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Abstract. The aim of this paper is to solve a class of auto-convolution Volterra integral equations by
the well-known differential transform method. The analytic property of solution and convergence of the
method under some assumptions are discussed and some illustrative examples are given to clarify the
theoretical results, accuracy and performance of the proposed method.
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1 Introduction

The Differential Transform Method (DTM) is a semi-analytical numerical method used in numerical
analysis for solving differential, integral, and integro-differential equations. It was first introduced by
Zhou to solve linear and nonlinear initial value problems in electric circuits [27]. Since then, it has
been developed by many authors for addressing various types of ordinary, partial, integral, and integro-
differential equations. For example, it was extended in [3, 4] for solving systems of differential and
differential-algebraic equations. Its applications have been further expanded to address various types
of partial differential equations and one-dimensional Volterra integral and integro-differential equations
in [2, 6, 10] and [1, 15]. The DTM has also been generalized to solve single-order and multi-order frac-
tional differential equations, systems of conformable fractional differential equations, and conformable
fractional partial differential equations in various studies [7–9, 16].

For solving a system of non-linear Volterra integro-differential equations with variable coefficients
and two-dimensional integral equations it is investigated in [22–24]. A modification of this method is
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suggested for solving delay differential, integro-differential equations, and partial differential equations
in [5, 14, 20]. Application of this method for stiff differential equations may be found in [19]. It is also
extended for some applied problems [12, 17, 18, 21, 25].
The subject of this article is to investigate the application of the DTM to a class of generalized auto-
convolution Volterra integral equations (AVIEs), i.e.

u(t) = g(t)+
∫ t

0
K(t,s)u(t− s)u(s)ds, t ∈ I := [0,T ], (1)

where T > 0 is a real number, K and g are given smooth functions, and u represents the unknown function
for which we aim to determine its power series.

Application of Eq. (1) is, e.g., in the identification of memory kernels in the theory of viscoelasticity
or in the computation of certain special functions [26]. The existence and uniqueness of solution for this
kind of equations may be found in [26]. Equations of the form (1) have been solved by the piecewise
polynomial collocation method in [26] and by the barycentric rational quadrature method in [13]. More
details about these equations and other solution methods may be found in literature.

The next sections of this paper are organized as follows. In Section 2, we recall DTM and its im-
portant properties. In Section 3, we present sufficient conditions for the existence and uniqueness of an
analytic solution for Eq. (1) around the point t = 0. Formulation of the DTM on Eq. (1) will be described
in the last part of Section 3. In Section 4, some illustrative examples are given to clarify the accuracy and
convergence of the method. Finally, in Section 5, we provide a brief conclusion.

2 Preliminaries

In this section, we present the preliminary results concerning the DTM that will be used throughout the
paper. Throughout this paper, the differential transform of any function is denoted by the corresponding
capital letter of the function’s name.

Definition 1. Let the function f : I→ R be differentiable of any order on the open interval I⊂ R. Then
for any positive integer n the differential transform of f at the point t0 ∈ I is defined by

Fn =
1
n!

[
dn f (t)

dtn

]
t=t0

, (2)

and the inverse transform is defined by

f (t) =
∞

∑
n=0

Fn(t− t0)n. (3)

From (2) and (3), we obtain

f (t) =
∞

∑
n=0

1
n!

[
dn f (t)

dtn

]
t=t0

(t− t0)n, (4)

which is the Taylor series of f (t) around the point t0.

We summarize the main properties of the differential transform in Proposition 1.
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Proposition 1 ([15]). Let Fn, Gn, Un, and Vn denote the differential transforms of the functions f , g, u
and v around the point t0 ∈ I, respectively. Then

a. If f (t) = cu(t)±dv(t) for some arbitrary constants c and d, then

Fn = cUn±dVn.

b. If f (t) = u(t)v(t), then Fn =
n

∑
k=0

UkVn−k.

c. If f (t) = (t− t0)
k, then Fn = δn,k, where δn,k denotes the Kronecker delta function.

d. If f (t) = tk, then Fn =

{(k
n

)
tk−n
0 , n = 0,1, . . . ,k,

0, n > k.

e. If f (t) = sin(ct +d), then Fn =
cn

n! sin(ct0 +d + nπ

2 ).

f. If f (t) = cos(ct +d), then Fn =
cn

n! cos(ct0 +d + nπ

2 ).

g. If f (t) = ect , then Fn =
cn

n! ect0 .

h If f (t) =
∫ t

t0
u(s)ds, then Fn =

Un−1
n , n≥ 1, F0 = 0.

i. If f (t) = g(t)
∫ t

t0
u(s)ds, then Fn =

n−1

∑
k=0

GkUn−k−1

n− k
, n≥ 1, F0 = 0.

j. If f (t) =
∫ t

t0
g(s)u(s)ds, then Fn =

n−1

∑
k=0

GkUn−k−1

n
, n≥ 1, F0 = 0.

Theorem 1 ([21]). If h(t) =
∫ t

t0 f (t0 + t− s)g(s)ds, then

H0 = 0, Hn =
n−1

∑
k=0

k!(n− k−1)!
n!

FkGn−k−1, n≥ 1. (5)

We recall the following definition which will be used in the next section.

Definition 2. [11] Assume that f (t) =
∞

∑
n=0

an(t− t0)
n and g(t) =

∞

∑
n=0

bn(t− t0)
n be two power series with

positive radius of convergence and assume that bn ≥ 0 for all n. We say that g(x) is a majorant of f (x) if
for all n≥ 0 we have |an| ≤ bn.

Remark 1. From the definition above, we can conclude that, if R1 and R2 are convergence radius of f (x)
and g(x) respectively, then R2 ≤ R1.
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3 Main results

In this section, first we recall Lemma 1 and Theorems 2 and 3 below from [26], then in Theorem 4, we
show under appropriate assumptions, the integral equation (1) has a unique continuous solution.

Lemma 1 ([26]). Assume that g ∈C(I) and K ∈C(D) in which D := {(t,s) : 0≤ s≤ t ≤ T}. Then, (1)
has a unique local solution u ∈C[0,σ ], where

σ := min
{

1
4K̄(Ḡ+1)2 ,T

}
, Ḡ := max

t∈I
|g(t)|, K̄ := max

(t,s)∈D
|K(t,s)|.

This local solution can be extended to cover the interval [0,T ], so we have the following theorem.

Theorem 2 ([26]). Let in the AVIE (1) we have g ∈ C(I), K ∈ C(D). Then (1) has a unique solution
u ∈C(I).

The next theorem discusses the regularity property of the solution of (1).

Theorem 3 ([26]). Assume that in the Eq. (1) we have g∈Cm(I) and K ∈Cm(D) for some m≥ 1. Then,
the solution u of (1) possess the regularity u ∈Cm(I).

In this part, we will prove that under appropriate conditions, the solution of (1) is analytic at t = 0
with a convergence interval that includes [0,ε].

Theorem 4. Suppose that the given functions g and K are analytic at t = 0 with their convergence
intervals and domains contained in I and D, respectively. Then, the solution of the AVIE (1) is also
analytic at t = 0, with its convergence interval containing [0,ε], where ε will be specified during the
proof.

Proof. Since g and K are analytic at t = 0, then we have

g(t) =
∞

∑
i=0

Git i, K(t,s) =
∞

∑
ρ,σ=0

K̄ρ,σ tρsσ . (6)

We now assume that on the interval [0,ε], the series u(t) = ∑
∞
k=0Uktk is convergent, then from Eq. (1)

we get U0 = G0,

Uk = Gk + ∑
ρ+σ+i+ j+1=k

K̄ρ,σUiU jB( j+1,σ + i+1), k ≥ 1,

where B denotes the beta function. Assume the equation

y(t) = g̃(t)+
∫ t

0
K̃(t,s)y(t− s)y(s)ds,

in which g̃(t) and K̃(t,s) are majorant functions of g(t) and K(t,s), respectively. Following the same
approach as previously mentioned for u(t), we can determine that y(t) is a majorant of u(t), this means
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that y(t) = ∑
∞
k=0Yktk with Yk ≥ |Uk|. We demonstrate that the latter series converges on [0,ε]. To achieve

this, let Nl(t) := ∑
l
k=0Yktk. It is evident that the sequence {Nl(t)} is increasing, and since

g̃(t)+
∫ t

0
K̃(t,s)Nl(t− s)Nl(s)ds =

∞

∑
k=0

G̃ktk +
∞

∑
ρ,σ=0

l

∑
i, j=0

K̃ρ,σYiYjB( j+1,σ + i+1)tσ+ρ+i+ j+1

= Nl+1(t)+
∞

∑
k=l+2

G̃ktk

+ ∑
ρ+σ+i+ j+1≥l+2

K̃ρ,σYiYjB( j+1,σ + i+1)tσ+ρ+i+ j+1,

where ∑
∞
k=l+2 G̃ktk and ∑ρ+σ+i+ j+1≥l+2 K̃ρ,σYiYjB( j+1,σ + i+1)tσ+ρ+i+ j+1 are non-negative, we con-

clude the following inequality:

Nl+1(t)≤ g̃(t)+
∫ t

0
K̃(t,s)Nl(t− s)Nl(s)ds.

Let us define D1 := max
t∈I

g̃(t) and D2 := D2
1 max
(t,s)∈D

K̃(t,s). Then, for ε := min{T, D1
4D2
} we derive

N0(t) = Y0 ≤ D1 ≤ 2D1. We get by induction

Nl+1(t)≤ g̃(t)+
∫ t

0
K̃(t,s)Nl(t− s)Nl(s)ds

≤ D1 + max
s∈[0,t]
{K̃(t,s)Nl(t− s)Nl(s)}t

≤ D1 +4D2
1 max
(t,s)∈D

{K̃(t,s)}ε

≤ D1 +4D2ε

≤ 2D1.

This implies that the sequence {Nl(t)} is uniformly bounded, and thus, the series ∑
∞
k=0Yktk is uniformly

convergent on [0,ε]. Consequently, we conclude that the series ∑
∞
k=0Uktk is also convergent, at least on

[0,ε].

Let us assume that the functions g and K are analytic at t = 0 with convergence interval and domain
included in [0,T ] and D, respectively. Then Eq. (1) has a unique analytic (at t = 0) solution u, which can
be expressed as

u(t) =
∞

∑
n=0

Untn. (7)

To find an approximation to u(t), we can apply the DTM to construct a recurrence relation for the
unknown coefficients Un, where n = 0,1,2, . . .. To achieve this, we expand the functions k(t,s) and g(t)
as follows:

K(t,s) =
∞

∑
n=0

kn(s)tn, g(t) =
∞

∑
n=0

Gntn, (8)
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where

kn(s) :=
1
n!

[
∂ nK(t,s)

∂ tn

]
t=0

, Gn :=
1
n!

[
dng(t)

dtn

]
t=0

. (9)

Then, using the expansions (7) and (8) in Eq. (1) and setting

hn(t) =
∫ t

0
kn(s)u(t− s)u(s)ds,

it becomes
∞

∑
n=0

Untn =
∞

∑
n=0

Gntn +
∞

∑
n=0

tnhn(t). (10)

Comparing now coefficients of tn on both sides of (10), implies

Un = Gn +
n

∑
j=0

Hn− j, j, n = 0,1,2, . . . , (11)

where Hn,k stands for the differential transform of hn(t).
On the other hand, if we set zn(s) = kn(s)u(s), then

hn(t) =
∫ t

0
u(t− s)zn(s)ds, (12)

and it follows from Theorem 1 that

Hn, j =


0, j = 0
j−1

∑
l=0

l!( j− l−1)!
j!

UlZn, j−l−1, j ≥ 1.
(13)

We also apply Proposition 1, part (b)., to the function zn(s) = kn(s)u(s), to get

Zn, j =
j

∑
r=0

An,rU j−r, j = 0,1,2, . . . . (14)

Combining the relations (11), (13) and (14), yields the recurrence relation

Un =


G0, n = 0,

Gn +∑
n
j=1

j−1

∑
l=0

j−l−1

∑
r=0

l!( j− l−1)!
j!

An− j,rU j−l−r−1Ul, n = 1,2, . . . ,
(15)

for the coefficients {Un}∞

n=0.
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4 Examples

To illustrate the structure of the recurrence relation (15) and the accuracy of the method, we present
the following examples. A comparison of our results with those provided in [13, 26] demonstrates the
effectiveness of our method. All computations are performed using Maple software.

Example 1 ([13, 26]). As the first example, we consider the AVIE

u(t) = β te−γt +β
2e−γt(2sin t− t− t cos t)−

∫ t

0
cos(t− s)u(t− s)u(s)ds, t ∈ [0,1], (16)

where the exact solution is u(t) = β te−γt .

We set β = γ = 1 as in [26], then we have

u(t) = e−t(2sin t− t cos t)− cos t
∫ t

0
coss ·u(t− s)u(s)ds

− sin t
∫ t

0
sins ·u(t− s)u(s)ds. (17)

By using Proposition 1, the recurrence relation (15) is written in the form of

U0 = 0

Un = 2∑
n
k=0

(−1)k

k!(n−k)! sin
(
(n−k)π

2

)
− (−1)k

l!(n−k−1)! cos
(
(n−k−1)π

2

)
−∑

n
k=1 ∑

k−1
l=0 ∑

k−l−1
r=0

l!(k−l−1)!
k!r!(n−k)! cos

(
(n−k)π

2

)
cos
( rπ

2

)
UlUk−l−r−1

−∑
n
k=1 ∑

k−1
l=0 ∑

k−l−1
r=0

l!(k−l−1)!
k!r!(n−k)! sin

(
(n−k)π

2

)
sin
( rπ

2

)
UlUk−l−r−1,

n = 1,2, ....

Then as an example, for n = 10 we obtain the approximate solution as

u10(t) = t− t2 +
1
2

t3− 1
6

t4 +
1
24

t5− 1
120

t6 +
1

720
t7− 1

5040
t8 +

1
40320

t9− 1
362880

t10,

which is exactly the truncated Taylor expansion of degree 8.

Example 2 ([26]). Consider the equation

u(t) =
1
2

sin t +
1
2

∫ t

0
u(t− s)u(s)ds, t ∈ [0,1], (18)

where the exact solution is u(t) = J1(t), in which J1(t) denotes the Bessel function of order one that is
defined by

J1(t) = t
∞

∑
k=0

(−1)kt2k

22k+1k!(k+1)!
. (19)
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Figure 1: Plot of absolute error for Example 1.

Figure 2: Plot of absolute error for Example 2.

The recurrence relation (15) for this equation is obtained as followsUn =
1

2n! sin(nπ

2 )+ 1
2

n−1

∑
k=0

k!(n− k−1)!
n!

UkUn−k−1, n = 1,2, . . . ,

U0 = 0.

As an example, the approximate solution for n = 10 is then given by

u10(t) =
1
2

t− 1
16

t3 +
1

384
t5− 1

18432
t7 +

1
1474560

t9,

which coincides with partial sum of the series (19).

Example 3 ([26]). Consider the equation

u(t) = 50te−50t +
1250

3
t3e−50t −

∫ t

0
u(t− s)u(s)ds, t ∈ [0,1], (20)

with the exact solution u(t) = 50te−50t .
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Figure 3: Plot of absolute error for Example 3.

By Theorem 1 and the recurrence relation (15), we have

Un =50
n

∑
k=0

δk,1
(−50)n−k

(n− k)!
− 1250

3

n

∑
k=0

δk,3
(−50)n−k

(n− k)!

−
n−1

∑
k=0

k!(n− k−1)!
n!

UkUn−k−1,

for n = 1,2, ..., with U0 = 0. For n = 6, we obtain the approximate solution as

u6(t) = 50t−2500t2 +62500t3− 3125000
3

t4 +
39062500

3
t5− 390625000

3
t6,

which exactly coincides with the truncated Taylor expansion of the solution.

Example 4. Consider the equation

u(t) = sin t +
1
4

t2(t cos t− sin t)+ t
∫ t

0
su(t− s)u(s)ds, t ∈ [0,2], (21)

with the exact solution u(t) = sin(t). The approximate solution for n = 10 is obtained as follows:

u10(t) = t− 1
6

t3 +
1

120
t5− 1

5040
t7 +

1
362880

t9.

The plot of absolute error is shown in Fig. 4

5 Conclusion

In this article, we discussed the application of the Differential Transform Method for a class of non-
standard Volterra integral equations. We demonstrated that, under suitable conditions, the solutions of
these types of equations are analytic at the origin (t = 0). Subsequently, we derived a recurrence relation
to obtain the Taylor expansion of the exact solution around the origin. Our findings contribute to the
development of effective methods for solving non-standard Volterra integral equations, which can be
applied in various fields of science and engineering.
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Figure 4: Plot of absolute error for Example 4.
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