- B. Ali, M. A. Jada, and M. M. Zubairu, On the ranks of certain semigroups of order preserving partial isometries of a nite chain. J. Algebra and Rel. Top., (2) 6 (2018), 15-33.
- F. Al-Kharousi, R. Kehinde and A. Umar, On the semigroup of partial isometries of a nite chain. Comm. Algebra, 44 (2016), 639-647.
- F. Al-Kharousi, G. U. Garba, M. J. Ibrahium, A. T. Imam and A. Umar, On the semigroup of nite order-preserving partial injective contraction mappings of a nite chain. (Accepted, Afrika Mathematika).
- L. Brucci, and L. E. Picasso, Representations of semigroups of partial isometries. Bull. Lond. Math. Soc., 39 (2007), 792-802.
- I. Dimitrova and J. Koppitz, The maximal subsemigroups of the ideals of some semigroup of partial injections. Discuss. Math.- Gen Algebra Appl., 29 (2009), 153-167.
- I. Dimitrova and J. Koppitz, On the maximal subsemigroups of some transformation semigroups. Asian-Eur. J. Math., 1 (2008), 189-202.
- J. East, J. Kumar, D. M. 2. James and A. W. Wilf, Maximal subsemigroups of nite transformation and diagram monoids. J. Algebra, 504 (2018), 176-216.
- J. B. Fountain, Adequate semigroups. Proc. Edinb. Math. Soc., 22 (1979), 113-125.
- O. Ganyushkin and V. Mazorchuck, On the structure of IOn. Semigroup Forum, 66 (2003), 455-483.
- O. Ganyushkin and V. Mazorchuck, Classical Finite Transformation Semi-groups. SpringerVerlag: London Limited, 2009.
- G. U. Garba, Nilpotents in semigroup of partial injective order preserving mappings. Semigroup Forum, 48 (1994), 37-49.
- G. U. Garba, Nilpotents in semigroups of partial order-preserving transformations. Proc. Edinb. Math. Soc., 37 (1994), 361-377.
- G. U. Garba, On the nilpotents rank of partial transformation semigroup. Port. Math., 51 (1994), 163-172.
- G. M. S. Gomes and J. M. Howie, On the ranks of certain nite semigroups of transformations. Math. Proc. Camb. Philos. Soc., 101 (1987), 395-403.
- G. M. S. Gomes and J. M. Howie, A P theorem for inverse semigroups with zero. Port. Math., 53 (1996), 257-278.
- N. Graham, R. Graham and J. Rhodes, Maximal subsemigroup of nite semi-groups. J. Comb. Theory, 4 (1968) 203-209.
- P. M. Higgins, Techniques of semigroup theory. Oxford University Press, 1992.
- J. M. Howie, Fundamental of semigroup theory, London Mathematical Society, New series 12. The Clarendon Press, Oxford University Press, 1995.
- J. M. Howie, M. Paula, O. and M. Smith, Inverse semigroups generated by nilpotent transformations. Proc. R. Soc. Edinb. A: Math., 99 (1984), 153-162.
- R. Kehinde, S. O. Makanjuola and A. Umar, On the semigroup of order-decreasing partial isometries of a nite chain. J. Algebra its Appl., (2015), 1-11.
- M. V. Lawson, The structure of 0E-unitary inverse semigroups I: the monoid case. Proc. Edinb. Math. Soc., 42 (1999), 497-520.
- J. W. Nicholas, A class of maximal inverse subsemigroups of full transformation semigroup. Semigroup Forum, 13 (1976), 187-188.
- N. R. Reilly, Maximal inverse subsemigroups of full transformation semigroup. Semigroup Forum, 15 (1978), 319-326.
- A. Umar, On the semigroups of partial one-to-one order-decreading nite transformations. Proc. R. Soc. Edinb. A: Math., 123 (1993), 355-363.
- A. Umar, Semigroups of order-decreading transformations, (PhD thesis). St. Andrews Research Repository (1993). http://hdl.handle.net/10023/2834.
- A. Umar and M. M. Zubairu, On certain semigroups of contraction mappings of a nite chain. Algebra Discret. Math., (2) 32 (2021), 299-320.
- J. Wallen, Lawrence, Semigroup of partial isometries. Bull. Amer. Math. Soc., 75 (1969), 763-764.
- X. Yang, A classi catrion of maximal inverse subsemigroups of the nite symmetric inverse semigroups. Comm. Algebra, (8) 27 (1999), 4089-4096.
- X. Yang, A classi catrion of maximal subsemigroups of the nite order-preserving transformation semigroups. Comm. Algebra, (3) 28 (2000), 1503-1513.
|