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A NEW APPROACH TO ISOMORPHISM THEOREMS
IN HILBERT ALGEBRAS

A. IAMPAN ∗, M. VANISHREE AND N. RAJESH

Abstract. In this paper, we embark on an in-depth exploration
of the profound connections between congruences, ideals, and ho-
momorphisms in Hilbert algebras. Our research unveils a ground-
breaking theorem that seamlessly integrates the principles of the
first, second, and third isomorphism theorems within this alge-
braic structure. The study of these isomorphism theorems is cru-
cial, as they provide fundamental insights into the structure and
behaviour of algebraic systems, facilitating a deeper understand-
ing and broader applications. This pivotal discovery not only en-
hances our comprehension of Hilbert algebras but also sets the
stage for the development of new and innovative isomorphism the-
orems, promising to significantly enrich the field.

1. Introduction

Isomorphism theorems are foundational tools in algebra, offering
deep insights into the structure of algebraic systems by elucidating
how they can be decomposed and reconstructed. These theorems are
crucial in various fields such as group theory, ring theory, and lattice
theory, aiding in the classification of groups, analysis of ideals, and
understanding of lattice structures. The First Isomorphism Theorem,
for instance, highlights the relationship between a homomorphism and
its kernel, revealing the quotient structure. The Second and Third Iso-
morphism Theorems further refine our understanding of substructures
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and quotients. Recent research has extended these classical theorems to
more abstract systems like Hilbert algebras, demonstrating their versa-
tility and importance in modern algebraic research. This foundational
role ensures their continued relevance, paving the way for new discov-
eries and applications across mathematical disciplines, as detailed in
works such as “Abstract Algebra” by Dummit and Foote [11], “Intro-
duction to Commutative Algebra” by Atiyah and Macdonald [2], and
recent studies like “Isomorphism Theorems in Hilbert Algebras” by
Iampan et al. [13].

Among the diverse array of algebraic structures, algebras of logic
stand out as particularly significant. The concept of Hilbert algebras,
introduced by Diego [8], marked a pivotal advancement in this field.
Diego demonstrated that Hilbert algebras constitute a locally finite
variety, a finding that underscores their unique properties [8]. The ex-
ploration of Hilbert algebras was further advanced by Busneag [5, 6],
who provided critical insights into their structure. Jun [14] identi-
fied certain filters within these algebras that form deductive systems,
expanding our understanding of their logical applications. Building
on this foundation, Jun et al. [15] introduced the innovative concept
of stabilizers in Hilbert algebras and established several key proposi-
tions. Additionally, Dudek [10] explored the fuzzification of subalge-
bras, ideals, and deductive systems, further enriching the theoretical
landscape of Hilbert algebras.

The study of isomorphism theorems in algebraic logic systems has
been a continuous endeavor. For instance, in 2008, Ding et al. [9]
proved the fundamental theorem of homomorphism, the first and sec-
ond isomorphism theorems in BCI-algebras. In 2018, Mosrijai et al.
[16] constructed a new fundamental theorem for UP-algebras, focus-
ing on the congruence determined by a UP-homomorphism. They
have also applied this theorem to establish the first, second, and third
UP-isomorphism theorems, showcasing its practical significance in the
study of UP-algebras. In 2019, Iampan [12] constructed the funda-
mental theorem of UP-homomorphisms within UP-algebras. Further-
more, we have applied this theorem to establish the first, second, third,
and fourth UP-isomorphism theorems, demonstrating its broad ap-
plicability and significance in the study of UP-algebras. Bejarasco
and Gonzaga [3] have introduced the notion of AB-homomorphism for
AB-algebras and have obtained several of its properties. Addition-
ally, they have investigated the first and third isomorphism theorems
for AB-algebras, providing deeper insights into these algebraic struc-
tures. In 2020, Sassanapitax [17] constructed the first isomorphism
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theorem for QI-homomorphisms in QI-algebras. They have also thor-
oughly investigated the concepts of normal QI-subalgebras and quo-
tient QI-algebras, providing a comprehensive understanding of these
fundamental structures. Abed [1] introduced homomorphisms for BZ-
algebras and investigated their properties. He has also explored the
relationships between quotient BZ-algebras and isomorphisms, provid-
ing valuable insights into their interconnections. In 2022, Sriponpaew
and Sassanapitax [18] introduced weak AB-algebras, a generalization
of BCC-algebras. They demonstrated congruences and quotient for-
mation and proved the fundamental isomorphism theorems for weak
AB-algebras. In 2023, Bolima and Fuentes [4] have presented various
properties of the dual B-homomorphism, introduced the concept of the
natural dual B-homomorphism, and established the fundamental theo-
rem of dual B-homomorphisms for dual B-algebras. Additionally, they
have provided the first and third isomorphism theorems for the dual
B-algebra.

In this paper, we present a groundbreaking fundamental theorem for
Hilbert algebras, focusing on the congruence defined by a homomor-
phism. This new theorem not only advances our theoretical under-
standing but also offers practical applications, particularly in deriving
the first, second, and third isomorphism theorems within the framework
of Hilbert algebras. By elucidating these key isomorphism principles,
our work provides valuable insights and tools that enhance the study
and application of Hilbert algebras, paving the way for further research
and discoveries in this field.

2. Preliminaries

Let’s go through the idea of Hilbert algebras as it was introduced by
Diego [8] in 1966 before we start.

Definition 2.1. [8] A Hilbert algebra is a triplet with the formula
X = (X, ·, 1), where X is a nonempty set, · is a binary operation, and
1 is a fixed member of X that is true according to the axioms stated
below:

(1) (∀x, y ∈ X)(x · (y · x) = 1),
(2) (∀x, y, z ∈ X)((x · (y · z)) · ((x · y) · (x · z)) = 1),
(3) (∀x, y ∈ X)(x · y = 1, y · x = 1⇒ x = y).

In [10], the following conclusion was established.

Lemma 2.2. Let X = (X, ·, 1) be a Hilbert algebra. Then

(1) (∀x ∈ X)(x · x = 1),
(2) (∀x ∈ X)(1 · x = x),



120 IAMPAN, VANISHREE AND RAJESH

(3) (∀x ∈ X)(x · 1 = 1),
(4) (∀x, y, z ∈ X)(x · (y · z) = y · (x · z)),
(5) (∀x, y, z ∈ X)((x · z) · ((z · y) · (x · y)) = 1).

In a Hilbert algebra X = (X, ·, 1), the binary relation ≤ is defined
by

(∀x, y ∈ X)(x ≤ y ⇔ x · y = 1),

which is a partial order on X with 1 as the largest element.

Definition 2.3. [19] A nonempty subset D of a Hilbert algebra X =
(X, ·, 1) is called a subalgebra of X if x · y ∈ D for all x, y ∈ D.

Definition 2.4. [7] A nonempty subset D of a Hilbert algebra X =
(X, ·, 1) is called an ideal of X if the following conditions hold:

(1) 1 ∈ D,
(2) (∀x, y ∈ X)(y ∈ D ⇒ x · y ∈ D),
(3) (∀x, y1, y2 ∈ X)(y1, y2 ∈ D ⇒ (y1 · (y2 · x)) · x ∈ D).

Definition 2.5. [7] Let X = (X, ·, 1) be a Hilbert algebra and B an
ideal of X. Define the binary relation ∼B on X as follows:

(∀x, y ∈ X)(x ∼B y ⇔ x · y, y · x ∈ B). (2.1)

Definition 2.6. [7] Let X = (X, ·, 1) be a Hilbert algebra. An equiv-
alence relation ρ on X is called a congruence if

(∀x, y, z ∈ X)(xρy ⇒ x · zρy · z, z · xρz · y). (2.2)

Lemma 2.7. [7] Let X = (X, ·, 1) be a Hilbert algebra. An equivalence
relation ρ on X is a congruence if and only if

(∀x, y, u, v ∈ X)(xρy, uρv ⇒ x · uρy · v). (2.3)

Let X = (X, ·, 1) be a Hilbert algebra and ρ a congruence on X. If
x ∈ X, then the ρ-class of x is the (x)∼ρ defined as follows: (x)∼ρ =
{y ∈ X : yρx}. Then the set of all ρ-classes is called the quotient set
of X by ρ and is denoted by X/ρ. That is, X/ρ = {(x)∼ρ : x ∈ X}.

Theorem 2.8. [7] Let X = (X, ·, 1) be a Hilbert algebra and B an
ideal of X. Then (X/ ∼B, ∗, (1)∼B) is a Hilbert algebra under the ∗
multiplication defined by (x)∼B ∗ (y)∼B = (x · y)∼B for all x, y ∈ X,
called the quotient Hilbert algebra of X induced by the congruence ∼B.

Theorem 2.9. [7] Let X = (X, ·, 1) be a Hilbert algebra and B an ideal
of X. Then the mapping πB : X → X/ ∼B defined by πB(x) = (x)∼B
for all x ∈ X is an epimorphism, called the natural projection from X
to X/ ∼B.
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Proposition 2.10. [7] Let X = (X, ·, 1) be a Hilbert algebra and B an
ideal of X. Then ∼B is a congruence on X.

Theorem 2.11. [7] Let X = (X, ·, 1) be a Hilbert algebra and B an
ideal of X. Then the following statements hold:

(1) the ∼B-class (1)∼B is an ideal and a subalgebra of X which
B = (1)∼B ,

(2) a ∼B-class (x)∼B is an ideal of X if and only if x ∈ B,
(3) a ∼B-class (x)∼B is a subalgebra of X if and only if x ∈ B,
(4) (X/ ∼B, ∗, (1)∼B) is a Hilbert algebra under the ∗ multiplication

defined by (x)∼B ∗ (y)∼B = (x · y)∼B for all x, y ∈ X, called the
quotient Hilbert algebra of X induced by the congruence ∼B.

Theorem 2.12. [13] Let A = (A, ·, 1A) and B = (B, ?, 1B) be Hilbert
algebras and let f : A → B be a homomorphism. Then the following
statements hold:

(1) f(1A) = 1B,
(2) for any x, y ∈ A, if x ≤ y, then f(x) ≤ f(y),
(3) if C is a subalgebra of A, then the image f(C) is a subalgebra

of B. In particular, Im(f) is a subalgebra of B,
(4) if D is a subalgebra of B, then the inverse image f−1(D) is a

subalgebra of A. In particular, Ker(f) is a subalgebra of A,
(5) if C is an ideal of A, then the image f(C) is an ideal of f(A),
(6) if D is an ideal of B, then the inverse image f−1(D) is an ideal

of A. In particular, Ker(f) is an ideal of A,
(7) Ker(f) = {1A} if and only if f is injective.

3. Isomorphism Theorems

In this section, we embark on an exploration of a crucial concept in
Hilbert algebras: the congruence defined by a homomorphism. This
concept serves as a gateway to a deeper understanding of algebraic
structures, allowing us to unravel their inherent symmetries and rela-
tionships. We will unveil a groundbreaking fundamental theorem that
redefines our approach to Hilbert algebras through the lens of this
congruence. Furthermore, we will demonstrate how this theorem facil-
itates the derivation of the first, second, and third isomorphism the-
orems specifically tailored to Hilbert algebras. By delving into these
isomorphism theorems, we aim to provide new insights and tools that
enhance our theoretical framework and practical applications within
this fascinating area of mathematics.

Definition 3.1. Let A = (A, ·, 1A) and B = (B, ?, 1B) be Hilbert
algebras and f : A → B a homomorphism. Define the binary relation
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∼f on A as follows:

(∀x, y ∈ A)(x ∼f y ⇔ f(x) = f(y)). (3.1)

Theorem 3.2. Let A = (A, ·, 1A) and B = (B, ?, 1B) be Hilbert alge-
bras and f : A → B a homomorphism. Then ∼f is a congruence on
A, called the congruence determined by f .

Proof. For all x ∈ A, we have f(x) = f(x). Thus x ∼f x. Hence, ∼f
is reflexive. Let x, y ∈ A be such that x ∼f y. Then f(x) = f(y), so
f(y) = f(x). Thus y ∼f x. Hence, ∼f is symmetric. Let x, y, z be
such that x ∼f y and y ∼f z. Then f(x) = f(y) and f(y) = f(z), so
f(x) = f(z). Thus x ∼f z. Hence, ∼f is transitive. Therefore, ∼f is
an equivalence relation on A. Finally, let x, y, u, v ∈ A be such that
x ∼f u and y ∼f v. Then f(x) = f(u) and f(y) = f(v). Since f is a
homomorphism, we get f(x · y) = f(x) ? f(y) = f(u) ? f(v) = f(u · v).
Thus x · y ∼f u · v. By Lemma 2.7, we have ∼f is a congruence on
A. �

Theorem 3.3. Let A = (A, ·, 1A) and B = (B, ?, 1B) be Hilbert al-
gebras and f : A → B a homomorphism. Then (A/ ∼f , ∗, (1A)∼f ) is
a Hilbert algebra under the ∗ multiplication defined by (x)∼f ∗ (y)∼f =
(x·y)∼f for all x, y ∈ A, called the quotient Hilbert algebra of A induced
by the congruence ∼f .

Proof. Let x, y, u, v ∈ A be such that (x)∼f = (y)∼f and (u)∼f = (v)∼f .
Since ∼f is an equivalence relation on A, we get x ∼f y and u ∼f v.
By Lemma 2.7, we have x · u ∼f y · v. Hence, (x)∼f ∗ (u)∼f = (x ·
u)∼f = (y · v)∼f = (y)∼f ∗ (v)∼f , showing ∗ is well-defined. By routine
calculation, we have (A/ ∼f , ∗, (1A)∼f ) is a Hilbert algebra. �

Theorem 3.4. Let A = (A, ·, 1A) and B = (B, ?, 1B) be Hilbert alge-
bras and f : A → B a homomorphism. Then the mapping πf : A →
A/ ∼f defined by πf (x) = (x)∼f for all x ∈ A is an epimorphism, called
the natural projection from A to A/ ∼f .

Proof. Let x, y ∈ A be such that x = y. Then (x)∼f = (y)∼f , so
πf (x) = πf (y). Thus πf is well-defined. Note that by the definition of
πf , we have πf is surjective. Let x, y ∈ A. Then πf (x · y) = (x · y)∼f =
(x)∼f ∗ (y)∼f = πf (x) ∗ πf (y). Thus πf is a homomorphism. Hence, πf
is an epimorphism. �

Theorem 3.5. (Fundamental Theorem of homomorphisms) Let A =
(A, ·, 1A) and B = (B, ?, 1B) be Hilbert algebras and f : A → B a
homomorphism. Then there exists uniquely a homomorphism ϕ from
A/ ∼f to B such that f = ϕ ◦ πf . Moreover,
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(1) πf is an epimorphism and ϕ a monomorphism,
(2) f is an epimorphism if and only if ϕ is an isomorphism.

As f makes the following diagram commute,

A B

A/ ∼f

f

πf ϕ

Proof. By Theorem 3.3, we have (A/ ∼f , ∗, (1A)∼f ) is a Hilbert algebra.
Define a mapping ϕ : A/ ∼f→ B by ϕ((x)∼f ) = f(x) for all (x)∼f ∈
A/ ∼f . Indeed, let (x)∼f , (y)∼f ∈ A/ ∼f be such that (x)∼f = (y)∼f .
Then x ∼f y, so

ϕ((x)∼f ) = f(x) = f(y) = ϕ((y)∼f ).

For any x, y ∈ A, we see that

ϕ((x)∼f ∗ (y)∼f ) = ϕ((x · y)∼f )
= f(x · y)
= f(x) ? f(y)
= ϕ((x)∼f ) ∗ ϕ((y)∼f ).

Thus ϕ is a homomorphism. Also, since

(ϕ ◦ πf )(x) = ϕ(πf (x)) = ϕ((x)∼f ) = f(x) for all x ∈ A,

we obtain f = ϕ ◦ πf . We have shown the existence. Let ϕ′ be a
mapping from A/ ∼f to B such that f = ϕ′ ◦ πf . Then for any
(x)∼f ∈ A/ ∼f , we have

ϕ′((x)∼f ) = ϕ′(πf (x))
= (ϕ′ ◦ πf )(x)
= f(x)
= (ϕ ◦ πf )(x)
= ϕ(πf (x))
= ϕ((x)∼f ).

Hence, ϕ = ϕ′, showing the uniqueness.
(1) By Theorem 3.4, we have πf is an epimorphism. Also, let

(x)∼f , (y)∼f ∈ A/ ∼f be such that ϕ((x)∼f ) = ϕ((y)∼f ). Then f(x) =
f(y), so x ∼f y. Thus (x)∼f = (y)∼f . Therefore, ϕ is a monomorphism.

(2) Assume that f is an epimorphism. By (1), it suffices to prove
that ϕ is surjective. Let y ∈ B. Then there exists x ∈ A such that
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f(x) = y. Thus y = f(x) = ϕ((x)∼f ), so ϕ is surjective. Hence, ϕ is
an isomorphism.

Conversely, assume that ϕ is an isomorphism. Then ϕ is surjective.
Let y ∈ B. Then there exists (x)∼f ∈ A/ ∼f such that ϕ((x)∼f ) =
y. Thus f(x) = ϕ((x)∼f ) = y, so f is surjective. Hence, f is an
epimorphism. �

Theorem 3.6. (First isomorphism Theorem) Let A = (A, ·, 1A) and
B = (B, ?, 1B) be Hilbert algebras and f : A → B a homomorphism.
Then A/ ∼f∼= Im(f).

Proof. By Theorem 2.12 (3), we have Im(f) is a subalgebra of B. Thus
f : A → Im(f) is an epimorphism. Applying Theorem 3.5 (2), we
obtain A/ ∼f∼= Im(f). �

Lemma 3.7. Let A = (A, ·, 1A) and B = (B, ?, 1B) be Hilbert algebras,
f : A→ B a homomorphism, and H a subalgebra of A. Denote H∼f =⋃
h∈H

(h)∼f . Then H∼f is a subalgebra of A.

Proof. Clearly, ∅ 6= H∼f ⊆ A. Let a, b ∈ H∼f . Then a ∈ (x)∼f and
b ∈ (y)∼f for some x, y ∈ H, so (a)∼f = (x)∼f and (b)∼f = (y)∼f .
Theorem 3.3 gives (A/ ∼f , ∗, (1A)∼f ) is a Hilbert algebra, so (a ·b)∼f =
(a)∼f ∗ (b)∼f = (x)∼f ∗ (y)∼f = (x · y)∼f . Thus a · b ∈ (x · y)∼f .
Since x, y ∈ H and H is a subalgebra of A, we have x · y ∈ H. Thus
a · b ∈ (x · y)∼f ⊆ H∼f . Hence, H∼f is a subalgebra of A. �

Theorem 3.8. (Second isomorphism Theorem) Let A = (A, ·, 1A) and
B = (B, ?, 1B) be Hilbert algebras, f : A → B a homomorphism, and
H a subalgebra of A. Denote H∼f/ ∼f= {(x)∼f : x ∈ H∼f}. Then
H/ ∼πf |H∼= H∼f/ ∼f .

Proof. By Lemma 3.7, we have H∼f is a subalgebra of A. Then it is
easy to check that H∼f is a subalgebra of A, thus (H∼f/ ∼f , ∗, (1A)∼f )
itself is a Hilbert algebra. Also, it is obvious that H ⊆ H∼f , then
(πf |H =)g : H → H∼f/ ∼f , x 7→ (x)∼f is a mapping. Indeed, g
is the restriction of πf to H. Thus g is an epimorphism. Indeed,
H∼f/ ∼f= H/ ∼f . Theorem 3.6 gives H/ ∼πf |H∼= H∼f/ ∼f . �

Theorem 3.9. Let A = (A, ·, 1A) and B = (B, ?, 1B) be Hilbert alge-
bras and f : A → B and g : A ⇒ B homomorphisms with ∼f⊆∼g.
Define the binary relation ∼g / ∼f on A/ ∼f as follows:

(∀x, y ∈ A)((x)∼f ∼g / ∼f (y)∼f ⇔ x ∼g y). (3.2)

Then ∼g / ∼f is a congruence on A/ ∼f .
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Proof. By Theorem 3.3, we have (A/ ∼f , ∗, (1A)∼f ) is a Hilbert algebra.
Reflexive: For all x ∈ A, we have x ∼g x. Thus (x)∼f ∼g / ∼f (x)∼f .
Symmetric: Let x, y ∈ A be such that (x)∼f ∼g / ∼f (y)∼f . Then

x ∼g y, so y ∼g x. Thus (y)∼f ∼g / ∼f (x)∼f .
Transitive: Let x, y, z be such that (x)∼f ∼g / ∼f (y)∼f and (y)∼f ∼g

/ ∼f (z)∼f . Then x ∼g y and y ∼g z, so x ∼g z. Thus (x)∼f ∼g / ∼f
(z)∼f .

Therefore, ∼g / ∼f is an equivalence relation on A/ ∼f . Finally,
let x, y, u, v ∈ A be such that (x)∼f ∼g / ∼f (u)∼f and (y)∼f ∼g
/ ∼f (v)∼f . Then x ∼g u and y ∼g v. The binary relation ∼g is
a congruence on A by Theorem 3.2, that is, x · y ∼g u · v. Thus
(x · y)∼f ∼g / ∼f (u · v)∼f , so (x)∼f ∗ (y)∼f ∼g / ∼f (u)∼f ∗ (v)∼f .
Hence, ∼g / ∼f is a congruence on A/ ∼f . �

Theorem 3.10. (Third isomorphism Theorem) Let A = (A, ·, 1A) and
B = (B, ?, 1B) be Hilbert algebras and f : A → B and g : A → B
homomorphisms with ∼f⊆∼g. Then (A/ ∼f )/(∼g / ∼f ) ∼= A/ ∼g.

Proof. By Theorem 3.3, we obtain (A/ ∼f , ∗, (1A)∼f ) and (A/ ∼g
, ∗, (1A) ∼g) are Hilbert algebras. By Theorem 3.4, we obtain πf :
A → A/ ∼f , x 7→ (x)∼f and πg : A → A/ ∼g, x 7→ (x)∼g are epi-
morphisms. Applying Theorem 3.5 (2), there exists an isomorphism
g/f : A/ ∼f→ A/ ∼g, (x)∼f 7→ (x) ∼g. Indeed, A/ ∼f∼= A/ ∼g. By
Theorems 3.9 and 3.3, we have (A/ ∼f )/ ∼g/f is a Hilbert algebra.
By Theorem 3.4, we obtain πg/f : A/ ∼f→ (A/ ∼f )/ ∼g/f , (x)∼f 7→
((x)∼f ) ∼g/f is an epimorphism. Applying Theorem 3.5 (2), there ex-
ists an isomorphism ϕ : (A/ ∼f )/ ∼g/f→ A/ ∼g, ((x)∼f )∼g/f 7→ (x)∼g .

That is, (A/ ∼f )/ ∼g/f∼= A/ ∼g. We shall show that ∼g/f=∼g / ∼f .
For any (x)∼f , (y)∼f ∈ A/ ∼f , we have

(x)∼f ∼g/f (y)∼f ⇔ (g/f)((x)∼f ) = (g/f)((y)∼f )
⇔ (x)∼f = (y)∼g
⇔ x ∼g y
⇔ (x)∼f ∼g / ∼f (y)∼f

by (3.1) and (3.2). Thus ∼g/f=∼g / ∼f . Hence, (A/ ∼f )/(∼g / ∼f ) ∼=
A/ ∼g. �

Corollary 3.11. Let A = (A, ·, 1A) and B = (B, ?, 1B) be Hilbert
algebras, f : A → B a homomorphism, and C an ideal of A. Then
A/ ∼C∼= A/ ∼f . As πf makes the following diagram commute,
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A B

A/ ∼C A/ ∼f

πf

f

πC

ϕ

ϕ

Proof. It is straightforward by Theorems 2.8, 2.9, 3.4, and 3.5 (2). �

4. Conclusion

Let A = (A, ·, 1A) and B = (B, ?, 1B) be Hilbert algebras with
f : A → B denoting a homomorphism. It is well-established that
∼f , the congruence defined by f , acts on A. In this paper, we have
developed a pivotal fundamental theorem concerning homomorphisms
characterized by ∼f within Hilbert algebras. This theorem not only
deepens our theoretical understanding but also extends to provide the
first, second, and third isomorphism theorems specifically tailored to
Hilbert algebras. By establishing these foundational results, our work
offers new insights into the structure and behaviour of Hilbert alge-
bras, enriching both theoretical perspectives and practical applications
in the field.
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