∈ {1, . . . , k − 1}. Since α is order-
preserving, thus ar < ak = bk, therefore br < ar < bk = ak. Thus,
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|bk − br| > |bk − ar| = |ak − ar|, contradicting the fact that α is a
contraction. As such br = ar for all r ∈ {1, . . . , k − 1}. �

Corollary 3.2. Let α ∈ ODCIn be as expressed in equation (1.4). If
bk = n then α is a partial identity.

Proof. Let α ∈ ODCIn be as expressed in equation (1.4) and suppose
that bk = n. Since α is order decreasing, then bk ≤ ak, but since bk = n
then ak = bk and by Lemma 3.1, α is a partial identity. �

We now have the following lemma.

Lemma 3.3. For 0 ≤ k ≤ n− 2, Jk ⊆ 〈Jk+1〉.

Proof. Let α ∈ Jk be as expressed in equation (1.3). Since α is decreas-
ing then bk ≤ ak. Thus, we consider the following two cases:
Case 1. Suppose bk = ak. Then by Lemma 3.1, α is a partial identity

and as such α =

(
a1 a2 · · · ak
a1 a2 · · · ak

)
.

Now, let t = max([n]\Dom α) and s = min([n]\Dom α).
1.1. If t < a1, then define β and γ, respectively as:

β =

(
t a1 · · · ak
t a1 · · · ak

)
and γ =

(
s a1 · · · ak
s a1 · · · ak

)
.

1.2. If t > ak, then define β and γ as: β =

(
a1 · · · ak t
a1 · · · ak t

)
and

γ =



(
a1 · · · ak s
a1 · · · ak s

)
, if s > ak

(
a1 · · · aj s aj+1 · · · ak
a1 · · · aj s aj+1 · · · ak

)
,

if aj < s < aj+1 and 1 ≤ j ≤ k − 1(
s a1 · · · ak
s a1 · · · ak

)
, if s < a1.

1.3. If ai < t < ai+1 for some i ∈ {1, . . . , k − 1}, then define β and γ
as:

β =

(
a1 · · · ai t · · · ai+1 ak
a1 · · · ai t · · · ai+1 ak

)
and
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γ =



(
a1 · · · ai s ai+1 · · · ak
a1 · · · ai s ai+1 · · · ak

)
, if s > ai

(
a1 · · · aj s aj+1 · · · ai ai+1 · · · ak
a1 · · · aj s aj+1 · · · ai ai+1 · · · ak

)
,

if aj < s < aj+1 for some j ∈ {1, . . . , i− 1}(
s a1 · · · ak
s a1 · · · ak

)
, if s < a1.

Case 2. If bk ≤ ak ≤ n. Then either Im α is convex or Im α is not
convex.
Subcase (1): Suppose that Im α is convex, i.e., there exists b ∈ Z+

such that Im α = {b + 1, . . . , b + k}. Thus, since α is decreasing then
b+ k ≤ ak an as such 1 ≤ b+ 1 ≤ · · · ≤ b+ k ≤ ak ≤ n. Now there are
two cases to consider:

1.1. 1 < b+ 1 < · · · < b+ k < ak < n, i. e., b+ 1 = 1 which implies
that b = 0, as such

α =

(
a1 a2 · · · ak
1 2 · · · k

)
.

1.1.1. If t > ak, define

β =

(
a1 a2 · · · ak t
1 2 · · · k k + 1

)
and γ =

(
1 · · · k k + 2
1 · · · k k + 2

)
.

1.1.2. If t < a1, define

β =

(
t a1 · · · ak
1 2 · · · k + 1

)
and γ =

(
2 3 · · · k + 1 k + 2
1 2 · · · k k + 1

)
.

1.1.3. If ai < t < ai+1, for some i ∈ {1, . . . , k − 1}. Define

β =

(
a1 · · · ai t ai+1 · · · ak
1 · · · i i+ 1 i+ 2 · · · k + 1

)
and

γ =

(
1 · · · i i+ 2 · · · k k + 1 k + 2
1 · · · i i+ 2 · · · k − 1 k k + 1

)
.

1.2. If 1 < b+ 1 < . . . < b+ k < n.
1.2.1. If t > ak, define

β =

(
a1 · · · ak t
b+ 1 · · · b+ k b+ k + 1

)
and γ =

(
b b+ 1 · · · b+ k
b b+ 1 · · · b+ k

)
.

1.2.2. If t < a1, define

β =

(
t a1 · · · ak
b b+ 1 · · · b+ k

)
and γ =

(
b+ 1 b+ 2 · · · b+ k + 1
b b+ 2 · · · b+ k + 1

)
.
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1.2.3. If ai < t < ai+1 for some i ∈ {1, . . . , k − 1}. Define

β =

(
a1 · · · ai t ai+1 · · · ak
b+ 1 · · · b+ i b+ i+ 1 b+ i+ 2 · · · b+ k + 1

)
and

γ =

(
b b+ 1 · · · b+ i b+ i+ 2 · · · b+ k + 2
b b+ 1 · · · b+ i b+ i+ 1 · · · b+ k + 1

)
.

Subcase (2): Suppose that Im α is not convex, i.e., there exists i ∈
{1, · · · , k− 1} such that bi+1− bi ≥ 2 which implies ai+1− ai ≥ 2. This
means that there exists v ∈ [n]\ Dom α and u ∈ [n]\ Im α such that
ai < v < ai+1 and bi < u < bi+1.

Now, let t = max{v ∈ [n]\Dom α : ai < v < ai+1}, s = max{u ∈
[n]\Im α : bi < u < bi+1}, s′ = max([n]\Im α) and s′′ = min([n]\Im α).

Then we consider two subcases:
2.1. If bk < n, define

β =

(
a1 · · · ai t ai+1 · · · ak
b1 · · · bi s bi+1 · · · bk

)
and γ =

(
b1 · · · bk s′

b1 · · · bk s′

)
.

2.2. If bk = n, then by Corollary 3.2, α is a partial identity. As such
the results follows from case 1.

�

Hence in each case, it is clear that β, γ ∈ Jk+1 and α = βγ. We now
have the following lemma.

Lemma 3.4. For 0 ≤ k ≤ n− 1, Jk ⊆ 〈Jn−1〉.

Proof. Suppose 0 ≤ k ≤ n − 1, then by Lemma 3.3, we see that Jk ⊆
〈Jk+1〉 and similarly, Jk+1 ⊆ 〈Jk+2〉 i.e., 〈Jk+1〉 ⊆ 〈Jk+2〉 which means
that 〈Jk〉 ⊆ 〈Jk+1〉 ⊆ 〈Jk+2〉. Therefore, Jk ⊆ 〈Jk+1〉 ⊆ 〈Jk+2〉. If we
continue in this fashion we see that 〈Jk〉 ⊆ 〈Jk+1〉 ⊆ 〈Jk+2〉 ⊆ . . . ⊆
〈Jn−2〉 ⊆ 〈Jn−1〉 and therefore, Jk ⊆ 〈Jn−1〉 as required. �

As a consequence we have the following corollary.

Corollary 3.5. 〈Jn−1〉 = I(n, n− 1).

Remark 3.6. It is obvious that the generating set of Jn−1 is non-trivial.
Therefore by the Lemma 1.1, there exists a maximal subsemigroup
arising from Jn−1.

We now have the following theorem.

Theorem 3.7. Let ODCIn be as defined in equation (1.2) and I(n, n−
1) be two sided ideal of ODCIn. Then, the rank (I(n, n−1)) = 2n−1.
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Proof. Clearly, from Corollary 3.5, 〈Jn−1〉 = I(n, n−1). So it is enough
to show that Jn−1 is the minimum generating set of I(n, n − 1). i.e.,
〈Jn−1〉 = I(n, n − 1) and 〈Jn−1\{ω}〉 6= I(n, n − 1) for all ω ∈ Jn−1.
Notice that Jn−1 = {εi, α, βj : 1 ≤ i ≤ n, 2 ≤ j ≤ n − 1}. Notice
also that the h(εkεm) < n − 1 for all k,m ∈ {1, . . . , n}, moreover,
h(εiβj) < n − 1 for all i ∈ {1, . . . , n} and j ∈ {2, . . . , n − 2}, βjεn =
βj, h(βjεi) < n − 1 i ∈ {1, . . . , n − 1} and h(βjβj) < n − 1 for i ∈
{2, . . . , n− 1}. This means that εi and βj do not generates α; as such
〈Jn−1\{α}〉 6= I(n, n− 1).

Similarly, for all i 6= 1 and i 6= n in {1, . . . , n} the h(εiα) < n − 1
and ε1α = α; h(αεi) < n − 1 and αεn = α; h(αα) < n − 1. This
means that εi and α do not generates βj for j ∈ {2, . . . , n− 1}. Hence
〈Jn−1\{βj}〉 6= I(n, n− 1).

Furthermore, for all j ∈ {2, . . . , n−1}, the h(βjα) < n−1, h(αβj) <
n− 1, h(αα) < n− 1 and h(βjβj) < n− 1. This means that βj and α
do not generates εi for all i ∈ {1, . . . , n}. Hence 〈Jn−1\{εi}〉 6= 〈Jn−1〉.
Thus, Jn−1 is the minimum generating set of I(n, n − 1) and as such,
the rank(I(n, n− 1)) = |Jn−1| = 2n− 1. �

As a consequence we readily have the following result.

Theorem 3.8. rank(ODCIn) = 2n.

Proof. Notice thatODCIn = I(n, n−1)∪{id[n]}, as such rank(ODCIn) =
rank(I(n, n− 1)) + 1. The fact that ODCIn is a J−trivial semigroup,
the results follows directly from Theorem 3.7. �

4. Maximal Subsemigroups of ODCIn
In this section we present the classification of the maximal subsemi-

groups of the semigroup ODCIn. We begin with the following lemma.

Lemma 4.1. Every maximal subsemigroup S of ODCIn contains the
ideal I(n, n− 2) .

Proof. The proof is similar to that of Lemma 2.9.
�

We are now going to present the main results of this section, the
classification of the maximal subsemigroups of the semigroup ODCIn.

Theorem 4.2. Let α, εi and βj be as expressed in equation (3.1). A
subsemigroup S of ODCIn is maximal if and only if it belongs to one
of the following four types:

(i) S{id[n]} := ODCIn\{id[n]};
(ii) Sα := ODCIn\{α};
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(iii) Sεi := ODCIn\{εi}, i ∈ {1, . . . , n};
(iv) Sβj := ODCIn\{βj}, j ∈ {2, . . . , n− 1}.

Proof. Suppose S is a maximal subsemigroup of ODCIn. Then by
Lemma 4.1, S = I(n, n− 2) ∪K, where K ⊆ ( Jn−1 ∪ {id[n]}) .

If {id[n]} * K, then K ⊆ ODCIn\{id[n]}. Thus S = I(n, n −
2) ∪K ⊆ I(n, n − 2) ∪ ODCIn\{id[n]}. Since S is maximal then S =
ODCIn\{id[n]} = S{id[n]}, as such (i) follows.

Now, if {id[n]} ⊆ K, then Jn−1 * K (otherwise S = ODCIn). Since
by the proof of Theorem 3.7, the set {εi, α, γj : i ∈ {1, . . . , n} and
j ∈ {2, . . . , n − 1}} is the minimum generating set for Jn−1, then the
set K is contain in Jn−1\{τ} for some τ ∈ {εi, α, βj}. Therefore, by
maximality of S, S = Sτ for some τ ∈ {εi, α, βj, } and hence (ii)− (iv)
follows.

Conversely, suppose (i) − (iv) holds. Notice that ODCIn\{id[n]} =
I(n, n−1) and I(n, n−1)∪{id[n]} = ODCIn, hence S{id[n]} is maximal.
Notice also that from the proof of Theorem 3.7, the elements εi, α and
βj for all i ∈ {1, . . . , n} and j ∈ {2, . . . , n − 1} cannot be generated
by the elements of the set Jn−1.Therefore, since OCIn\{εi} ∪ {εi} =
OCIn, OCIn\{α}∪{α} = OCIn, and OCIn\{βj}∪{βj} = OCIn. It
follows that for all i ∈ {1, . . . , n}, and j ∈ {2, . . . , n} Sεi , Sα and Sβj
are maximal. �

The next corollary gives us the total number of the maximal sub-
semigroups of the semigroup ODCIn.

Corollary 4.3. The semigroup ODCIn contains exactly 2n maximal
subsemigroups

Proof. The results follows by counting the number of maximal subsemi-
groups (i) to (iv) in Theorem 4.2. �

5. Green’s and Starred Green’s relations

Using Lemma 5.1, one can see that the semigroup ODIn is the inter-
section of the semigroups In, OIn and PFn, respectively. Therefore,
the characterization of Green’s relations on the semigroup ODIn is the
intersection of the corresponding Green’s, relations on In, OIn and
PFn (for the characterization of Green’s relations on the semigroups
In, OIn and PFn see [25, 9, 10]).

We now record the following lemma.

Lemma 5.1 ([10], Pp 252). The semigroup ODIn = In∩OIn∩PFn.

Theorem 5.2. Let α, β ∈ ODIn. Then
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(i) (α, β) ∈ L(ODIn) if and only if α = β;
(ii) (α, β) ∈ R(ODIn) if and only if α = β;

(iii) (α, β) ∈ D(ODIn) if and only if α = β;
(iv) (α, β) ∈ H(ODIn) if and only if α = β.

For 1 ≤ m, r, k ≤ n denote:

α =

(
a1 · · · am
a1α · · · amα

)
, β =

(
b1 · · · bm
b1β · · · bmβ

)
,

σ =

(
c1 · · · cr
c1σ · · · crσ

)
and γ =

(
d1 · · · dk
d1γ · · · dkγ

)
.

(5.1)

We now give the characterizations of Green’s relations on the semi-
group ODCIn in the following theorem.

Theorem 5.3. The semigroup ODCIn is J trivial.

Proof.
(i) Let α, β, σ and γ ∈ ODCIn be as expressed in (5.1) and suppose
that (α, β) ∈ L(ODCIn). This means that α = σβ and β = γα for
σ, γ ∈ ODCI1n. This implies that Im α = Im β.

Notice that Dom α ⊆ Dom σ, as such am ≤ cr meaning that there
exists c1 ≤ c∗ ≤ cr such that am = c∗ and moreover, since σ is order-
decreasing then c∗σ ≤ c∗.

Claim: c∗σ = c∗.
Now, either Im α = ∅ or Im α 6= ∅. If Im α = ∅, then since α = σβ

then Im β = ∅ (since β = γα) and trivially α = β. Now suppose
Im α 6= ∅ (which also implies Im β 6= ∅).

Suppose that am = c∗ and c∗σ < c∗ since Im α = Im β and α and β
are both order-preserving then aiα = biβ (i = 1 . . .m). In particular
amα = bmβ ——(1). Since am = c∗ then c∗σ = amσ. Now (amσ)β =
amα = bmβ. Since β is injective then amσ = bm. But σ is order-
decreasing means that c∗ > c∗σ = amσ = bm. i.e., c∗ > bm i.e.,
am > bm.

Now since Dom β ⊆ Dom γ, then bm = d∗, where d1 ≤ d∗ ≤ dk
using equation (1) we see that (d∗γ)α = d∗β = bmβ = amα, and
by injectivity of α implies that d∗γ = am > bm = d∗, i.e., d∗γ >
d∗ contradicting the fact that γ is order-decreasing, it follows that
c∗σ = c∗. Now, since Dom α ⊆ Dom σ and Dom β ⊆ Dom γ, define
[c∗] = {a ∈ Dom α | a ≤ c∗} = Dom α and [d∗] = {b ∈ Dom β | b ≤
d∗} = Dom β. Now by Lemma 3.1, σ|[c∗] is a partial identity and as
such α = σβ = σ|[c∗]β = β. Similarly, since Dom β ⊆ Dom γ, it
means that there exists d1 ≤ d∗ ≤ dk such that d∗γ = d∗, then we can
show similarly that γ|[d∗] is a partial identity by Lemma 3.1, as such
β = γα = γ|[d∗]α = α. Therefore, α = β.
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Conversely, suppose that α = β then since L is reflexive, it follows
that (α, β) ∈ L(ODCIn).

(ii) Let α, β ∈ ODCIn be as defined above and suppose that (α, β) ∈
R(ODCIn). This means that α = βσ and β = αγ for σ, γ ∈ ODCI1n.
This implies that Dom α = Dom β.

Notice that Im α ⊆ Im σ, as such there exists c1 ≤ c∗ ≤ cr such that
amα = c∗σ and moreover, since σ is order-decreasing then c∗σ ≤ c∗.

Claim: c∗σ = c∗.
Now, either Im α = ∅ or Im α 6= ∅. If Im α = ∅, since α = βσ then
Im β = ∅ (since β = αγ) and trivially α = β. Now suppose Im α 6= ∅
(which also implies Im β 6= ∅).

Suppose that amα = c∗σ and c∗σ < c∗ since Dom α = Dom β and α
and β are both order-preserving then ai = bi(i=1. . . m). In particular
am = bm ——(1). Notice that (amβ)σ = amα = c∗σ and since σ
is injective then amβ = c∗ > c∗σ. i.e., c∗σ < amβ = bmβ. i.e.,
amα = c∗σ < bmβ. i.e., amα < bmβ. Now, since Im β ⊆ Im γ,
then there exists d∗ ∈ Dom γ such that bmβ = d∗γ. Now using (1),
(amα)γ = amβ = bmβ = d∗γ and since γ is injective then amα = d∗.
i.e., d∗ = amα < bmβ = d∗γ. i.e., d∗ < d∗γ contradicting the fact that
γ is order-decreasing. It follows that c∗σ = c∗. Now, since Im α ⊆ Im σ
and Im β ⊆ Im γ, then define [c∗] = {aα ∈ Im α | aα ≤ c∗σ} = Im α
and [d∗] = {bβ ∈ Im β | bβ ≤ d∗γ} = Im β. Now by Lemma 3.1,
σ|[c∗] is a partial identity and as such α = βσ = βσ|[c∗] = β. Similarly,
since Im β ⊆ Im γ, it means that there exists d∗ ∈ Dom γ such that
d∗γ = d∗, then we can show similarly that γ|[d∗] is a partial identity by
Lemma 3.1, as such β = αγ = αγ|[d∗] = α. Therefore, α = β.

Conversely, suppose that α = β then since R is reflexive, it follows
that (α, β) ∈ R(ODCIn).

(iii) Suppose (α, β) ∈ D. It means that there exists γ ∈ ODCIn such
that (α, γ) ∈ L and (γ, β) ∈ R. Then by (i) and (ii) α = γ and γ = β.
Therefore, by the transitivity of R, α = β.

Conversely, suppose α = β. Then since D is reflexive, then it follows
that (α, β) ∈ D.

(iv) It follows from (i) and (ii).
�

5.1. Regularity and starred Green’s relations on ODCIn. Recall
that an element a in S is called regular if a = aba for some b ∈ S. The
semigroup S is called regular semigroup if all its elements are regular.

The following lemma gives us a necessary and sufficient conditions
for an element in the semigroup ODCIn to be regular.
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Lemma 5.4. Let α ∈ ODCIn. Then α is regular if and only if α is a
partial identity.

Proof. Let α ∈ ODCIn be as expressed in equation (5.1) and suppose
that α is regular. This means that there exists β ∈ ODCIn such that
αβα = α. Notice that Im α ⊆ Dom β as such there exists b∗ ∈ Dom β
such that anα = b∗ for any ar ∈ Dom α and since α and β are both
order decreasing, then arα ≤ ar for all r ∈ {1, . . . , k} and bmβ ≤ bm
for all m ∈ {1, . . . , k}. In particular, akα ≤ ak. There are two cases to
consider:
Case (i): Suppose akα = b∗ and akα = ak. Then by Lemma 3.1, α is a
partial identity.
Case (ii): Suppose that akα = b∗ and akα < ak. Then (akαβ)α = akα.
Since α is injective then akαβ = ak > akα i.e., b∗β > b∗ contradicting
the fact that β is order decreasing. This means that akα = ak and by
Lemma 3.1, α is a partial identity. The converse is obvious as such α
is idempotent and hence regular. �

We immediately deduce the following result.

Corollary 5.5. For n ≥ 3, the semigroup ODCIn is not regular.

Theorem 5.6. Let α, β ∈ ODCIn. Then

(i) (α, β) ∈ L∗(ODCIn) if and only if α = β;
(ii) (α, β) ∈ R∗(ODCIn) if and only if α = β;

(iii) (α, β) ∈ D∗(ODCIn) if and only if α = β;
(iv) (α, β) ∈ H∗(ODCIn) if and only if α = β.

Proof. It follows from Theorem 5.2. �

Remark 5.7. For 1 ≤ n ≤ 2, ODCIn is a regular semigroup.

Corollary 5.8. For n ≥ 3, the semigroup ODCIn is neither left nor
right abundant.

Proof. Let n ≥ 3 and consider α =

(
2 3 · · · n
1 2 · · · n− 1

)
. It is

obvious that α ∈ ODCIn and

L∗α =

{(
2 3 · · · n
1 2 · · · n− 1

)}
has no idempotent. Similarly,

R∗α =

{(
2 3 · · · n
1 2 · · · n− 1

)}
has no idempotent either.

�
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6. Maximal subsemigroups of ODDPn
In this section we classify all the maximal subsemigroups of the semi-

group ODDPn and later proved that the semigroup has n+2 maximal
subsemigroups. The rank of the semigroup ODDPn was investigated
by Kehinde et al., see ([20], Theorem 3.3) and it has been proved to be
n+2. Moreover, it was also proved that the semigroup has a minimum
generating set. Before we begin our investigation we notice that id[n]
is the only order-decreasing map of height n, as such id[n] ∈ ODCIn
is non-factorizable. Now consider the elements of height n − 1 in the
semigroup ODCIn (i.e., elements of Jn−1). These elements are of the
following forms:

For i ∈ {1, . . . , n},

εi =

(
1 · · · i− 1 i+ 1 · · · n
1 · · · i− 1 i+ 1 · · · n

)
and α =

(
2 3 · · · n
1 2 · · · n− 1

)
.

(6.1)
Consider the possible product of all the elements of height (n − 1)

in ODDPn as follows:

ε1α =

(
2 · · · n
2 · · · n

)(
2 3 · · · n− 1 n
1 2 · · · n− 2 n− 1

)
=

(
2 3 · · · n− 1 n
1 2 · · · n− 2 n− 1

)
= α

and

αεn =

(
2 3 · · · n− 1 n
1 2 · · · n− 2 n− 1

)(
1 · · · n− 1
1 · · · n− 1

)
=

(
2 3 · · · n− 1 n
1 2 · · · n− 2 n− 1

)
= α.

It is not difficult to see that α is the only non idempotent element of
height n− 1 in the set Jn−1 and εi, α ∈ ODDPn are non-factorizable,
for i ∈ {1, . . . , n}.

Remark 6.1. Notice that the set {εi, α, id[n] : i ∈ {1, . . . , n}} gener-
ates the semigroup ODDPn and {εi, α, id[n] : i ∈ {1, . . . , n}} ∩ Jn−1
is non-trivial. Therefore by the Lemma 1.1, there exists a maximal
subsemigroup arising from Jn−1.

We now record the following result needed in our subsequent discus-
sions.

Lemma 6.2. [[20], Lemma 3.5]. Let α, β, αβ ∈ ODDPn, be each of
height n− 1. Then αβ is a partial identity if and only if α = β = αβ.
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As a consequence we readily have the following proposition.

Proposition 6.3. Let 0 ≤ k ≤ n− 2. Then Jk ⊆ 〈Jk+1〉

Now we prove the following corollary.

Corollary 6.4. Let 0 ≤ k ≤ n−1. Then I(n, k) = 〈Jk〉 and ODDPn =
〈Jn−1 ∪ {id[n]}〉.

Proof. The prove is similar to that of Corollary 2.7. �

Now, we present the classification of the maximal subsemigroups of
the semigroup ODDPn.

Lemma 6.5. Every maximal subsemigroup S of ODDPn contains the
ideal I(n, n− 2) .

Proof. The proof is similar to that of Lemma 2.9. �

We now present the main results of this section.

Theorem 6.6. Let α and εi be as defined in equation (6.1). A sub-
semigroup S of ODDPn is maximal if and only if it belongs to one of
the following three types:

(i) S{id[n]} := ODDPn\{id[n]};
(ii) Sα := ODDPn\{α};

(iii) Sεi := ODDPn\{εi}, i ∈ {1, . . . , n}.

Proof. Suppose S is a maximal subsemigroup of ODDPn. Then by
Lemma 6.5, S = I(n, n − 2) ∪ K, where K ⊆ ( Jn−1 ∪ {id[n]}). If
{id[n]} * K then K ⊆ ODDPn\{id[n]}. Thus S = I(n, n − 2) ∪
K ⊆ I(n, n − 2) ∪ ODDPn\{id[n]}. Since S is maximal then S =
ODDPn\{id[n]} = S{id[n]}, as such (i) follows.

Now, if {id[n]} ⊆ K. Then Jn−1 * K (otherwise S = ODDPn). By
([20], Theorem 3.3), the set {εi, α : i ∈ {1, . . . , n} is the minimum
generating set for Jn−1, and as such K is contain in Jn−1\{τ} for some
τ ∈ {εi, α}. Therefore by maximality of S, S = Sτ for some τ ∈ {εi, α}
and hence (ii) and (iii) follows.

Conversely, suppose (i)-(iii) holds. Notice that ODDPn\{id[n]} =
I(n, n − 1) and I(n, n − 1) ∪ {id[n]} = ODDPn, hence S{id[n]} is max-

imal. Since {εi, α : i ∈ {1, . . . , n} is the unique minimum generat-
ing set for Jn−1, then Jn−1 ⊆ 〈εi, α, i ∈ {1, . . . , n}〉. Notice also that
ODDPn\{εi} ∪ {εi} = ODDPn and ODDPn\{α} ∪ {α} = ODDPn.
Thus, it follows that for all i ∈ {1, . . . , n}, Sεi and Sα are maximal. �

The next corollary gives us the number of the maximal subsemi-
groups of the semigroup ODDPn.
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Corollary 6.7. The semigroup ODDPn contains exactly n+2 maximal
subsemigroups.

Proof. The results follows directly by counting the number of maximal
subsemigroups in (i), (ii) and (iii) of Theorem 6.6. �

Recall that a semigroup S is said to be 0−E−unitary if E ′ = E\{0}
and (∀e ∈ E ′)(∀s ∈ S) es ∈ E ′ ⇒ s ∈ E. This means that, a full sub-
semigroup of In is 0−E− unitary if and only if only idempotents have
fixed points [20]. The structure theory for 0−E− unitary inverse semi-
groups was given by Gomes and Howie [15] and Lawson [21]. Kehinde
et al., [20], deduced that the semigroup ODDPn is a 0 − E-unitary
ample subsemigroup of In.

Throughout this section Sid[n]
, Sα and Sεi , i ∈ {1, . . . , n}, denote the

maximal subsemigroups of the semigroup ODDPn.

Theorem 6.8. Let S ∈ {Sid[n]
, Sα} of ODDPn and α, β ∈ S. Then

(i) α ≤L∗ β if and only if Im α ⊆ Im β;
(ii) α ≤R∗ β if and only if Dom α ⊆ Dom β.

Proof. The proof is similar to that of ([20], Theorem 2.3). �

Remark 6.9. Notice that E(Sεi) 6= E(In) as such the maximal subsemi-
group Sεi , (i ∈ {1, . . . n}) of ODDPn is not an inverse ideal of In. This
means that the proof of L∗(Sεi) and R∗(Sεi) are different from that of
Theorem 6.8 but similar to the proof of Theorem 2.15. Therefore, we
state the characterization of L∗(Sεi) and R∗(Sεi) in the theorem below.

Theorem 6.10. Let S = Sεi , i ∈ {1, . . . n} and α, β ∈ S. Then

(i) (α, β) ∈ L∗(S) if and only if Im α = Im β;
(ii) (α, β) ∈ R∗(S) if and only if Dom α = Dom β.

Proof. The proof is similar to that of Theorem 2.15. �

Remark 6.11. Notice that the elements of height n−1 in the semigroup
ODDPn are as in the following set:

K :=

{(
1 · · · n− 1
1 · · · n− 1

)
,

(
2 · · · n
1 · · · n− 1

)
,

(
2 · · · n
2 · · · n

)
,(

1 3 · · · n
1 3 · · · n

)
,

(
1 2 4 · · · n
1 2 4 · · · n

)
, . . . ,(

1 · · · i− 1 i+ 1 · · · n
1 · · · i− 1 i+ 1 · · · n

)
, . . . ,

(
1 · · · n− 2 n
1 · · · n− 2 n

)}
. No-

tice also that for each εi ∈ ODDPn, i ∈ {2, . . . , n − 1}, Dom εi 6=
Dom α or Im εi 6= Im α, for all α ∈ ODDPn\{εi}.

Now we have the following corollary.
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Corollary 6.12. The semigroup Sεi := ODDPn\{εi}, i ∈ {1, . . . , n}
is:

(i) abundant if i ∈ {2, . . . , n− 1};
(ii) left abundant if i = 1;

(iii) right abundant if i = n.

Proof. (i) It follows from Theorem 6.10 and Remark 6.11.
(ii) Let S = Sεi := ODDPn\{εi}, i ∈ {1, . . . , n} and suppose

that i = 1, i.e., ε1 =

(
2 · · · n
2 · · · n

)
. Let K be as defined in

Remark 6.11, notice that Im ε1 6= Im α for all α ∈ K ⊆ S =
ODDPn\{εi} as such Im ε1 6= Im α for all α ∈ S. Thus,

L∗ε1 = ∅ and R∗ε1 =

{(
2 · · · n
1 · · · n− 1

)}
has no idempotent. Hence, the results follows.

(iii) Let S = Sεi := ODDPn\{εi}, i ∈ {1, . . . , n} and suppose that

i = n. I.e., εn =

(
1 · · · n− 1
1 · · · n− 1

)
. Let K be as defined in

Remark 6.11, notice that Dom ε1 6= Dom α for all α ∈ K ⊆
S = ODDPn\{εi} as such Dom ε1 6= Dom α for all α ∈ S.
Thus,

L∗εn =

{(
2 · · · n
1 · · · n− 1

)}
has no idempotent and R∗εn = ∅. The result now follows.

�

Remark 6.13. Let S ∈ {Sid[n]
, Sα, Sεi : i ∈ {2, . . . , n − 1}}. Then S is

a 0-E-unitary subsemigroup of In.

Theorem 6.14. Let S ∈ {Sid[n]
, Sα, Sεi : i ∈ {2, . . . , n− 1}}. Then S

is ample.

Proof. The proof is similar to that of Theorem 2.20. �

Theorem 6.15. Let S ∈ {Sid[n]
, Sα, Sεi : i ∈ {2, . . . , n− 1}}. Then S

is a 0-E-unitary ample subsemigroup of In.

Proof. The results follows from Remark 6.13 and Theorem 6.14. �

Corollary 6.16. Let S ∈ {Sid[n]
, Sα, Sεi , i ∈ {2, . . . , n− 1}}. Then S

is a 0-E- unitary ample maximal subsemigroup of ODDPn.

Proof. The proof follows directly from Theorem 6.6 and Theorem 6.15.
�
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