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DERIVATIONS MAPPING INTO THE JACOBSON
RADICAL OF A BANACH ALGEBRA

M. MOUMEN AND L. TAOUFIQ ∗

Abstract. Let A be a Banach algebra with Jacobson radical
RadA and d a continuous derivation of A. The purpose of this
article is to investigate some sufficient conditions under which
d(A) ⊆ RadA from a topological point of view. Interesting re-
sults are established with some applications.

1. Introduction

Throughout this paper, R denotes an associative unitary ring with
unit 1. For any x, y ∈ R, as usual [x, y] = xy− yx will denote the well-
known Lie product. The symbol Inv(R) stand for the set of all units
elements of R. The commutant of a ∈ R is defined by commR(a) =
{x ∈ R | [a, x] = 0}. The intersection of all maximal left (right)
ideals of R is said to be the left (right) Jacobson radical of R, which
is denoted by RadR. In particular, when RadR = {0}, the ring R is
said to be semi-simple. As is well known, RadR = {a ∈ R | 1 − ax ∈
Inv(R) for all x ∈ R}. Due to Harte [5], an element a ∈ R is called
quasinilpotent if 1−ax ∈ Inv(R) for every x in commR(a), the set of all
quasinilpotents of R is designated by QR, it is clear that RadR ⊂ QR.
Recall that a ring R is local [6] if R = QR ∪ Inv(R). An additive
mapping d : R −→ R is a derivation if d(xy) = d(x)y + xd(y) for all
x, y ∈ R. In particular, for a fixed a ∈ R, the mapping da : R → R
given by da(x) = [a, x] for all x ∈ R is a derivation called the inner
derivation of R associated to a.
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When A is a unitary Banach algebra with norm ‖.‖ and center Z(A),
then the set Inv(A) is an open subset of A and Z(A) is a non-void
closed subset. According to [5], the subset QA is defined as follows :

QA = {a ∈ A | lim
n→+∞

‖an‖
1
n = 0}.

In the literature, many authors have introduced sufficient conditions for
that a derivation on a Banach algebra maps it in its Jacobson radical,
with an algebraic approach. In 1955 Singer and Wermer [8] proved
a classical theorem of Banach algebra theory, which says that, every
continuous linear derivation on a commutative Banach algebra maps
this algebra into its radical and in 1988 Thomas [9] proved that if d is
a derivation in a Banach algebra A such that [d(x), x] ∈ Z(A) ∀x ∈ A,
then d has its range in the radical of A. (This generalization is called
the Singer-Wermer conjecture).

In 1992 Mathieu and Runde [7] generalized the Singer-Wermer con-
jecture by proving that every centralizing derivation on a Banach al-
gebra maps an into its Jacobson radical. On the other hand, Bresar[1]
in 1994 has also proved that, if d is a bounded derivation of a Banach
algebra A, such that [d(x), x] ∈ QA for every x ∈ A, then d maps A
into RadA.

Motivated by this, the main objective in writing this article has
been to present some sufficient conditions to conclude a similar result
as Bresar’s theorem [1], but with other local identities from topological
concepts.

We started this paper by presenting some results, from which we have
been inspired in this article. Next, we introduced the proof of main
theory by using the Baire’s theorem and some properties of functional
analysis, then we mentioned some immediate results of it. After we pre-
sented two applications by which we have deduced that any derivation
in a commutative Banach algebra is non-surjective and that his restric-
tion defined on arbitrary Banach algebra on its center is not sujective.
Finally, by a counterexample, we proved that the main theorems are
false, if we replace derivation by a homomorphism.

We now state the results which present the motivation of this article.

Lemma 1.1. [ [1], Bresar’s theorem ] Let d be a bounded derivation
of a Banach algebra A. Suppose that [d(x), x] ∈ QA for every x ∈ A.
Then d maps A into RadA.
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Lemma 1.2. [ [2], Theorem 1] Let d and g be continuous derivations
of a Banach algebra A such that [d2(x) + g(x), x] ∈ RadA for all x in
A. Then both d and g map A into RadA.

Lemma 1.3. [ [2], Theorem 3] Let d be a continuous derivation on a
Banach algebra A. If [d(x), x]2 ∈ RadA for all x in A, then d maps A
into RadA.

2. Main results

Throughout this section, A denotes an unital Banach algebra with
norm ‖.‖ and with center Z(A).

Theorem 2.1. Let A be a Banach algebra, O1 and O2 two non-void
open subsets of A and M a closed subspace of A included in QA. If A
admits a continuous linear derivation d, satisfying

(∀(x, y) ∈ O1 ×O2)(∃(p, q) ∈ N∗2) : [d(xp), yq] ∈M.

Then d(A) ⊂ RadA.

Proof. For all (p, q) ∈ N∗2 , we define the following sets:

Op,q = {(x, y) ∈ A2 | [d(xp), yq] /∈M}
and

Fp,q = {(x, y) ∈ A2 | [d(xp), yq] ∈M}.
We observe that (∩Op,q) ∩ (O1 ×O2) = ∅.
Now we claim that each Op,q is open in A × A. That is, we have to
show that Fp,q the complement of Op,q is closed. For this, we consider
a sequence ((xk, yk))k∈N ⊂ Fp,q converge to (x, y) ∈ A × A. Since
((xk, yk))k∈N ⊂ Fp,q, so

[d((xk)p), (yk)q] ∈M for all k ∈ N.

Since d is continuous, we conclude that the sequence ([d((xk)p), (yk)q])k∈N
converges to [d(xp), yq], knowing that M is closed, then [d(xp), yq] ∈M.
Therefore (x, y) ∈ Fp,q and Fp,q is closed (i.e Op,q is open).
If every Op,q is dense, we know that their intersection is also dense by
Baire category theorem, which contradict with of (∩Op,q)∩(O1×O2) =
∅. Hence, there is (n,m) ∈ N∗2 such that On,m is not a dense set and
there exists a nonvoid open subset H1 ×H2 in Fn,m such that :

[d(xn), ym] ∈M for all (x, y) ∈ H1 ×H2.

Fix y ∈ H2. Let x ∈ H1 and z ∈ A, we have x + tz ∈ H1 for all
sufficiently small real t, therefore

Q(t) = [d((x + tz)n), ym] ∈M.
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Since d is continuous, can be written as

Q(t) = A0 + tA1 + t2A2 + · · ·+ tnAn.

For a t 6= 0, we can write

Q(t) = A0 + tA1 + t2A2 + · · ·+ tnAn.

While A0 + tA1 + t2A2 + · · · + tnAn ∈ M and A0 = [d(xn), ym] ∈ M,
we conclude that:

tA1 + t2A2 + · · ·+ tnAn ∈M.

Multiplying by t−1 ( M is a subspace of A), we obtain

R(t) = A1 + tA2 + ... + tn−1An ∈M,

and take t to zero (R is continuous at 0 and M is closed), we get
A1 ∈M, we conclude that

tA2 + · · ·+ tn−1An ∈M.

Multiplying by t−1 and take t to zero, we have A2 ∈ M. And so on,
we conclude that Ak ∈ M for all 1 ≤ k ≤ n. For k = n, we have
An = [d(zn), ym] ∈M.
Consequently, [d(xn), ym] ∈ M for all x ∈ A. Now, fix x in A, pro-
ceeding in the same way, we find that either [d(xn), ym] ∈ M for all
(x, y) ∈ A2.
Let (x, y) ∈ A2, we have [d((tx + 1)n), ym] ∈ M for all t ∈ R. Since d
is continuous, we can write

[d((tx + 1)n), ym] =
n∑

k=0

(
n

k

)
tk[d((xk.1n−k)), ym] ∈M.

The first term in this polynomial is [d(1n), ym] = 0 who belongs to M,
we prove as proceeding, we conclude that

(
n
k

)
[d(1n−kxk), ym] ∈ M for

all 0 ≤ k ≤ n, in particular for k = 1, we have n[d(x), ym] ∈M, we can
simplify by n (because M is a subspace of A), therefore [d(x), ym] ∈M.
Proceeding in the same way, we have [d(x), y] ∈M for all (x, y) ∈ A2,
and [d(x), y] ∈M for all (x, y) ∈ A2.
In particular for y = x, we have [d(x), x] ∈ M ⊂ QA for all x ∈ A, by
Lemma 1.1, we conclude that d(A) ⊂ RadA. �

Remark 2.2. If QA = {0} or A is a semi-simple Banach algebra, in
the hypotheses of Theorem 2.1, then d = 0.

We immediately get the following corollary from the above Theorem
2.1.



DERIVATIONS MAPPING INTO THE JACOBSON RADICAL OF ... 79

Corollary 2.3. Let A be a local Banach algebra, O1 and O2 are two
non-void open subsets of A. If A admits a continuous linear derivation
d, satisfying :

(∀(x, y) ∈ O1 ×O2)(∃(p, q) ∈ N∗2) : [d(xp), yq] ∈ QA,

then d(A) ⊂ RadA.

Proof. Since A is local, then A = QA ∪ Inv(A). According to [[6],
Lemma 3.1] , we have QA ∩ Inv(A) = ∅, we conclude that Inv(A) is
the complement of QA in A. Since Inv(A) is open , QA is closed, if
we take M = QA in the hypotheses of the Theorem 2.1, we obtain the
result. �

Corollary 2.4. Let A be a Banach algebra, O1 and O2 are two non-
void open subsets of A and M is a closed subspace of A included in
QA. If A admits a continuous derivation d, satisfying :

(∀(x, y) ∈ O1 ×O2)(∃(p, q) ∈ N∗2) : [d(xp), yq] ∈M,

then d is necessarily not surjective.

Proof. According to Theorem 2.1, we have d(A) ⊂ RadA. If d is sur-
jective, then A = RadA = QA, but 1 /∈ QA. We conclude that d is not
surjective. �

Theorem 2.5. Let A be a Banach algebra and O is a non-void open
subset of A and M a closed subspace of A included in QA. If A admits
a continuous linear derivation d, satisfying

(∀x ∈ G)(∃(p, q) ∈ N∗2) : [d(xp), xq] ∈M,

then d(A) ⊂ RadA.

Proof. For all (p, q) ∈ N∗2 , we define the following sets:

Op,q = {x ∈ A | [d(xp), xq] /∈M}

and

Fp,q = {x ∈ A | [d(xp), xq] ∈M}.
Proceeding in the same way as Theorem 2.1, we conclude that, there
is (n,m) ∈ N2 and a non-void open subset H of Fn;m such that :

[d(xn), xm] ∈M (∀x ∈ H).

Let x ∈ H and y ∈ A, we have x+ ty ∈ H for all sufficiently small real
t, therefore

Q(t) = [d((x + ty)n), (x + ty)m] ∈M.
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Since d is continuous, can be written as

Q(t) =
k=n∑
k=0

l=m∑
l=0

tk+l[d(Bk(x, y)), Al(x, y)] =
n+m∑
p=0

tpCp,

where Cp =
∑

k+l=p[d(Bk(x, y)), Al(x, y)]. Therefore, the first coeffi-

cient in this polynomial is C0 = [d(B0(x, y));A0(x, y)] = [d(xn);xm] ∈
M and last coefficient is Cn+m = [d(yn); ym].
For a t 6= 0, we write

Q(t) = C0 + tC1 + t2C2 + · · ·+ tn+mCn+m.

Since M is a subspace of A, we have

tC1 + t2C2 + · · ·+ tn+mCn+m ∈M.

Multiplying by t−1 ( M is a subspace of A), we obtain

R(t) = C1 + tC2 + · · ·+ tn+m−1Cn+m ∈M,

and take t to zero (R is continuous at 0 and M is closed), we get
C1 ∈M, we conclude that

tC2 + · · ·+ tn+m−1Cn+n ∈M.

Multiplying by t−1 and take t to zero, we have C2 ∈M. And so on, we
have Cp ∈M for all 0 ≤ p ≤ n+m. In particular for p = n+m, we get
Cn+m = [d(yn), ym] ∈M. And from him [d(yn), ym] ∈M for all y ∈ A.
Let x ∈ A and a be a non-zero element of Z(A), for all t ∈ R, we have
S(t) = [d((a + tx)n), (a + tx)m] ∈M.

We can write S(t) =
n∑

k=0

m∑
p=0

(
k

n

)(
l

m

)
tk+l[d(an−kxk), am−lxl] ∈ M.

By following the same steps of the proof above, we conclude that(
k
n

)(
l
m

)
tk+l[d(an−kxk), am−lxl] ∈M , for all

0 ≤ k ≤ n and for all 0 ≤ l ≤ m. The coefficient of t2 in this polynomial
is ∑

k+l=2

(
k

n

)(
l

m

)
[d(an−kxk), am−lxl] ∈M.

We can write(
0

n

)(
2

m

)
[d(anx0), am−2x2] +

(
1

n

)(
1

m

)
[d(an−1x1), am−1x1]+

(
2

n

)(
0

m

)
[d(an−2x2), amx0] ∈M.
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Since a is arbitrary in Z(A), we take a = 1 and we get(
0

n

)(
2

m

)
[d(1nx0), 1m−2x2] +

(
1

n

)(
1

m

)
[d(1n−1x1), 1m−1x1]+(

2

n

)(
0

m

)
[d(1n−2x2), 1mx0] ∈M.

As d(1) = 0 and 1 ∈ Z(A), consequently(
1

n

)(
1

m

)
[d(x), x] ∈M.

Since M is a subspace of A, we obtain

[d(x), x] ∈M.

We conclude that

[d(x), x] ∈ Q(A) (∀x ∈ A).

According to Lemma 1.1, we have d(A) ⊂ RadA. �

Theorem 2.6. Let A be a Banach algebra and O a non-void open
subset of A. If A admits a continuous derivation d satisfying for all
x ∈ H, there is n ∈ N∗ such that d(xn) ∈ Z(A), then d(A) ⊆ RadA.

Proof. It resembles to the proof of Theorem 2.1, we conclude that there
is m ∈ N∗ and a non-void open subset O in A such that d(xm) ∈ Z(A)
for all x ∈ O.
Let x ∈ O and y ∈ A, then x + ty ∈ O for all sufficiently small real t,

then P (t) = d((x + ty)n) =
m∑
k=0

tkAk = A0 + tA1 + ... + tmAm ∈ Z(A)

(because d is continuous), while the first term in this polynomial A0 =
d(xm) who belongs to Z(A), we conclude that:

tA1 + t2A2 + · · ·+ tmAm ∈ Z(A).

We can simplify by t (because Z(A) is a subspace of A), we obtain

Q(t) = A1 + tA2 · · ·+ tm−1Am ∈ Z(A),

and take limit to zero (Q is continuous at 0 and Z(A) is closed), we
get A1 ∈ Z(A), and we obtain

t2A2 + · · ·+ tnAn ∈ Z(A).

We can further simplify by t2 and take limit to zero, we get A2 ∈ Z(A).
And so on we get Ak ∈ Z(A) for all k ≤ n. we conclude that Am(x, y) =
d(ym) ∈ Z(A). Consequently d(ym) ∈ Z(A) for all y ∈ A.
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Let x ∈ A, we have d((x+t.1)m) ∈ Z(A) for all t ∈ R. Since 1k ∈ Z(A)
(∀k ∈ N∗), we can write

d((x + t.1)m) =
m∑
k=0

(
n

k

)
tkd(xk) ∈ Z(A).

The first term in this polynomial is d(1n) = 0 who belongs to Z(A),
as preceding we conclude that

(
m
k

)
d(xk) ∈ Z(X ) for all 0 ≤ k ≤ m, in

particular for k = 1, we have m.d(x) ∈ Z(A), we can simplify by m
(because Z(A) is a subspace of A), so d(x) ∈ Z(A) for all x ∈ A and d
is a centralizing derivation. By theorem of Mathieu and Runde [7] we
conclude that d(A) ⊆ RadA. �

Theorem 2.7. Let d and g be continuous derivations of a Banach
algebra A and O a non-void open subset of A. If for all x ∈ O , there
is n ∈ N∗ such that [d2(x)+g(x), xn] ∈M where M is a closed subspace
of A included in QA, then d maps A into RadA.

Proof. For all p ∈ N∗, we define the following sets:

Op = {x ∈ A | [d2(x) + g(x), xp] /∈M}
and

Fp = {x ∈ A | [d2(x) + g(x), xp] ∈M}.
We will repeatedly use the same method as in the proof of Theorem
2.1, we conclude that, there is n ∈ N∗ and a non-void open subset H
such that

[d2(x) + g(x), xn] ∈M (∀x ∈ H).

Let x ∈ H and y ∈ A, we have x+ ty ∈ H for all sufficiently small real
t, thus

Q(t) = [d2(x + ty) + g(x + ty), (x + ty)n] ∈M.

If we write (x + ty)n = A0 + tA1 + t2A2 + · · ·+ tnAn =
n∑

k=0

tkAk, we

obtain

Q(t) = [d2(x+ ty) + g(x+ ty), A0] + t[d2(x+ ty) + g(x+ ty), A1] + · · ·+

tn[d2(x + ty) + g(x + ty), An].

Since d2(x + ty) = d2(x) + td2(y) and g(x + ty) = g(x) + tg(y). We
have

[d2(x+ty)+g(x+ty), Ak]tk = tk[d2(x)+g(x), Ak]+tk+1[d2(y)+g(y), Ak].
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Consequently

Q(t) = B0 + tB1 + t2B2 + · · ·+ tnBn + tn+1Bn+1 ∈M,

where B0 = [d2(x)+g(x), A0] ∈M and Bn+1 = [d2(y)+g(y), An]. As the
proof of the precedent theorem, we arrive at Bn+1 = [d2(y)+g(y), yn] ∈
M for all y ∈ A.
Now, let t ∈ R and y ∈ A, we have

[d2(1 + ty) + g(1 + ty), (1 + ty)n] ∈M.

That is [d2(y) + g(y), (1 + ty)n] ∈M, which implies
n∑

k=0

(
k

n

)
tk[d2(y) +

g(y), yk] ∈ M. Repeating the same thing as precisely, we arrive at
[d2(y)+g(y), y] ∈M. According to Lemma 1.2, we conclude that d and
g map A into RadA. �

Theorem 2.8. Let A be a Banach algebra and O a non-void open
subset of A. If A admits a continuous derivation d satisfying for all
x ∈ O, there is (n,m) ∈ N∗2 such that ([d(xn), xm])2 ∈ M where M is
a closed subspace of A included in QA, then d maps A into RadA.

Proof. For all (p, q) ∈ N∗2, we define the following sets:

Op,q = {x ∈ A/[d(xp), xq]2 /∈M}
and

Fp,q = {x ∈ A/[d(xp), xq]2 ∈M}.
Proceeding in the same way as Theorem 2.1, we deduce that, there is
(n,m) ∈ N∗2 and a non-void open subset H of Fn,m such that :

[d(xn), xm]2 ∈M (∀x ∈ H).

Let x ∈ H and y ∈ A, we have x+ ty ∈ H for all sufficiently small real
t, therefore

Q(t) = [d((x + ty)n), (x + ty)m]2 ∈M.

Since d is continuous, can be written as

Q(t) = (
k=n∑
k=0

l=m∑
l=0

[d(Bk(x, y)), Al(x, y)]tk+l)2 = (
n+m∑
p=0

Cpt
p)2,

where Cp =
∑

k+l=p[d(Bk(x, y)), Al(x, y)]. The first coefficient in this
polynomial is
C2

0 = [d(B0(x, y)), A0(x, y)]2 = [d(xn), xm]2 ∈ M and last coefficient is
C2

n+m = [d(yn), ym]2.
For a t 6= 0, we write

Q(t) = (C0 + tC1 + t2C2 + · · ·+ tn+mCn+m)2 ∈M.



84 MOUMEN AND TAOUFIQ

We write Q(t) in the form

Q(t) = K0 + tK1 + t2K2 + · · ·+ K(n+m)2t
(n+m)2 ∈M,

where K0 = (C0)
2 ∈ M and K(n+m)2 = [d(yn), ym]2. Since M is a

closed subspace of A, we have

tK1 + K2t
2 + ... + t(n+m)2K(n+m)2 ∈M.

Multiplying by t−1 ( M is a subspace of A), we obtain

R(t) = K1 + tK2 + · · ·+ t(n+m)2−1K(n+m)2 ∈M,

and take t to zero (R is continuous at 0 and M is closed), we get
K1 ∈M, we conclude that

tK2 + · · ·+ t(n+m)2−1K(n+m)2 ∈M.

Multiplying by t−1 and put t to zero, we have K2 ∈M. And so on, we
have Kp ∈M for all 0 ≤ p ≤ (n + m)2. In particular for p = (n + m)2,
we get K(n+m)2 = [d(yn), ym]2 ∈ M. And from him [d(yn), ym]2 ∈ M
for all y ∈ A. Let x ∈ A and a be a non-zero element of Z(A), for all
t ∈ R, we have S(t) = [d((a + tx)n), (a + tx)m]2 ∈M. We can write

S(t) = (
n∑

k=0

m∑
l=0

(
k

n

)(
l

m

)
tk+l[d(an−kxk), am−lxl])2 ∈ M. By following

the same steps of the proof above, we conclude that,

(
∑
k+l=2

(
k

n

)(
l

m

)
[d(an−kxk), am−lxl])2 ∈M,

We can write((
0

n

)(
2

m

)
[d(an), am−2x2] +

(
1

n

)(
1

m

)
[d(an−1x), am−1x]

+

(
2

n

)(
0

m

)
[d(an−2x2), am]2 ∈M.

Since a is arbitrary in Z(A), we take a = 1 and we get

(

(
0

n

)(
2

m

)
[d(1nx0), 1m−2x2]+

(
1

n

)(
1

m

)
[d(x), x]+

(
2

n

)(
0

m

)
[d(x2), 1])2

∈M.

Therefore

(

(
1

n

)(
1

m

)
[d(x), x])2 ∈M.

Since M is a subspace of A, we obtain

[d(x), x]2 ∈M.
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Finally,
[d(x), x]2 ∈ Q(A) (∀x ∈ A).

By Lemma 1.3, we have d(A) ⊂ RadA. �

Application 1. Let A be a commutative Banach algebra and d : A →
A is a continuous linear derivation, then d is not-surjective. Indeed:
Since A is commutative, then yq ∈ Z(A) for all (q, y) ∈ N∗ ×A.
Therefore, for all (p, q) ∈ N∗2 we have:

[d(xp), yq] = 0 ∀(x, y) ∈ A2.

According to Corollary 2.4; we conclude that, d is not surjective.

Application 2. Let A be a Banach algebra and d : A → A a continu-
ous linear derivation, then the restriction of d to Z(A) is not-surjective.
Indeed:
Let d1 be the restriction of d to Z(A). Since d1(Z(A)) ⊂ Z(A), and
Z(A) is a closed subspace of the Banach algebra A, then Z(A) is a Ba-
nach algebra and d1 : Z(A)→ Z(A) is a continuous linear derivation.
According to Application 1 we conclude that, d1 is not surjective.

The following example shows that the Theorem 2.1 is false, if we
replace derivation by a Banach algebra homomorphism.

Example 2.9. Let A =

{(
a b
0 c

)
| a, b, c ∈ C

}
endowed with usual

matrix addition and multiplication and of norm defined by ‖
(
a b
0 c

)
‖ =

max(| a | + | b |, | c |), is an unital Banach algebra with neutral element

I =

(
1 0
0 1

)
. Let G be the linear mapping defined by:

G

((
a b
0 c

))
=

(
a 0
0 a

)
.

Observe that G

((
a b
0 c

)n)
=

(
an 0
0 an

)
∈ Z(A) for all n ∈ N∗ and G

is a continuous Banach algebra homomorphism.
It is easy to verify that for all A,B ∈ A and for all n,m ∈ N:
[G(An), Bm] = 0 ∈ {0} ⊂ QA .
But G(A) * RadA, because G(I) = I /∈ RadA.
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